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Abstract. We describe all metric spaces that have sufficiently many affine

functions. As an application we obtain a metric characterization of linear-

convex subsets of Banach spaces.

1. Introduction

Given a geodesic metric space X the existence of a non-constant affine function
on X seems to impose strong restriction on the geometry of the space. Here a
function f : X → R is called affine if its restriction on each arclength parametrized
geodesic γ in X satisfies f(γ(t)) = at+b for some numbers a, b that may depend on
γ. For instance, if X is a complete Riemannian manifold such a function happens
to exist if and only if X has a non-trivial Euclidean de Rham factor ([Inn82]) and
the same is true in some more general spaces ([Mas02],[AB05]).

However, it is not clear what happens in the general situation. The expectation
is that the existence of such a function forces the space X to look like a Banach
space in some ”direction” defined by the affine function, compare the main result in
[LS04] and examples there. Thus it seems natural to expect that if X has sufficiently
many affine functions it should look very similar to some Banach space. Our result
confirms this expectation:

Theorem 1.1. Let X be a geodesic metric space. Affine functions on X separate
points of X if and only if X is isometric to a convex subset of a normed vector
space with a strictly convex norm.

Here we say that affine functions separate points of X if for each pair of points
x, x̄ ∈ X there is an affine function f : X → R with f(x) 6= f(x̄).

It is possible to look on our theorem from another point of view. In order to
do this we define a constant speed geodesic in a metric space to be a curve that
has a constant speed and is globally minimizing between its endpoints. A map
F : X → Y between geodesic metric spaces is called affine if it sends each constant
speed geodesic in X to a constant speed geodesic in Y . We say that F is an affine
equivalence if F is bijective and F and F−1 are affine.

It is a natural question to which extent constant speed geodesics determine the
metric on a space, i.e. given a geodesic metric space X what are all metric spaces Y
that are affinely equivalent to the space X. If X and Y are complete Riemannian
manifolds the answer to this question has been known for a long time ([Inn82])
and says that Y has a de Rham decomposition that consists of direct factors of X
stretched by constants.
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Remark 1.2. If (still in the realm of Riemannian geometry), one relaxes the con-
dition of affine equivalence to that of projective equivalence, i.e. if one only requires
the geodesics of X and Y to coincide as subsets (unregarding the parametrization)
the question becomes much deeper. In fact it is a very old problem to which many
partial answers are known, see, for instance, [Mat03] and the literature there.

If (while looking for affinely equivalent spaces) we still ask X to be a Riemannian
manifold but allow Y to be arbitrary then the answer of [Inn82] must change. For
example, the Euclidean space is affine equivalent to each normed vector space of
the same dimension with a strictly convex norm. As a consequence of our result
we see that nothing more can happen if X is Euclidean. Namely the notion of an
affine function does not change under affine equivalence, hence from Theorem 1.1
we derive:

Corollary 1.3. Let C be a convex subset of a Euclidean space R
n. If Y is a

geodesic metric space that is affinely equivalent to C then one can equip R
n with a

strictly convex norm such that C in this new norm is isometric to Y .

Remark 1.4. In [Oht03] it is shown that if X is a Riemannian manifold and Y
is affine equivalent to X, then the metric on Y is defined by a continuous Finsler
metric. We think that our arguments can help to describe the possible Finsler metric
precisely.

The restriction to strictly convex norms in Theorem 1.1 seems artificial. However,
one should be careful when trying to drop this restriction. In fact each metric space
has an isometric embedding in some (non-strictly convex) Banach space. On the
other hand R

2 with the maximum norm ||(x, y)|| = max{|x|, |y|} has too many
geodesics to admit an affine function in the sense of the definition above. To avoid
these difficulties one has to distinguish good (i.e. linear) geodesics from bad ones,
thus we need the notion of a bicombing.

Let X be a metric space. A bicombing Γ on X is an assignment to each pair
x, y of points in X a geodesic γxy connecting x and y, such that γyx is the geodesic
γxy with the reverse orientation. Moreover, we require that for a point m on a
geodesic γxy the geodesic γmy is part of the geodesic γxy. We do not require that
the geodesics γxy depend continuously on x and y.

We say that a map F : X → Y between two spaces with bicombings denote by
the same letter Γ is Γ-affine if it for all x, x̄ ∈ X there are some numbers a, b such
that f(γxx̄(t)) = γf(x)f(x̄)(at + b) holds.

Example 1.5. If X is a uniquely geodesic metric space, i.e. if between each two
points of X there is precisely one geodesic, then we have a unique bicombing Γ on
X and a Γ-affine function on X is just an affine function in the sense of the old
definition.

Example 1.6. Each normed vector space has a natural bicombing that assigns to
two points the linear interval between them (γxy(t) = x+t y−x

||y−x|| ). All normed vector

spaces will be considered with this bicombing Γ in the sequel. With this definition
each linear map between two normed vector spaces is a Γ-affine map. On the other
hand each Γ-affine map F : V → W between normed vector spaces has the form
F (v) = F (0) + A(v) for some linear map A, i.e. F is affine in the usual sense of
linear algebra.

Using this notion we can now extend Theorem 1.1
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Theorem 1.7. Let X be a space with a bicombing Γ. Then the following are
equivalent:

(1) There is a Banach space B and an injective isometric Γ-affine map f :
X → B;

(2) The Γ-affine functions separate the points of X;
(3) There is a Banach space B and an injective Γ-affine map f : X → B.

The equivalence between (2) and (3) can be reformulated as a metric character-
ization of linearly convex subsets of Banach spaces:

Corollary 1.8. Let X be a metric space. Then X is isometric to a linearly convex
subset of some Banach space if and only if X admits a bicombing Γ such that the
Γ-affine functions separate points of X.

A short comment on the regularity of affine functions. It is well known that an
affine functions on a Riemannian manifold is smooth. However, in general spaces
affine functions do not need to be even continuous, for instance, there are many
non-continuous linear functions on Hilbert spaces. In our theorem we did not make
any restrictions on the affine functions, but a combination of Theorem 1.7 and
the Hahn-Banach theorem immediatly shows that for each geodesic metric space X
Lipschitz continuous affine function separate points of X if arbitrary affine functions
separate points of X.

The paper is organized as follows. In Section 3 we show that Theorem 1.7
implies Theorem 1.1 and prove the straightforward implications (1) → (2) → (3)
in Theorem 1.7. In Section 4 we reduce the proof of the implication (3) → (1) to
the case where X is an open convex subset of R

n with some Finsler metric on it.
Finally in Section 5 we discuss first variation formulas in this Finsler metric and
prove that the Finsler structure is constant.

We would like to express our gratitude to Werner Ballmann for his encourage-
ment and support. We are grateful to Linus Kramer for helpful comments.

2. Preliminaries

2.1. Vector spaces. Linear intervals in a vector space V are curves γ : [0, 1] → V
of the form γ(t) = tv+(1−t)w for some v, w ∈ V . A subset C of V is called linearly
convex if it contains each linear interval γ as above for all v, w ∈ C. Let C be a
linearly convex subset of V that contains the origin 0. Then the linear hull H(C)
of C (i.e. the smallest linear subset of V that contains C) is the set of all points
x that can be represented as x = λ(v − w) for some λ > 0 and some v, w ∈ C.
Let C ⊂ V be a linearly convex subset of V that contains the origin and assume
that V coincides with the linear hull H(C) of C. By the dimension of C we denote
the dimension of the vector space V = H(C). If the dimension of C is finite, it is
well known that the set O of inner points of C (with respect to the usual Euclidean
topology of H(C)) is convex, non-empty and that the closure Ō of O in V contains
C.

2.2. Metric spaces. By d we will denote distances in metric spaces. A geodesic
respectively a ray in a metric space X will denote an isometric embedding γ : I → X
of an interval respectively of a half-line into X. Note that geodesics (if not otherwise
stated) are parametrized by the arclength.
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A metric space is called geodesic if each pair of its points is connected by a
geodesic. It is called uniquely geodesic if this connecting geodesic is unique.

Given a ray γ in a metric space (X, d) the Busemann function of γ is defined by
bγ(x) := limt→∞(d(γ(t), x)−d(γ(0), γ(t))). The Busemann function exists and is a
1-Lipschitz function on X. Moreover bγ(x) ≤ d(γ(t), x)− d(γ(0), γ(t)) for all t ≥ 0.

2.3. Basics on normed vector spaces. Let (V, ‖ · ‖) be a vector space with a
norm and denote by d the induced metric on V . The norm is called strictly convex
if for all linear independent v, w ∈ V one has ‖v + w‖ < ‖v‖+ ‖w‖. The norm ‖ · ‖
is strictly convex if and only if (V, d) is uniquely geodesic.

For each non-zero vector h in V we denote by γh the ray γh(t) = t h
‖h‖ . The

Busemann functions bh := bγh of such linear rays have the following properties,
that are direct consequences of the definition.

(1) bh(v) = limt→∞(||th − v|| − ||th||) = limt→0+( ||h−tv||−||h||
t

);
(2) bh(tv) = tbh(v), for all t ≥ 0;
(3) bh(v1 + v2) ≤ bh(v1) + bh(v2);
(4) bh(v) = b−h(−v).

We see that the Busemann function bh is linear if and only if the equality bh(v) =
−bh(−v) holds for all v ∈ V . However, this equality is equivalent to the following
well known one:

Definition 2.1. A point h ∈ V is called smooth in the norm ‖ · ‖ if the following
holds for all v ∈ V :

lim
t→0+

‖h − tv‖ − ‖h‖

t
= − lim

t→0+

‖h + tv‖ − ‖h‖

t
.

Thus the Busemann function bh is linear if and only if h is a smooth vector in
the norm ‖ · ‖. If V is a finite dimensional vector space, then a vector h is smooth
in the norm ‖ · ‖ if and only if the Lipschitz map ‖ · ‖ : R

n → R has a linear
differential at the point h. Due to the theorem of Rademacher we know that in a
finite dimensional normed vector space V almost each vector is smooth with respect
to the norm.

3. Easy implications

3.1. Strictly convex case. First we are going to derive Theorem 1.1 from Theo-
rem 1.7.

Let X be a space on which affine functions separate the points. Let x, x̄ be two
arbitrary points in X. For each geodesic γ from x to x̄ each affine function f has

the value f(x)+f(x̄)
2 on the midpoint m of γ. Thus all affine functions have the

same value on the midpoint of each geodesic between x and x̄. From the separation
assumption we deduce that X is uniquely geodesic.

By Theorem 1.7 we know that X is isometric to a linearly convex subset of a
Banach space B. We replace X by this subset and may assume that it contains the
origin 0. Denote by V its linear hull in B with the norm induced from the ambient
Banach space B. Each element v of V has the form λ(x − x̄) for some λ ≥ 0 and
some x, x̄ ∈ X.

We claim that V is strictly convex. Assume the contrary and find linearly in-
dependent v, w ∈ V with ‖v + w‖ = ‖v‖ + ‖w‖. We can find a finite dimensional

linearly convex subset X̃ of X that contains 0 and whose linear hull Ṽ contains
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v and w. Due to finite dimensionality X̃ contains an open ball in Ṽ and since Ṽ
is not strictly convex, the subset X̃ is not uniquely geodesic. But X̃ is a convex
subset of a uniquely geodesic space X and we arrive at a contradiction.

The other direction is clear since linear functions are affine on a strictly convex
normed vector space and separate its points (compare the next subsection).

3.2. Linear algebra. We prove (1) → (2) of Theorem 1.7 here. Thus let (V, ‖ · ‖)
be a normed vector space. Observe that each linear function on V is Γ-affine with
respect to the natural bicombing. Since linear functions separate points of V (by
linear algebra, you may also apply the Hahn-Banach theorem), we see that Γ-affine
functions separate points of V . We deduce that Γ-affine functions also separate
points on each space X that admits an injective Γ-affine map i : X → V .

3.3. Evaluation. Assume now (2) of Theorem 1.7. Consider the vector space
ΓAff(X) of all Γ-affine functions on X and denote by V its (algebraic) dual space
(ΓAff(X))∗. Define the natural evaluation map E : X → V by E(x)(f) = f(x)
(compare [LS04]). The map is well defined and by the separation property it is
injective.

We claim that E sends each Γ-geodesic onto a linearly reparametrized linear
interval.

In fact, let a geodesic γxy be given and reparametrize it to a constant speed
geodesic γ̄xy : [0, 1] → X such that γ̄xy(0) = x, γ̄xy(1) = y. For each t ∈ [0, 1] and
each affine function f : X → R we see f(γ̄xy(t)) = (1 − t)f(x) + tf(y). Hence for
our map E we deduce E(γ̄xy(t)) = (1 − t)E(x) + tE(y).

Now we equip V with an arbitrary norm. The linear intervals become linearly
reparametrized Γ-geodesics for the natural bicombing Γ on V . Hence the map
E : X → V becomes Γ-affine. Taking B to be the completion of V we obtain (3)
of Theorem 1.7.

4. Reduction

In this section we reduce the implication (3) → (1) of Theorem 1.7 to the case
where X is a Finsler manifold.

4.1. Reformulation. Let X be a space with a bicombing Γ that admits an injec-
tive Γ-affine map i : X → B into a Banach space B. We forget the norm on B and
identify X with its image C. We may assume that 0 is contained in C and replace
B by the linear hull V of C in B.

We have to prove that we can define a norm on V such that the induced metric
on C coincides with the given one. Thus the implication we are looking for is
implied by the following:

Lemma 4.1. Let V be a vector space, C a linear convex subset of V that contains
the origin 0. Let d be a metric on C such that the linear intervals contained in C
are constant speed geodesics with respect to the metric d. Then there is a norm ‖ · ‖
on V such that the induced metric on C coincides with d.

4.2. Reduction to finite dimension. Since norms defined on linear subspaces
can be extended to norms on the whole space it is enough to prove that such a
norm exist on the linear hull H(C) ⊂ V . Each element v ∈ H(C) has the form
v = λ(x − x̄) for some x, x̄ ∈ C and some λ ≥ 0. Thus the norm we are looking
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for is unique, if it exists, and must be given by ‖v‖ = λd(x, x̄), where v has a
presentation as above.

Thus we need to prove that this is a well defined quantity (i.e. independent of
the representation of v) and that it defines a norm on H(C).

Observe that each linearly convex subset C̄ of C that contains 0 and is considered
with the metric induced by d also satisfies the assumptions of Lemma 4.1. We
deduce that it is enough to prove Lemma 4.1 in the case where the dimension of C
is finite. For instance, in order to see that ‖·‖ is well defined take a point v ∈ H(C)
that has two different presentations v = λ(x − x̄) and v = λ1(x1 − x̄1). Consider
the linear convex hull C̄ of the five points x, x̄, x1, x̄1, 0. Assuming that Lemma 4.1
is true for the finite dimensional C̄ we deduce that λd(x, x̄) = λ1d(x1, x̄1), hence
‖ · ‖ is well defined. The fact that ‖ · ‖ is a norm is shown in the same way.

Thus it is enough to prove Lemma 4.1 in the case where C has a finite dimension.

4.3. Reduction to open subsets. Let C be as in Lemma 4.1 and assume that
the dimension of C is finite. Replacing V by the linear hull H(C) we may assume
that V = R

n. If Lemma 4.1 is true for the set O of inner points of C then by
continuity it is also true for the closure Ō of O in R

n and therefore it is also true
for C ⊂ Ō.

Thus it is enough to prove Lemma 4.1 in the case where V = R
n and where C

is a convex open subset of R
n.

4.4. Reduction to a Finsler metric. Assume now that in Lemma 4.1 we have
V = R

n and that C is open. We claim that the metric d on C is defined by a
continuous Finsler structure on C.

In fact it is more or less a special case of Theorem B in [Oht03]. We shortly recall
the arguments for the convenience of the reader, since the assumptions in [Oht03]
are slightly different. First of all one defines for each x ∈ C and each v ∈ R

n the
quantity |v|x as d(x, x + εv)/ε, for a sufficiently small positive real number ε. Since
γ(t) = x + tv is a constant speed curve on the whole interval that is contained in
the open set C, we deduce that the definition of |v|x does not depend on the choice
of ε, and in fact it is just the speed of the curve γ.

Moreover, we immediately deduce that |λv|x = |λ| · |v|x. Since d is a metric we
have |v|x ≥ 0 with equality if and only if v = 0.

We need to assure that the metric space (C, d) is locally compact, i.e. that the
identity id : (C, dEucl) → (C, d) is continuous. This follows directly, as soon as one
knows that for given x ∈ C the function | · |x is bounded on compact subsets of
R

n (or equivalently on the unit ball). The last claim is the content of Proposition
2.1 in [Oht03]. Fix now a small ε and take a convergent sequence xi → x and a
convergent sequence vi → v. We observe that xi + εvi converge to x + εv, hence
by definition |vi|xi

must converge to |v|x. Therefore the function |v|x is continuous
in v and x. From this we can derive that | · |x is a norm. Namely, we have
d(x, x+ ε(v+w)) ≤ d(x, x+ εv)+d(x+ εv, x+ εv+ εw) = ε|v|x + ε|w|x+εv. Dividing
by ε we get in the limit |v + w|x ≤ |v|x + |w|x.

Thus | · |x is a continuous Finsler structure and defines a metric d̃ on C. The

conclusion that d̃ coincides with d is a direct consequence of the fact that linear
intervals have the same length with respect to the metric d and d̃.

Thus we have shown that the metric d is given by a continuous Finsler structure
| · |x on C.
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5. Final step

We are left with the following problem. Let O ⊂ R
n be an open linear convex

subset. Let | · |x be a continuous Finsler structure on O, such that for the induced
metric d the linear intervals are constant speed geodesics. We need to show that
there is a norm ‖·‖ on R

n such that the metric d̃ on O induced by this norm coincides
with our metric d. This conclusion follows as soon as we know that | · |x = | · |y
holds for all x, y ∈ O. The rest of this section is devoted to the proof of the last
statement.

First of all linear intervals have constant speed, hence for each x ∈ O, each
v ∈ R

n and each t ∈ R such that x + tv is still in O we have |v|x = |v|x+tv.
Since linear intervals are geodesics we conclude that d(x, x + tv) = |tv|x, i.e. for all
x, y ∈ O we have d(x, y) = |x−y|x. (To avoid confusion: what we need is the much
stronger statement d(y, z) = |y − z|x for all x, y, z ∈ O!).

Let us fix an arbitrary v ∈ R
n. It is enough to show that |h|x = |h|x+v for

almost all h ∈ R
n and all x, x + v ∈ O. Here and below we consider R

n, O the
tangent bundle TO = O ×R

n and linear intervals equipped with natural Lebesgue
measures. By abuse of notation we will say that h ∈ R

n is smooth at a point x ∈ O
if h is a smooth vector of the norm | · |x (compare Definition 2.1). For each x ∈ O
almost all h ∈ R

n are smooth at x. Applying Fubini’s theorem twice we find a set
S of full measure in R

n with the following property. For each vector h ∈ S the set
of all x ∈ O at which h is smooth is of full measure in O.

It is enough to show that for each h ∈ S the equality |h|x = |h|x+v holds, for all
x, x + v ∈ O. Let us fix a vector h ∈ S. Another application of Fubini’s theorem
tells us, that for almost all x ∈ O the vector h is smooth at almost each point of the
linear interval η(t) = x+tv (contained in O). By continuity of the Finsler structure
it is enough to show that f(t) = |h|x+tv does not depend on t if h is smooth at
almost each point of η. The question is local in t, hence it is enough to show that
f(t) is constant for all small t. We may assume (replacing h by its multiple) that
x+h is contained in O. Then f(t) = d(x+tv, x+tv+h), in particular, the function
f is locally Lipschitz. Hence it is enough to show that f ′(t) = 0 for almost all t.
Therefore our result is a consequence of the following lemma.

Lemma 5.1. Let x be a point in O, h, v ∈ R
n. Assume that h is a smooth vector

in the norm | · |x. Then for the function f(t) = |h|x+tv we have f ′(0) = 0.

Proof. Replacing h by its multiple we may assume that y := x+h is contained in O.

Our claim is |h|x+tv = |h|x + o(t), where o(t) is some function with limt→0
o(t)

t
= 0.

Since |h|x+tv = d(x + tv, y + tv) we just have to find right first variation formulas
in the Finsler manifold O. We refer to Section 9 in [Lyt04] for a general discussion
of first variation formulas. We need some notations. For a vector w ∈ R

n a point
z ∈ O we will denote by bz

w : R
n → R the Busemann function of the direction w in

the norm | · |z, i.e. bz
w(v) = limt→∞(|tw − v|z − |tw|z). We refer to Subsection 2.3

for basic properties of such functions.
First we are going to show that bx

h = by
h. In order to do so we have to study the

first derivative of the function f̃(t) = d(y, x + tv). Recall that |h|x = |h|y.
Due to d(y, x + tv) = |y − x − tv|y = |h − tv|y and properties of the Busemann

functions (see Subsection 2.3) we have

(1) d(y, x + tv) = |h|y + tby
h(v) + o(t).
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On the other hand we can estimate d(y, x+ tv) by working in a small neighborhood
of x. Fix s À 1. For 0 < t ¿ 1

s
we have d(y, x+tv) ≤ d(y, x+tsh)+d(x+tsh, x+tv).

Since the metric on O is given by a continuous Finsler structure, we have d(x +
tsh, x+tv) = t|sh−v|x+o(t) (i.e. (Rn, |·|x) is the tangent space of O at x in the sense
of metric geometry, [Lyt04]). We obtain d(y, x+tv) ≤ |h|x(1−ts)+t|sh−v|x+o(t).
If s is large enough |sh − v|x is very close to s|h|x + bx

h(v). Letting s go to infinity
we conclude, that

(2) d(y, x + tv) ≤ |h|x + tbx
h(v) + o(t) for t > 0.

Consider d(y, x + tv) + d(x + tv, x − tsh) ≥ d(y, x − tsh) = |h|x(1 + ts) for a fixed
large s and let t go to 0+. Then as above we obtain

(3) d(x + tv, y) ≥ |h|x − tbx
−h(v) + o(t) for t > 0.

By our assumption vector h is smooth at x, thus bx
−h(v) = −bx

h(v). Combining
(1), (2), (3) above we deduce that bx

h(v) = by
h(v). Since the above calculations work

for all v ∈ R
n we get bx

h = by
h. In particular, h is also smooth in | · |y and we have

bx
−h = by

−h. Now we can finish the proof of Lemma 5.1. As in the proof of (2) and
(3) above we take a large s and estimate the distance d(x + tv, y + tv) from above
(for all small 0 < t ¿ 1

s
) by

d(x + tv, y + tv) ≤d(x + tv, x + tsh) + d(x + tsh, y − tsh)

+ d(y − tsh, y + tv)

Due to the continuity of the Finsler structure we have

d(x + tv, x + tsh) = t|v − sh|x + o(t)

and d(y − tsh, y + tv) = t|v + sh|y + o(t).

Thus we conclude

d(x + tv, y + tv) ≤ t|v − sh|x + |h|(1 − 2ts) + t|v + sh|y + o(t).

If s goes to infinity then |v − sh|x − s|h|x converges to bx
h(v) and |v + sh|y − s|h|y

converges to by
−h(v). Thus we arrive at:

(4) d(x + tv, y + tv) ≤ |h| + tbx
h(v) + tby

−h(v) + o(t).

Now we take a large s and estimate d(x + tv, y + tv) from below by

d(x + tv, y + tv) ≥d(x − tsh, y + tsh) − d(x − tsh, x + tv)

− d(y + tv, y + tsh)

As above we derive from it

(5) d(x + tv, y + tv) ≥ |h| − tbx
−h(v) − tby

h(v) + o(t).

Since we know that bx
h = by

h = −by
−h = −bx

−h we can combine (4) and (5) and
obtain d(x + tv, y + tv) = d(x, y) + o(t). Thus we have shown f ′(0) = 0. ¤

This finishes the proof of Theorem 1.7.
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