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Abstract. We describe affine functions on spaces with an upper
curvature bound.

1. introduction

A map f : X → Y between geodesic metric spaces is called affine if
it sends geodesics (in this paper always parameterized proportionally
to the arclength) to geodesics. Restricting to the case Y = R we obtain
the following definition.

Definition 1.1. A function f : X → R on a geodesic metric space X
is called affine, if the restriction f ◦ γ to each geodesic γ : [a, b] → X
is affine, i.e. satisfies (f ◦ γ)′′ = 0.

The easiest example of an affine function is the projection f = pR :
X × R → R of a direct product onto its factor. In [AB] (see also
[In],[Ma1],[Ma2] for earlier results) it is shown, that under some as-
sumptions the existence of a non-constant affine function f on a space
X with a one-sided curvature bound forces the space to split as a direct
product X = Y ×R. The crucial assumption in [AB] is that the space
X does not have boundary in the case of a lower curvature bound or is
geodesically complete in the case of an upper curvature bound. With-
out this assumption one cannot expect that such a splitting exists, as
the example of an Euclidean ball shows. A slightly more sophisticated
example is a convex subset (for instance a metric ball) in a product of
a tree and a real line. The best one can hope for, is the existence of
an isometric embedding of X into a product of some space with a real
line. Our main result says that this is indeed the case.

We choose a slightly more general formulation that simultaneously
takes into account all affine functions on X. First, we restrict ourselves
to Lipschitz continuous affine functions, see, however, Theorem 1.6 and
Theorem 1.7 below. In the sequel we denote by pY and pH the natural
projections from the product Y × H onto the factors Y and H.
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Theorem 1.2. Let X be a CAT (κ) space. Then there exists a geodesic
metric space Y , a Hilbert space H and an isometric embedding i : X →
Y × H with the following properties:

(1) Each Lipschitz continuous affine function on Y is constant;
(2) Each Lipschitz continuous affine function f : X → R factors as

f = f̂ ◦ pH ◦ i where f̂ : H → R is affine and continuous;
(3) The projection PY = pY ◦ i : X → Y , is surjective;
(4) Each isometry of X extends to a unique isometry of Y × H.

The Hilbert space H can be finite or infinite dimensional. The fibers
of the projection PH = pH ◦ i : X → H consist of points that cannot be
separated by Lipschitz continuous affine functions. Each fiber P−1

H (h)
is a convex subset of X and projects isometrically into Y . Thus the
whole space Y appears as the union of such fibers glued together in
some way. This picture suggests that the space Y is CAT (κ) as well.
Without additional assumptions we can prove this only for κ = 0.

Proposition 1.3. Let X be a CAT (0) space and let Y be the space
constructed in Theorem 1.2. Then the completion Ȳ of Y is CAT (0).

For a more detailed study one needs the additional concept of in-
terior points. We think that this concept may also be useful in other
situations. The motivation comes from the following simple example:

Example 1.1. Let X be a closed convex subset of R
n with non-empty

interior and let O be the set of inner points of X. Then a point x is
contained in O if and only if there exists some ε = εx > 0 such that
each geodesic ending in x can be prolongated by the amount ε. One can
also characterize the set O topologically: x ∈ O if and only if X \ {x}
is not contractible. Note that O is dense in X and that each dense
convex subset of X contains O.

We generalize the two characterizations of inner points to general
CAT (κ) spaces.

Definition 1.4. Let X be a CAT (κ) space.

(1) A point x ∈ X is called a geometrically inner point of X if there
is some ε > 0 with the following property. For each y ∈ X, with
d(x, y) ≤ ε, there is some z ∈ X, with d(x, z) = ε, such that x
lies on the geodesic connecting y and z.

(2) A point x ∈ X is called a topologically inner point of X if for
all small ε > 0 the punctured ball Bε(x)\{x} is not contractible.

One cannot expect that inner points in a general CAT (κ) space have
the same properties as in the example above. In an infinite dimensional
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Hilbert space H each point is a geometrically inner point, but no topo-
logically inner points exists. Moreover, the intersection of all convex
dense subsets of H is empty. In the Hilbert cube no (geometrically or
topologically) inner points exist. It is possible to construct a compact
tree, in which the set of (geometrically and topologically) inner points
is not open. However, under the assumption of finiteness of geometric
dimension introduced in [K], inner points exist and there is a relation
to convex dense subsets:

Theorem 1.5. Let X be a CAT (κ) space. Then

(1) Every topologically inner point is also a geometrically inner
point.

(2) If X has locally finite geometric dimension, then the set of topo-
logically inner points is dense in X.

(3) Every dense convex subset C ⊂ X contains all topologically
inner points of X.

The existence of topologically inner points has strong consequences
for affine functions:

Theorem 1.6. Let X be a CAT (κ) space with a topologically inner
point. Then each affine function on X is Lipschitz continuous.

Under the weaker assumption of the existence of geometrically inner
points non-continuous affine functions may exist as the example of
non-continuous linear functions on Hilbert spaces shows. However, we
obtain the analog of the usual characterization of the continuity of
linear functions on Hilbert spaces:

Theorem 1.7. Let X be a CAT (κ) space with at least one geometri-
cally inner point. Let f be an affine function on X. Then the following
are equivalent:

(1) The function f is Lipschitz continuous;
(2) The function f is continuous;
(3) All fibers of f are closed;
(4) There is a fiber of f that is not dense in X.

We apply our results in two situations. First we study affine function
under the presence of group actions. We show that if X admits a
minimal action by a group of isometries, then the existence of an affine
function forces the space to split off a line.

Corollary 1.8. Let X be a CAT (0) space with at least one geometri-
cally inner point. Assume that a group Γ acts on X by isometries, such
that in X there are no non-trivial, closed, convex, Γ-invariant subsets.
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Then X has the form X = Y × H, where H is a Hilbert space and Y
is CAT (0) space, on which no continuous affine functions exist.

Finally we study the situation in the CAT (−1) case and obtain:

Corollary 1.9. Let X be a CAT (−1) space with a geometrically inner
point. If on X a non-constant continuous affine function exists then
X is isometric to a subset of R.

Remark 1.2. Our investigations were mainly motivated by Theorem 1.6
in [AdB], where affine Busemann functions were analyzed and a result
similar to our Theorem 1.2 was obtained.

Remark 1.3. We do not know if our results generalize to the case of
K-affine functions studied in [AB]

Without any curvature assumption, it is not clear to us what impli-
cations the existence of an affine function must have. The best one can
hope for is that (in some sense) X looks like a Banach space in some
direction:

Example 1.4. On strictly convex Banach spaces each continuous linear
function is affine. But Banach spaces usually do not admit non-trivial
isometric embeddings into a space with a Euclidean factor. Let Z
be any geodesic metric space, Y a strictly convex Banach space, and
|| · || a strongly convex norm on a two dimensional vector space. Let
X = Y ×||·||Z be the non-standard metric product in the sense of [BFS].
Then the projection pY : X → Y is an affine map and composing this
map with affine functions on Y we obtain many affine functions on X.
To obtain further examples one can take convex subsets of such spaces
or glue such spaces together in the right way.

The proofs of splitting results in [In],[Ma1],[Ma2] and [AB] have in
common that the non-Euclidean factor can be recognized as a convex
subset of X. Our proof is quite different, and we hope that it may find
other applications. We construct the factor Y in a very abstract way,
that we are going to sketch now.

Assume for a moment that Theorem 1.2 is true and consider the
projection F = pH ◦ i : X → H. The metric on Y must satisfy
d(PY (y), PY (z)) =

√

d(y, z)2 − ||F (y) − F (z)||2 for all y, z in X. In
particular, the right hand side must be a pseudo metric on X and Y
must be the metric space corresponding to this pseudo metric one. To
prove Theorem 1.2 we go the same way backwards. First we define some
Hilbert space H with a natural map F : X → H that would coincide
with pH ◦ i, if the theorem was true (Section 3 and Section 4). Then
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it only remains to prove that the term
√

d(y, z)2 − ||F (y) − F (z)||2

is a pseudo metric on X. We prove that this is true infinitesimally
(i.e. in the tangent cones) at many regular points, and then use first

variation formula to deduce that d̃ is indeed a pseudo metric. The proof
also shows that the spaces H and Y and the isometric embedding i in
Theorem 1.2 are unique up to isometry.

We would like to thank the anonymous referee for critical objections
that helped us to improve the results and their presentation.

2. Preliminaries

2.1. Spaces. By d we will denote the distance in metric spaces without
an extra reference to the space. By Br(x) we denote the open metric
ball of radius r around a point x. A pseudo metric is a metric for which
the distance between different points may be zero. Identifying points
with pseudo distance 0 one obtains a metric space from it.

A geodesic in a metric space is a length minimizing curve parameter-
ized proportionally to arclength. A metric space is geodesic if each pair
of its points is connected by a geodesic. A subspace of a geodesic space
is convex if it is geodesic with respect to the induced metric. A CAT (κ)
space is a complete, geodesic metric space in which triangles are not
thicker than in the space of constant curvature κ. We refer to [BH] for
a detailed discussion of such spaces. We will need the following esti-
mates that are direct consequences of the CAT (κ) property and spher-
ical trigonometry. There are numbers A = A(κ), r = r(κ) such that
for each triple x1, x2, x3 in a CAT (κ) space X with d(xi, xj) ≤ r the
following holds. Let mi be the midpoint between xj and xk (j 6= i 6= k).

(1) If d(x1, x2), d(x1, x3) ≤ 2t then d(m2,m3) ≤
1
2
d(x2, x3)(1+At2);

(2) If d(x1, x2) = d(x1, x3) = ε then d(x1,m1) ≤ ε − Ad(x2, x3)
2.

2.2. Functions. A map f : X → Y is called L-Lipschitz if it satisfies
d(f(x), f(z)) ≤ Ld(x, z). The smallest L as above is called the optimal
Lipschitz constant of f . For a function f : X → R, we denote by |∇xf |

the absolute gradient at x which is given by max{0, lim supz→x
f(z)−f(x)

d(x,z)
}.

If f is L-Lipschitz then all absolute gradients are not larger than L. On
the other hand, if the space X is geodesic then the optimal Lipschitz
constant is the supremum of all absolute gradients.

2.3. Gradients of affine functions. Let X be a geodesic metric
space and f : X → R an affine function. For a point x ∈ X, the abso-
lute gradient |∇xf | is maximum of 0 and the supremum over (f ◦ γ)′
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where γ runs over all unit speed geodesics starting at x. Moreover, we

have |∇xf | = max{0, supz 6=x
f(z)−f(x)

d(x,z)
}.

This implies that for each convergent sequence xi → x in X such
that f(xi) converges to f(x), we have lim inf |∇xi

f | ≥ |∇xf | (compare
[P]). If f is continuous then |∇xf | is semi-continuous in x.

We are going to show that in the CAT (κ) case the gradient is con-
stant along geodesics.

Lemma 2.1. Let X be a CAT (κ) space and f : X → R be an affine
function. Let γ : [a, b) → X be a local geodesic. Then p(t) = |∇γ(t)f |
is constant p0 on (a, b) and we have p(a) ≤ p0.

Proof. The restriction of f to γ is continuous. Thus lim inf t→a p(t) ≥
p(a). It remains to prove that p is constant on (a, b). The statement is
local, therefore we may assume that γ is parameterized by the arclength
and has length smaller than r

2
. Here and below r and A are chosen as

in Subsection 2.1.
We claim that for each s ∈ (a, b) and each t with |t| ≤ {s− a, b− s}

one has p(s + t) ≤ p(s)(1 + At2). Observe that the claim implies that
p is either constant ∞ on (a, b), or it is finite everywhere on (a, b)
and locally Lipschitz. Moreover, in the last case the differential of p
vanishes at each point, hence p is constant as well.

In order to prove the claim, choose an arbitrary point z close to
γ(s+t) such that f(z) ≥ f(γ(s+t)). Consider the midpoint m between
z and γ(s− t). Since f is affine, f(m)−f(γ(s)) = 1

2
(f(z)−f(γ(s+ t)).

On the other hand, we have d(m, γ(s)) ≤ 1
2
d(z, γ(s+t))(1+At2). Hence

f(m) − f(γ(s))

d(m, γ(s))
≥

f(z) − f(γ(s + t))

d(z, γ(s + t))(1 + At2)
.

We deduce p(s + t) ≤ p(s)(1 + At2). ¤

Let X be a CAT (κ) space and f : X → R be an affine function.
Then for each t ≥ 0 the set of all points x ∈ X with |∇xf | > t is
convex in X. Moreover, it is dense in X if it is non-empty. By semi-
continuity this subset is open, if f is continuous.

Let x ∈ X be a geometrically inner point. Then no local geodesic
ends in x. From the last lemma we deduce |∇xf | ≥ |∇yf | for any point
y ∈ X. Thus the function f is L-Lipschitz if and only if |∇xf | ≤ L.

3. The space of affine functions

Let X be an arbitrary geodesic metric space. The set of all Lipschitz
continuous affine functions on X is a vector space and will be denoted
by Ã(X). It always contains the one-dimensional subspace Const(X)
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of constant functions. By A(X) or simply A we will denote the quotient
vector space Ã(X)/Const(X). For f ∈ Ã we denote by [f ] ∈ A the
corresponding element of A. The optimal Lipschitz constant defines a
norm on the space A. Equipped with this norm A is a normed vector
space. It is complete (even if X is not complete), hence it is a Banach
space.

Consider the evaluation map E : X × X → A∗ from the product
X ×X to the (Banach) dual space of A given by E(x, y)([f ]) = f(y)−
f(x). By definition ||E(x, y)|| ≤ d(x, y). Moreover, the map E is
strongly affine in the sense that it maps geodesics to linear intervals
of the Banach space A∗. Observe that E(x, y) = 0 if and only if the
points x and y cannot be separated by a Lipschitz continuous affine
function on X.

By Ex : X → A∗ we denote the restriction Ex(y)([f ]) = f(y)− f(x).
We have Ey = Ex − E(x, y).

Lemma 3.1. The evaluation map Ex : X → A∗ is 1-Lipschitz. For
each affine function f ∈ Ã we have [Ex(.)([f ])] = [f ] in A.

Proof. The second claim is a consequence of the definition. The first
one follows from ||Ex(y) − Ex(z)|| = ||E(z, y)|| ≤ d(y, z). ¤

4. Normalization

4.1. Basic splitting results. The following splitting results will be
basic tools in detecting infinitesimal splittings.

Lemma 4.1. Let X be a CAT (0) space and f : X → R be an affine
function. If for some line γ in X we have ∞ > (f ◦ γ)′ = ||f || > 0
then X splits as X = Z × R and f is given by f(z, t) = ||f ||t.

Proof. By rescaling and adding a constant we may assume that ||f || =
1 and f(γ(t)) = t. Let x ∈ X be arbitrary. For the rays γ+

x and
γ−

x starting at x and asymptotic to γ+ and γ−, respectively, we get
(f ◦ γ+

x )′ = 1 and (f ◦ γ−
x )′ = −1. Therefore |f(γ+

x (1)) − f(γ−
x (1))| =

2. Since f is 1-Lipschitz we deduce d(γ+
x (1), γ−

x (1)) = 2. Hence the
concatenation of γ+

x and γ−
x is a line γx which is parallel to γ. Therefore,

through each point x ∈ X, there exists a line parallel to γ and the well
known splitting theorem ([BH]) says that γ defines a line factor of X.
Now the last statement is clear, too. ¤

Lemma 4.2. Let X be a CAT (0) case and F : X → R
n be a 1-

Lipschitz affine map with coordinates Fi. Assume that there is a point
x ∈ X and lines γ1, ..., γn through x such that (Fi ◦ γi)

′ = 1. Then X
splits as X = Z ×R

n such that F is the projection onto the R
n factor.
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Proof. We may assume F (x) = 0. The case n = 1 is done by the last
lemma. Proceeding by induction on n, we assume that X splits as
Z̃ ×R

n−1 such that (F1, ..., Fn−1) is the projection onto R
n−1. Since F

is 1-Lipschitz, we must have (Fi ◦ γn)′ = 0 for all i ≤ n− 1. Therefore,
γn is contained in Z̃. Applying Lemma 4.1 to the function Fn : Z̃ → R

we see that γn splits of in Z̃. We obtain the desired splitting X =
Z̃ × R

n−1 = Z × R
n. ¤

4.2. Differentials. Let X be a CAT (κ) and f : X → R an affine Lips-
chitz function with optimal Lipschitz constant ||f ||. Due to Subsection
2.3, the set Xε of all points x ∈ X with |∇xf | > ||f ||− ε is open, dense
and convex in X, for each ε > 0. From the theorem of Baire we deduce:

Corollary 4.3. Let fj be a sequence of affine functions. Then the set
X0 of points x such that |∇x(−fj)| = |∇xfj| = ||fj||, for all j, is convex
and dense in X.

For each point x ∈ X there is a tangent cone Cx at x (the Euclidean
cone over the space of directions) that is a CAT (0) space. The Lipschitz
continuous affine function f : X → R has a well defined directional
derivative Dxf : Cx → R, that is itself a Lipschitz continuous affine
function. If f is L-Lipschitz then Dxf is L-Lipschitz too, i.e. ||Dxf || ≤
||f ||. If |∇xf | > 0 then there is a unique unit vector v ∈ Cx with
Dxf(v) = |∇xf | (see, for instance [K] or [P]).

Let now x ∈ X be a point with ||f || = |∇xf | = |∇x(−f)|. Con-
sider the unit vectors v± in Cx with Dxf(v±) = ±||f ||. Since Dxf is
||f ||-Lipschitz, we must have d(v+, v−) = 2, i.e. the concatenation of
the homogeneous rays γ±(t) = tv± is a line γ in Cx. Moreover, by
construction, (Dxf ◦ γ)′ = ||f || = ||Dxf ||.

Lemma 4.4. Let X be a CAT (κ) space. Then the Banach space A(X)
of Lipschitz continuous affine functions on X is a Hilbert space.

Proof. Let f, g be two Lipschitz continuous affine function on X. We
have to prove the parallelogram equality ||f+g||2+||f−g||2 = 2(||f ||2+
||g||2). Due to Corollary 4.3, there exists a point x ∈ X such that
|∇xh| = ||h|| for the eight functions h = ±f,±g,±(f + g),±(f − g).
We have seen above that this implies ||h|| = ||Dxh|| and that for each
h there is a line γh in Cx through 0, with (h ◦ γh)

′ = ||h||.
Since ||h|| = ||Dxh||, we may replace X by Cx and h by Dxh. Thus

we may assume that X is a CAT (0) space and that there are lines γf

and γg in X through a point x, with (h ◦ γh)
′ = ||h|| for h = f, g.

Moreover, f(x) = g(x) = 0.
Due to Lemma 4.1, the lines γh (for h = f, g) split of as line factors

of the space X = Zh × R such that h is given by h(z, t) = ||h||t with
8



respect to this decomposition. The line factors γf and γg give rise to a
splitting X = Z × E where E is a one- or two-dimensional Euclidean
space, such that h = ĥ ◦ pE (for h = f, g), where pE is the projection

of X onto E and where ĥ is the restriction of h to E.
Replacing h by ĥ we reduce the situation to the case, where X is the

Euclidean space E. In this case the statement is clear, since the dual
of a Hilbert space is a Hilbert space. ¤

4.3. Normalized maps and their regular points. We are going to
discuss an important property of the evaluation map now.

Definition 4.5. Let X be a CAT (κ) space, H be a Hilbert space and
F : X → H an affine map. We call F normalized, if F is 1-Lipschitz
and for each unit vector h ∈ H the affine function F h : X → R given
by F h(x) = 〈F (x), h〉 satisfies ||F h|| = 1.

For example an affine function f : X → R is normalized if and only
if it has norm 1.

Example 4.1. Let H0 ⊂ H be a Hilbert subspace. Then the orthogonal
projection p : H → H0 is normalized. If F : X → H is normalized
then so is the composition p ◦ F .

Using the natural isometry A∗ = A for the Hilbert space A we
deduce from Lemma 3.1:

Lemma 4.6. For each point x ∈ X the evaluation map Ex : X → A∗

is normalized.

Given an L-Lipschitz continuous affine map F : X → H to a finite
dimensional Hilbert space H one can define directional differentials
DxF : Cx → C(f(x))H = H by setting DxF (v) = (F ◦γ)′, for a geodesic
γ starting at x in the direction v. The differentials are again L-Lipschitz
and affine.

Definition 4.7. Let X be a CAT (κ) space, H a finite dimensional
Hilbert space and F : X → H a normalized affine map. We call a point
x ∈ X regular (with respect to F ) if Cx has the splitting Cx = C ′

x×Hx,
with a Hilbert space Hx, such that DxF : Cx → H is a composition of
the projection of Cx to Hx and an isometry.

An affine function f : X → R is normalized if and only its optimal
Lipschitz constant is 1. In this case a point x ∈ X is regular with
respect to f if and only if |∇xf | = |∇x(−f)| = 1 as the discussion
preceding Lemma 4.4 shows.

9



Lemma 4.8. Let X be a CAT (κ) space and F : X → R
n a normalized

affine map. Then the set of regular points (with respect to F ) is convex
and dense in X.

Proof. Let Fi, i = 1, ..., n, be the coordinates of F . If a point x ∈ X is
regular, we must have 1 = |∇xFi| = |∇x(−Fi)| for all i. On the other
hand, such a point x is regular, due to Lemma 4.2 and the observations
preceding Lemma 4.4. The result now follows from Corollary 4.3. ¤

5. Proof of Theorem 1.2

5.1. The pseudo metric. In the proof we will need the following first
variation formula, compare [L1].

Lemma 5.1. Let X be a CAT (κ) space, y, x two point in X. Let γ
be a geodesic starting at x and let η be a geodesic from x to y, both
parameterized by the arclength. Let β be the angle between η and γ.
Then for the function b(t) = d(y, γ(t)), we have b′(0) ≤ − cos(β), i.e.
b(t) ≤ b(0) − t cos(β) + o(t).

The proof is a direct consequence of the definition of the angle and
the triangle inequality d(y, γ(t)) ≤ d(y, η(s)) + d(η(s), γ(t)).

The proof of the main theorem will be a direct consequence of the
following result:

Theorem 5.2. Let X be a CAT (κ) space, H be a Hilbert space and

F : X → H be a normalized affine map. Then d̃ : X × X → [0,∞)

given by d̃(y, z) =
√

d(y, z)2 − ||F (y) − F (z)||2 defines a pseudo metric
on X.

Proof. By definition d̃ is symmetric. Since F is 1-Lipschitz, d̃ is non-
negative. Moreover, d̃(x, x) = 0 for all x ∈ X. It remains to prove the
triangle inequality.

Since F is 1-Lipschitz, the map d̃ : X ×X → R is continuous and it
is locally Lipschitz outside the set ∆̃ of pairs (y, z) with d̃(y, z) = 0.

Assume now that the triangle inequality does not hold for d̃ and take
three points x, y, z ∈ X with d̃(y, z) > d̃(y, x) + d̃(x, z). Denote by H0

the linear hull of three points F (x), F (y), F (z) in H and consider the
composition F0 = p◦F : X → H0, where p : H → H0 is the orthogonal
projection. Since ||F (x)−F (y)|| = ||F0(x)−F0(y)||, ||F (x)−F (z)|| =
||F0(x) − F0(z)|| and ||F (y) − F (z)|| = ||F0(y) − F0(z)|| we see that
Theorem 5.2 is wrong for F0 too. Thus to prove Theorem 5.2 it is
enough to consider the case of finite dimensional H. From now on we
will assume dim(H) < ∞.
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Due to Corollary 4.8 the set of regular points is dense in X. Thus
moving our three points x, y, z slightly, we may assume that they are
regular. Since d̃ is non-negative we must have d̃(y, z) > 0. Choose a
unit speed geodesic γ : [0, d(x, z)] → X from x to z. Due to Corol-
lary 4.8 all points on γ are regular. Set Ā = (F ◦ γ)′ ∈ H and let

A =
√

1 − ||Ā||2. (Ā is well defined since F ◦ γ is a geodesic). For all

s, t we have d̃(γ(s), γ(t)) = A|t − s|.

We set a(t) = d̃(y, γ(t)). The function a(t) is continuous, non-
negative and locally Lipschitz, whenever it is positive. For the func-
tion h(t) = d̃(y, γ(t)) + d̃(z, γ(t)) = a(t) + A(d(y, z) − t) we have
h(0) < h(d(y, z)) by our assumption. Therefore, we can find some
t0 such that a(t0) > 0 and a′(t0) > A. Without loss of generality we
may assume t0 = 0 and F (γ(t0)) = F (x) = 0.

Set r = d(x, y) and choose a geodesic η : [0, r] → X from x to y.
Let v and w denote the starting directions of γ and η, respectively.
We denote by x1 the origin 0 of the tangent cone Cx. We set y1 = rw
and consider the ray γ1(t) = tv. We denote by d1 the distance in the
tangent cone Cx and by F1 : Cx → H the differential F1 = DxF of F .

By assumption, the point x is regular with respect to F , hence F1

is the projection onto a Euclidean factor of Cx. Therefore the function
d̃1(p, q) =

√

d1(p, q)2 − ||F1(p) − F1(q)||2 is a pseudo metric on Cx.

Finally we set a1(t) = d̃1(y1, γ1(t)). The definition of F1 implies
that F (γ(t)) = F1(γ1(t)) and F (y) = F1(y1). Moreover, we have

d(x1, y1) = d(x, y) = r. The fact that d̃1 is a pseudo metric together

with d̃1(γ1(s), γ1(t)) = A|s − t| implies a′
1(0) ≤ A. On the other hand,

for b(t) = d(y, γ(t)) and b1(t) = d1(y1, γ1(t)) we have b′(0) ≤ b′1(0),
due to Lemma 5.1. Since a2(t) − a2

1(t) = b2(t) − b2
1(t), this implies

a′(0) ≤ a′
1(0) and we get a contradiction. ¤

5.2. Main Theorem. Let F : X → H be an affine normalized map
and let d̃ be the pseudo metric on X defined in Theorem 5.2. Let
Y = X/d̃ be the induced metric space. A point in Y is an equivalence

class [x] where x ∼ x′ iff d̃(x, x′) = 0. The definition of d̃ implies that
the map X → Y × H, x 7→ ([x], F (x)) is an isometric embedding.

For each unit speed geodesic γ in X we have seen, that γ is a geodesic
of velocity

√

1 − ||(F ◦ γ)′||2 with respect to d̃. Hence the space Y is
geodesic.

Let now g : X → X be an isometry such that ||F (g(x))−F (g(y))|| =
||F (x)−F (y)|| for all x, y ∈ X. Then g induces a map g̃ on Y through
g̃([x]) = [g(x)] and this map is an isometry.
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For the proof of Theorem 1.2 we use the affine map F = Eo : X →
A∗, where Eo is the evaluation map for some base point o ∈ X. Due to
Lemma 4.6, the map Eo is affine and normalized. Due to Theorem 5.2,
the function d̃ on X×X given by d̃(x, y) :=

√

d2(x, y) − ||Eo(x) − Eo(y)||2

defines a pseudo metric on X. Since the value of ||Eo(x)−Eo(y)|| does
not depend on o, the definition of this pseudo metric does not depend
on the point o.

The above discussion shows that the metric space Y defined by this
pseudo metric is a geodesic space and that X has a natural isometric
embedding i : X → Y × A∗, x 7→ ([x], Eo(x)). Each isometry g of X
sends affine functions to affine functions and preserves the Lipschitz
constants. Hence g induces an isometry on A∗. Above we have seen
that in such a case g also induces an isometry on Y . By construction
g is the restriction of the induced isometry on Y ×A∗.

Finally, let f ∈ Ã(X) be a Lipschitz continuous affine function on

X. Define f̂ : A∗ → R by f̂(ξ) := ξ([f ]) + f(o), where [f ] is the class

of f in A(X). Then f̂ is an affine function on A∗ and

f̂(Eo(x)) = Eo(x)([f ]) + f(o) = f(x) − f(o) + f(o) = f(x)

hence f̂ ◦ pA∗ ◦ i = f as required.

5.3. Hadamard spaces. We are going to prove Proposition 1.3.

Proof of Proposition 1.3. We use the notations of the previous subsec-
tion. It is enough to prove for all x, y, z ∈ X and for the midpoint m
of the geodesic yz the following inequality (see e.g. [BH] p.163):

(5.1) d̃2(x,m) ≤
1

2
d̃2(x, y) +

1

2
d̃2(x, z) −

1

4
d̃2(y, z)

Since X is CAT (0) we have

d2(x,m) ≤
1

2
d2(x, y) +

1

2
d2(x, z) −

1

4
d2(y, z)

and since F is affine and H a Hilbert space we see

||F (x)−F (m)||2 =
1

2
||F (x)−F (y)||2+

1

2
||F (x)−F (z)||2−

1

4
||F (y)−F (z)||2.

Subtracting the two formulas we obtain inequality (5.1). ¤

6. Inner points

Before embarking on the proof of Theorem 1.5 we make some general
topological remarks which we will use later. Let X be a CAT (κ) space.
All balls of radius ≤ π

2
√

κ
are totally convex in X. Hence all intersections

of such balls are either empty or contractible. Thus X has arbitrary fine
12



coverings such that all intersections of the members of each covering
are either empty or contractible. This implies that X is an absolute
neighborhood retract (ANR), since the criterion of Theorem 1.1 (b) of
[To] is satisfied. Since X is an ANR, each open subset of X is homotopy
equivalent to a simplicial complex.

Recall that a subset Z of a metric space X is called locally homotopi-
cally negligible (also known under the name Z-subset) if for each open
subset U of X the inclusion i : U \Z → U is a weak homotopy equiva-
lence. In [To], Theorem 2.3 it is shown that Z is locally homotopically
negligible if each x ∈ X has arbitrary small neighborhoods V such that
V \ Z → V is a weak homotopy equivalence. In [To], Corollary 2.6 it
is shown that each subset of a locally homotopically negligible subset
is locally homotopically negligible.

Small balls Bε(x) in a CAT (κ) space X are contractible. Since
Bε(x) \ {x} is homotopy equivalent to a simplicial complex, we de-
duce that a point x ∈ X is a topologically inner point of X if and only
if the subset {x} of X is not locally homotopically negligible.

Remark 6.1. It can be shown that x is a topologically inner point if and
only if the space of directions Sx is not contractible (compare [LN]).

Proof of Theorem 1.5. (3) Let C ⊂ X a dense convex subset. We set
Z = X\C. For each point x ∈ X and a small ball Bε(x) the intersection
of Bε(x) with C = X \ Z is totally convex and not empty, hence it is
contractible. By the criterion mentioned in the general remarks above,
Z is a homotopically negligible subset of X, and each point in Z = X\C
is not a topologically inner point of X.

(1) Let X be a CAT (κ) space and x a topologically inner point
of X. For all small r > 0, the punctured ball Br(x) \ {x} is not
contractible. Since the punctured ball is homotopy equivalent to a
simplicial complex, there is some j ≥ 0 such that the j-th homotopy
group πj(Br(x)\{x}) 6= 1. Take some j with this property. Then some
map F : S

j → Br(x) \ {x} is not contractible. Since S
j is compact the

image F (Sj) has distance ≥ ε from x for some ε > 0.
Assume that for some y ∈ Bε(x) there is no point z with ε = d(x, z) =

d(y, z)−d(y, x). Consider the homotopy F̃ in Br(x) from F to the point
y along the geodesics starting at y. The assumption on y shows that
the homotopy F̃ does not meet the point x, thus F̃ gives a contraction
of F to a point inside Br(x) \ {x}. This is a contradiction, that shows
that x must be a geometrically inner point of X.

(2) In [K] it is shown, that in a CAT (κ) space of a finite geometric
dimension n, there are points x ∈ X such that the local homology
Hn(X,X \ {x}) does not vanish. Such a point x is then a topologically
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inner point of X. Since the same argument applies to arbitrary small
balls in X, we see that the set of topologically inner point in a locally
finite dimensional space X is dense in X. ¤

7. Inner points and affine functions

7.1. Continuity and Lipschitz continuity. Let X be a CAT (κ)
space and assume that x is a geometrically inner point of X. By Def-
inition 1.4 there exists ε > 0 and a (not necessarily continuous) map
I : B̄ε(x) → B̄ε(x) that sends a point y ∈ B̄ε(x) to a point z with
ε = d(x, z) = d(y, z) − d(y, x). We fix ε and I for the rest of this
section. We are going to prove Theorem 1.7 and Theorem 1.6 now.

Proof of Theorem 1.7. The implications (1) → (2) → (3) → (4) are
clear. In order to prove that (4) implies (1) let us assume that some
fiber f−1(t) is not dense in X.

Small balls Br(y) around each point are convex, hence so are the
images f(Br(y)) ⊂ R. If for some y ∈ X and for arbitrary small
r, we have f(Br(y)) = R then for each other point z ∈ X we have

f(Br(z)) = R too. To see this, choose 0 < r < d(y,z)
2

and connect
z by geodesics with all points in Br(y). Consider the points on this
geodesics with distance r from z. Since f is affine, it has arbitrary
large and arbitrary small values on these points. Hence f(Br(z)) is the
whole real line. This contradicts to the assumption that f−1(t) is not
dense in X. Hence there is some r > 0 such that f(Br(x)) 6= R. By the
convexity of the image this implies that f is bounded on Br(x) from
above or from below.

By making ε smaller, if necessary, we may assume ε < r. Assume for
a moment that |∇xf | is unbounded Then there is a sequence xj → x

with
f(xj)−f(x)

d(xj ,x)
→ ∞. Since F is affine this implies

f(I(xj))−f(x)

d(I(xj),x)
→ −∞

and
f(I(I(xj)))−f(x)

d(I(I(xj)),x)
→ ∞. However, d(I(xj), x) = d(I(I(xj)), x) = ε,

hence f is not bounded from below nor from above on Br(x). This
contradiction proves that |∇xf | = L < ∞. By the last observation in
Section 2 the function f is L-Lipschitz.

¤

Proof of Theorem 1.6. Let f : X → R be an affine function and let x
be a topologically inner point of X. Due to Theorem 1.5 (1) we may
apply Theorem 1.7. Thus if f is not continuous then each fiber f−1(t)
is dense in X. However, each fiber f−1(t) is convex. Due to Theorem
1.5 (3), each fiber must contain the point x. But this is impossible. ¤
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7.2. Non-injectivity. We need the following

Lemma 7.1. Let X be as above and let f : X → R be a normalized
affine function. Then x is the midpoint of a geodesic γ of length 2ε
such that (f ◦ γ)′ = 1.

Proof. We have |∇xf | = 1. Let xj be a sequence convergent to x

with
f(xj)−f(x)

d(xj ,x)
→ 1. Then for the points zj = I(I(xj)), we still have

f(zj)−f(x)

d(zj ,x)
→ 1, but now d(zj, x) = ε for all j.

Hence, for i, j → ∞, the midpoint mij between zi and zj satisfies
f(mij) → ε. If the sequence zi does not converge then one finds a
subsequence zk of this sequence with d(zk, zk+1) ≥ ρ for some ρ > 0 and
all k. For the midpoints mk between zk and zk+1 we had f(mk) → ε
and d(x,mk) ≤ ε − Aρ2, for some A > 0, due to Section 2. For
sufficiently large k, we obtain a contradiction to the fact that f is 1-
Lipschitz. Therefore the sequence zi converge to some point z in X.
Set y = I(z). Then yz is a geodesic of length 2ε with midpoint x and
f(z) − f(x) = d(x, z). ¤

Let X be as above, H a Hilbert space and F : X → H a normalized
affine map. Let i : X → Y × H be the isometric embedding as in
Section 5. For each point z ∈ X we denote by Hz the Hilbert space
{PY (z)} × H ⊂ Y × H. In general, the intersection Hz ∩ X may be
very thin (for instance, consists of the point z only). We define the
thickness of X at z to be the maximal radius of the ball in Hz centered
at z that is contained in X and denote it by qF (z).

The function qF is non-negative and the completeness of X implies
that it is semi-continuous, i.e. for each convergent sequence xi → x in
X we have lim inf qF (xi) ≥ qF (x). If for some ρ > 0 we have qF (z) ≥ ρ
for all z ∈ X, then Hz ∩ X = Hz for all z ∈ X and the embedding i is
surjective, i.e. an isometry.

Observe that qF (z) is the largest number r ≥ 0 such that for each
unit vector h ∈ H, there is a unit speed geodesic of length 2r with
midpoint z such that (F h ◦ γ)′ = (〈F ◦ γ, h〉)′ = 1. From the last
lemma we deduce:

Corollary 7.2. Let x be a geometrically inner point of a CAT (κ) space
X and let F : X → H be a normalized affine map. Then the thickness
qF (x) is positive.

7.3. The case κ ≤ 0. Let now X be a CAT (0) space, F : X → H
a normalized affine map. Due to Proposition 1.3, the completion of Y
is CAT (0). In particular, geodesics in Y and in Y × H are uniquely
determined by their endpoints and X is totally geodesic in Y × H.
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Given two points z, z̄ ∈ X we deduce that the convex hull of the
subsets Hz ∩ X and Hz̄ ∩ X is contained in the convex hull of Hz and
Hz̄ in Y ×H. The last convex hull is just the product PY (γ)×H, where
γ is the geodesic between z and z̄. In particular, this convex hull is
flat. Therefore, for the midpoint m between z and z̄ we can deduce
qF (m) ≥ 1

2
(qF (z) + qF (z̄)). Hence the subset Xε of all points z with

qF (z) ≥ ε is a closed, convex subset of X.

Proof of Corollary 1.8. Let i : X → Y × H be the embedding con-
structed in Theorem 1.2 and let F = PH : X → H be the normalized
affine map. Since the embedding is invariant under each isometry of X,
the thickness qF is Γ-invariant. Therefore, the closed convex subset Xε

defined above are Γ-invariant. In Corollary 7.2 we have seen that Xε

is not-empty, for some ε > 0. By assumption we must have Xε = X.
But this implies that i : X → Y × H is an isometry. ¤

Proof of Corollary 1.9. Thus let X be a CAT (−1) space with a geo-
metrically inner point x and f : X → R be a continuous non-constant
affine function. Due to Theorem 1.7, the function f is Lipschitz contin-
uous. Hence there is a normalized affine function F : X → R. Take a
non-trivial geodesic xy in the subset Rx ∩X (it exists by Lemma 7.1).
Then for each z ∈ X the triangle xyz is flat, hence it must be degener-
ate (since X is CAT (−1)). But this implies that z is contained in Rx.
Thus the whole space X is the subset of the line Rx. ¤
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