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About every convex set in any

generic Riemannian manifold

Alexander Lytchak and Anton Petrunin

Abstract

We give a necessary condition on a geodesic in a Riemannian manifold
that can run in some convex hypersurface. As a corollary, we obtain
peculiar properties that hold true for every convex set in any generic
Riemannian manifold (M, g). For example, if a convex set in (M, g) is
bounded by a smooth hypersurface, then it is strictly convex.

1 Introduction

Let C be the convex hull of a compact subset Q in the Euclidean space R
m. By

Carathéodory’s theorem [6], C is the set of all convex combinations of at most
(m+1)-tuples of points on Q. Thus, C is a compact convex subset. Any point in
C\Q is an inner point of a line segment contained in C; that is, the complement
C \Q does not contain extreme points of C.

The compactness of the convex hull and, therefore, the existence of a huge
variety of convex subsets with many non-extreme points on the boundary, ad-
mits a straightforward generalization to the sphere and the Lobachevsky space;
moreover, it holds locally in any two-dimensional Riemannian manifold.

Recall that a set C in a Riemannian manifold (M, g) is called convex if for
any pair of points x, y ∈ C any minimizing geodesic [x, y] lies in C. A point in C

is called extreme if it does not lie in an interior of a geodesic in C. The convex
hull of a set Q ⊂M is the minimal convex subset of M that contains Q.

It seems to be a folklore belief that a version of the statement above should
hold true in all Riemannian manifolds; see the discussion at mathoverflow [15].
In the present note we prove that the somewhat counter-intuitive opposite is
the case for generic Riemannian manifolds. It agrees with the pattern: a typical
object in your favorite theory looks like nothing you have ever seen before.

Further Riemannian manifolds will be assumed to be connected and C∞-
smooth. Given a positive integer k, we say that a property P holds for Ck-
generic Riemannian metric g on a manifold M if the property P holds for a
dense G-delta set (that is, a countable intersection of open subsets) of metric
tensors in the Ck-topology.

1.1. Main theorem. Let C be an arbitrary convex subset of a C2-generic Rie-
mannian manifold (M, g). Then the set of non-extreme points in C is the union
of an open set and at most countable family of geodesics in (M, g).

In particular, if dimM > 3 and no connected component of C is a geodesic,
then the set of extreme points of C is dense in ∂C.
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Note that our definition of convexity does not require connectedness. How-
ever, any convex subset C is locally connected, and C is connected if the manifold
M is complete or C is contained in some compact convex subset of M .

If dimM = 2, the statement is rather trivial and holds true for all Rieman-
nian metrics not only the generic ones. As a consequence of the main theorem
for dimM ≥ 3, we obtain the following:

1.2. Corollary. Let Q be a closed subset of a C2-generic Riemannian manifold
(M, g) of dimension at least 3. If Q does not lie in a geodesic and the convex
hull C of Q is closed and connected, then ∂C ⊂ Q.

The corollary gives a positive resolution of a conjecture formulated by Marcel
Berger [2, Note 6.1.3.1], stating that convex hulls of 3 points in most Riemannian
manifolds do not need to be compact. Probably the following more exact form
of Berger’s conjecture might be squeezed out from our key lemma.1

1.3. Conjecture. Let (M, g) be an arbitrary Riemannian manifold of dimen-
sion at least 3. If the convex hull of any 3-point subset is compact, then (M, g)
has constant curvature.

The following corollary is essentially known, for dimM = 3 its proof has
been sketched by Robert Bryant [4] and, for dimM ≥ 4, it was proved by
Thomas Murphy and Frederick Wilhelm [13].

1.4. Corollary. Let (M, g) be a C2-generic Riemannian manifold. Then any
connected convex subset C of (M, g) is either contained in a geodesic or full-
dimensional; that is, the interior of C is nonempty.

The proofs are built on the following proposition. Its formulation uses the
notion of rank of a point p in a closed convex set C; we define it as the dimension
of the maximal linear subspace in the tangent cone to C at p.

1.5. Main proposition. Suppose C is a closed convex set in a C2-generic m-
dimensional Riemannian manifold (M, g). Then all non-extreme points of C

have rank either 1 or m.
In particular, if dimM > 3 and C is bounded by a C1-smooth hypersurface,

then C is strictly convex; that is, all boundary points of C are extreme.

The proof relies on the key lemma stated in the following section; it describes
a necessary condition on a geodesic in a Riemannian manifold that stays in
convex subset C. If the geodesic lies in ∂C and contains a point of rank at least
2, then this condition implies a non-trivial property of the curvature tensor.
Then we show that the curvature tensor of a generic Riemannian manifold does
not meet this property. The latter part is technical but straightforward; it is
done by applying the Thom transversality theorem; see Appendix A.

Acknowledgments. We thank Mohammad Ghomi and Frederick Wilhelm for
their interest in our result, the anonymous referee for helpful criticism. Alexan-
der Lytchak was partially supported by the DFG grant, no. 281071066, TRR
191. Anton Petrunin was partially supported by the NSF grant, DMS-2005279.

1More open questions are listed in Appendix B.
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2 Key lemma

Let C be a closed convex set in an m-dimensional Riemannian manifold (M, g).
Recall that Tx = TxM denotes the tangent space of M at x. The tangent cone
Kx = KxC ⊂ Tx at x ∈ C is defined as the closure of the set of all velocity
vectors of geodesics that start at x and run in C.

Given x ∈ C, denote by Lx = LxC the maximal linear subspace of Kx. We
define the rank of x in C as the dimension of Lx.

Note that Kx is a convex cone in Tx; in particular, Lx = Kx∩(−Kx). Further
Kx coincides with Tx if and only if a neighborhood of x lies in the interior of C.
In other words, x has rank m if and only if C contains a neighborhood of x.

Given a tangent vector x ∈ TpM , consider the Jacobi operators of order k

Rk
x
: v 7→ ∇k−2

x
Rm(v,x)x,

where Rm denotes the curvature tensor of g; we set R1 = 0. Note that (i)
Rk

x
: Tp → Tp is a self-adjoint operator, (ii) x 7→ Rk

x
is a homogeneous polyno-

mial of degree k, and (iii)
Rk

x
·x = 0 ➊

for any k and x ∈ Tp. The Jacobi equation along a geodesic γ takes the form

∇2
γ′ ·i+R2

γ′ ·i = 0.

2.1. Key lemma. Let (M, g) be a Riemannian manifold and γ : (a0, b0)→M

be a geodesic that runs in a closed convex set C ⊂ (M, g). Then the tangent
cones of C are parallel along γ; that is, the parallel translation along γ defines
a bijection between the tangent cones Kγ(a)C and Kγ(b)C for any a, b ∈ (a0, b0).

Moreover, for any a ∈ (a0, b0) the following conditions hold:
(i) For any v ∈ Kγ(a)C we have

R2
γ′(a) ·v ∈ Kv[Kγ(a)C].

(ii) Lγ(a)C is an invariant subspace of R2
γ′(a) : Tγ(a) → Tγ(a).

The proof uses the fact that the parallel translation can be defined via
geodesics. In a similar way, this observation was used in [1, Section 13] and [14].
In fact the main part of the key lemma follows from [14].

Proof of 2.1. Since all statements are local, we may replace (M, g) by its small
open convex subset. By doing so we may assume that any pair of points of
(M, g) is connected by a unique geodesic and there are no conjugate points. In
particular, for any subinterval [a, b] ⊂ (a0, b0) and any tangent vectors v ∈ Tγ(a)

and w ∈ Tγ(b) there exists a unique Jacobi field i along γ such that i(a) = v

and i(b) = w.
Since Jacobi fields are variational fields of geodesic variations, the convexity

of C implies the following:

2.2. Observation. Suppose i is a Jacobi field along γ and a0 < a < t < b < b0.
If i(a) ∈ Kγ(a)C and i(b) ∈ Kγ(b)C, then i(t) ∈ Kγ(t)C.

Choose a subinterval [a, b] ⊂ (a0, b0). Given a large positive integer k, con-
sider the arithmetic progression t0, . . . , tk+1 such that t0 = a and tk = b.
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γ(a) γ(b) γ(tk+1)

v0 v1 . . . vk

Choose a tangent vector v0 ∈ Tγ(a). Consider the sequence of vectors vi ∈
∈ Tγ(ti) defined recursively by vi+1 = 2·ii(ti+1), where t 7→ ii(t) denotes the
Jacobi field along γ such that ii(ti) = vi and ii(ti+2) = 0.

Define ιk : Tγ(a) → Tγ(b) by setting ιk(v0) := vk. According to the observa-
tion, if v0 ∈ Kγ(a)C, then ιk(v0) ∈ Kγ(b)C. As observed in [1] and [14], ιk(v0)
converges to the parallel translation of v0 along γ as k → ∞. Since Kγ(b)C is
closed, the parallel translation along γ maps Kγ(a)C in Kγ(b)C. Switching the
direction of γ, we get the opposite inclusion. That is, the tangent cones Kγ(t)C

are parallel along γ — the main part is proved.
Let us use the parallel translation along γ to identify the tangent spaces at

points on γ. This way we identify the tangent cones Kγ(t)C for all t; denote the
obtained cone by K.

For v ∈ K and small ε > 0, consider the unique Jacobi field iε along γ with
iε(a+ ε) = iε(a− ε) = v. Due to the Jacobi equation,

iε(a) = v + 1
2 ·ε

2 ·R2
γ′(a) ·v+ o(ε2).

According to the observation, iε(a) ∈ K for any ε > 0. Since K is a closed
convex cone, we get R2

γ′ ·v ∈ KvK — (i) is proved.
Finally, v ∈ Lγ(a)C ⇐⇒ v,−v ∈ K ⇐⇒ KvK = K. Therefore, if

v ∈ Lγ(a)C, then ±R2
γ′(a) ·v ∈ K, and hence R2

γ′(a) ·v ∈ Lγ(a)C. That is, Lγ(a)C

is an invariant subspace of R2
γ′(a) — (ii) is proved.

3 Main proposition

In this section we will prove the main proposition 1.5 modulo one claim; let us
introduce notations to state it.

Let M be a smooth m-dimensional manifold with a Riemannian metric g.
Suppose x is a nonzero tangent vector at a point p ∈M . Recall that Rk

x
: Tp →

→ Tp denotes the Jacobi operators of g of order k for a tangent vector x ∈ Tp.
An invariant subspace V ⊂ Tp of Rk

x
will be called exceptional if V ∋ x and

1 < dim V < m. (Recall that Rk
x
·x = 0 for any k and x ∈ Tp. Therefore, the

subspace spanned by x is always an invariant subspace of Rk
x

for any k.)
We will say that a metric g on a manifold M is k-exceptional if there exists a

point p ∈M and a non-zero vector x ∈ TpM , such that the operators R2
x
, . . . , Rk

x

have a common exceptional invariant subspace.

3.1. Claim. For any smooth manifold M , there exists an integer k such that
the Ck-generic Riemannian metric is not k-exceptional.

For k = 2 (and, probably, also for k = 3) every Riemannian metric is k-
exceptional. However, for larger k, the k-exceptionality defines more and more
restrictions on the curvature tensor. Therefore, it is not surprising that most
Riemannian metrics are not k-exceptional, for sufficiently large k. A formal
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proof of this claim is built on Thom transversality theorem; it will be derived
in Appendix A.

Proof of 1.5 modulo 3.1. Suppose that p is a nonextreme point of C; that is, p
lies on a nonconstant geodesic γ : (a, b)→ C.

According to the key lemma (2.1), the family of maximal linear subspaces
Lγ(t)C of Kγ(t)C is parallel along γ and invariant for R2

γ(t). Note that Lp is
exceptional if and only if the rank of p is neither 1, nor m.

Further, if a nontrivial geodesic γ admits a parallel family Lt ⊂ Tγ(t) of
exceptional invariant subspaces for all R2

γ(t), then we say that γ is exceptional.

So, it is sufficient to show that C2-generic Riemannian manifolds (M, g) do not
have exceptional geodesics.

Choose a compact subset K ⊂M and ε > 0. Consider the set Z(K, ε) of all
Riemannian metrics g on M such that there exists an exceptional geodesic γ in
(M, g) that starts at a point in K and has length ε. Observe that the geodesics
and the curvature tensor depend continuously on the Riemannian metric in C2-
topology. Therefore, the set Z(K, ε) is closed with respect to the C2-topology.

Suppose γ is an exceptional geodesic that passes thru p in the direction x.
By taking covariant derivatives along γ, we get that the Jacobi operators Rk

x

have a common exceptional invariant subspace Lp, for all k ≥ 2. In other words,
for any integer k ≥ 2 we have

Zk(K) ⊃ Z(K, ε), ➋

where Zk(K) denotes the set of all smooth Riemannian metrics on M such that
for some p ∈ K and x ∈ Tp \ {0} the operators R2

x
, . . . , Rk

x
have a common

exceptional invariant subspace.
By the very definition of Zk(K), it is closed with respect to Ck-topology on

the space of all Riemannian metrics on M . By Claim 3.1, we can choose k so
that Zk(K) is Ck-meager for any K; that is, its complement is a dense G-delta
set in the space of all Riemannian metrics on M with Ck-topology.

Since Z(K, ε) is closed with respect to the C2-topology, ➋ implies that
Z(K, ε) is C2-meager in the space of all Riemannian metrics on M .

Choose a nested sequence of compact sets K1 ⊂ K2 ⊂ . . . that cover M and
set εn = 1

n
. Set

Z(M) =
⋃

n

Z(Kn, εn);

since Z(Kn, εn) is C2-meager for every n, so is Z(M).
It remains to note that g ∈ Z(M) if and only if (M, g) has an exceptional

geodesic.

4 Main theorem

The following proposition is a special case of a result of Nan Li and Aaron Naber
[10, Theorem 1.6]. It also can be deduced from the result of Luděk Zajíček [16].

4.1. Proposition. Let C be a closed convex set in a Riemannian manifold
(M, g). Then the set of points in C with rank at most k is countably k-rectifiable;
that is, this set can be covered by images of a countable set of Lipschitz maps

5



R
k → (M, g). In particular, this set contains at most countably many disjoint

Borel sets with positive k-dimensional Hausdorff measure.

Proof of 1.4 and 1.1. We may assume that C is connected. Assume, in addition,
that C is closed.

According to [5, Theorem 1.6], a connected closed convex set C in a Rieman-
nian manifold (M, g) is homeomorphic to a manifold with boundary, say B.
Moreover, the complement C\B is a totally geodesic submanifold of (M, g);
denote its dimension by d.

The tangent cone KpC at any p ∈ C \B is a d-dimensional linear space. By
the main proposition (1.5), d = 0, 1, or m. If d = 0, then C is a single point. If
d = 1, then C \B is a geodesic in (M, g); hence C is contained in a geodesic as
well. If d = m, then by the invariance of domain we have C \B is open in M ;
that is, C is full-dimensional — 1.4 is proved.

By the main proposition (1.5) any non-extreme point x ∈ ∂C has rank 1.
Thus, there is a unique line in KxC and it is the tangent line of a geodesic γ ⊂ C

that has p as an inner point.
Let us extend γ to a maximal open interval so that γ stays in C; note that

p uniquely defines γ. By the main statement of the key lemma, all points on γ

lie on ∂C. By definition, all such geodesics consist of non-extreme points.
It gives a subdivision of non-extreme points of ∂C into geodesics with positive

lengths. By 4.1, there are only countably many such geodesics.
If C is not closed, consider its closure C̄; denote by B̄ its boundary. Note that

C̄ is locally convex and the above arguments apply to closed locally convex sub-
sets without changes. Observe that any nonextreme point of C is a nonextreme
point of C̄ and C̄\B̄ ⊂ C [5, Lemma 1.5]. Hence, the statement follows.

Few words before the proof of 1.2. Let Q be a subset of a Riemannian
manifold M . Set Q = Q0 and let inductively Qi+1 to be the union of all
minimizing geodesics between pairs of points of Qi. By definition, the increasing
countable union C =

⋃
i Qi is the convex hull of Q. By this description, any

point in C \Q is a non-extreme point of the convex set C.
Note, that if M is complete and Q is compact, then each Qi is compact.

In the Euclidean space M = R
m (as well as in the round sphere or in the

Lobachevsky space) Carathéodory’s theorem [6] implies C = Qm. As a conse-
quence of Corollary 1.2, we will know that in a generic Riemannian manifold
the convex hull C of Q is strictly larger than Qi, for all i.

Proof of 1.2. Without loss of generality we can assume that C is a proper subset
of M ; in particular ∂C 6= ∅. Since Q is not contained in a geodesic, by the main
theorem, C has a non-trivial interior. By the construction of C above, any point
x ∈ C \Q is not an extreme point of C.

Assume ∂C 6⊂ Q. By the main theorem, the topological manifold ∂C is the
union of the closed subset Q∩∂C and a countable union of geodesics. But ∂C\Q
is an (m − 1)-dimensional topological manifold. By dimensional reasons, it is
not a union of countably many rectifiable curves — a contradiction.

6



A Normalization of metrics

This appendix is devoted to the algebra of curvature tensor and its covariant
derivatives that leads to a proof of Claim 3.1.

Choose an m-dimensional Euclidean space T. Denote by S the space of
self-adjoint operators on T.

Consider the space G of germs of Riemannian metrics on T at 0 that coincide
with the canonical metric at 0. Any germ in G can be described by 〈G·v,w〉,
where x 7→ Gx is a smooth function T→ S such that G0 = id.

The k-jet of G is defined by the Taylor polynomial of G of degree k

Gx = id +G1
x
+ · · ·+Gk

x
+ o(|x|k), ➌

where x 7→ Gi
x

is a homogeneous polynomial T→ S of degree i.
Note that every array of homogeneous polynomials G1, . . . , Gk : T→ S such

that degGi = i appears in ➌ for the germ in G defined by

Gx = id +G1
x
+ · · ·+Gk

x
. ➍

The space of k-jets of germs in G will be denoted by Gk.
A germ in G will be called normal if the standard coordinates on T coincide

with normal coordinates of the germ in a neighborhood of the origin. By the
Gauss lemma, a germ defined by G is normal if and only if

Gx ·x = x ➎

for all small x ∈ T. The subspace of normal germs in G and their k-jets will be
denoted by N and N k, respectively.

Suppose that G describes a germ in N and G1, . . . , Gk be as in ➌. By ➎

Gi
x
·x = 0 ➏

for any i. Moreover, for an array of polynomials G1, . . . , Gk : T → S such that
Gi is homogeneous of degree i and ➏ holds for each i, the sum ➍ defines a
normal k-jet; that is, ➏ is the only condition on the normality of jets.

Christoffel symbols vanish in normal coordinates, thus, G1 = 0, for G ∈ N .
Choose x ∈ T; denote by Sx the subspace of the operators S ∈ S such that

S ·x = 0. By ➏, Gi
x
∈ Sx for any germ in N . The following claim says that Gi

x

can be chosen arbitrarily in Sx for i > 2 and x 6= 0.

A.1. Claim. Given x 6= 0 in T and a sequence of operators A2, . . . Ak ∈ Sx
there is a germ (G1, . . . , Gk) in N k such that Gi

x
= Ai for any i > 2.

Proof. For any unit vector y in T perpendicular to x, consider the orthogonal
projection P y in T onto the line generated by y. Diagonalizing operators in Sx,
we see that such projections P y generate Sx as a vector space.
N k is described by ➏, hence it defines a linear subspace of Sk

x
. Thus, it

suffices to verify the following: For any 2 ≤ j ≤ k and any unit vector y in T
perpendicular to x, there exists a germ (G1, . . . , Gk) in N k such that G

j
x = P y

and Gi = 0 for i 6= j.
Such a normal germ can be constructed as a product of a surface of revolution

(corresponding to the (x,y)-plane) and a Euclidean space.
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Suppose that a germ in G is described by G : T → S. Consider its array of
Jacobi operators (R1, . . . , Rk) at the origin; recall that R1 = 0. The identities
in Section 2 imply that any such array (R1, . . . , Rk) belongs to the space Rk

defined by the following conditions: (i) each Ri : T → S is a homogeneous
polynomial, (ii) degRi = i, and (iii) Ri

x
·x = 0 for any i and x ∈ T. Note that

these conditions are exactly the same as for Gi in N k. Therefore, Rk can be
identified with N k, but we will keep separate notations for them.

The expression of the curvature tensor in terms of the metric and its deriva-
tives defines a natural algebraic map

ρk : G
k →Rk.

For any k > 2, any G ∈ N k and (R1, . . . , Rk) = ρk(G), we have

Gk = ak ·R
k +Ak, ➐

where ak is a nonzero constant and Ak is a field of self-adjoint operators that
can be written as a polynomial of R2, . . . Rk−2. This statement follows easily
from the formula derived by Oldřich Kowalski and Martin Belger [9, Proposition
2.2]. (In fact, ak = −2· k−1

k+1 , but we will not need it.)
Hence, the map ρk admits an algebraic inverse map::

A.2. Claim. The restriction ρk|Nk is an algebraic diffeomorphism N k ↔Rk.

Applying A.1, we get the following:

A.3. Corollary. Given x 6= 0 in T and a sequence of operators A2, . . . Ak ∈ Sx
there is a germ N k with Jacobi operators Ri

x
= Ai for any i > 2.

A.4. Proposition. The map ρk : Gk →Rk is an algebraic submersion.

G N

Gk N k

Rk

ν

ι

ρk

νk

ιk

ρk

Proof. Evidently, ρk is algebraic.
Any germ in G becomes normal if the space T is

reparametrized by its exponential map. This defines
the normalization map G

ν
−→ N . Since the curvature

tensors does not change under this (or any other) co-
ordinate change, ν commutes with ρk : G,N → Rk.

By A.2, N k ρk←→Rk is a diffeomorphism. The maps

Gk
ρk−→ Rk ρk←→ N k together with the forgetful maps

G → Gk and N → N k commute. In particular, we
get a map Gk

νk−→ N k that commutes with the forget-
ful maps and the normalization ν. Hence, νk and ρk
commute.

Note that the inclusion N
ι
→֒ G is a right inverse

of ν. Moreover, by changing the parametrization on T
to normal coordinates of a given germ G in G, we may assume that G lies in the

image of ι. Therefore, there is an inclusion N k ιk
→֒ Gk that is a right inverse of

ν such that its image contains any given jet in Gk. It follows that Gk
νk

−→ N k is
a submersion, hence the result.

Proof of 3.1. Denote by G̃k the space of all k-jets of Riemannian metrics at a
given point p. Denote by Σ̃k all jets in G̃k such that for some nonzero tangent

8



vector x ∈ Tp the Jacobi operators R2
x
, . . . , Rk

x
have a common exceptional

invariant subspace.
By Tarski–Seidenberg theorem, Σ̃k is semialgebraic; in particular it is strati-

fied. Due to the Thom transversality theorem [7, p. 2.3.2], it is sufficient to show
that for any point p the codimension of Σ̃k in G̃k is larger than m = dimM .

This is a pointwise statement; therefore we may fix p from now on.
A jet in G̃0 is described by the metric tensor g0 on T = TpM . Note that

the forgetful map G̃k → G̃0 is a fiber bundle. Furthermore, the restriction of
this forgetful map to Σ̃ is also a fiber bundle. Thus, it suffices to prove that the
intersection Σk of Σ̃k with a fiber of G̃k → G̃0 has codimension at least m. Note
that the fiber of the forgetful map over the Euclidean structure on T given by
g0 is exactly the space Gk investigated above.

In other words, if we choose a chart T → M , then g0 defines an inclusion
Gk →֒ G̃k, and it is sufficient to show that

codimΣk →∞ as k →∞; ➑

here we consider Σk = Σ̃k ∩ Gk as a subset of Gk.
Denote by L the semialgebraic set of all pairs (L,x) where L is a subspace

of T such that 1 < dimL < m, and x ∈ L\{0}. Given (L,x) ∈ L, denote by
Σk(L,x) the subset of jets in Gk such that L is an invariant subspace of all
Jacobi operators Ri

x
for any i 6 k.

Choose (L,x) ∈ L. We claim that A.4 implies

codimΣk(L,x)→∞ as k →∞. ➒

Indeed, a normal germ (G1, . . .Gk) belongs to Σk(L,x) if and only if all the
Jacobi operators R2

x
, . . . , Rk

x
∈ Sx have invariant subspace L. The codimension

of the space of (k − 1)-tuples in Sx that all have L as invariant subspace grows
with k. By A.4 and A.3 the composition Gk → Rk → Sk−1

x
that sends a germ

to the array of its Jacobi operators (R2
x
, . . . , Rk

x
) is a submersion. Therefore, ➒

follows.
Observe that

codimΣk
> codimΣk(L,x)− dimL.

Therefore, ➑ follows.

B Final remarks

We expect that the following question admits an affirmative answer.

B.1. Question. Is it true that any Riemannian manifold (M, g) contains a
nontrivial geodesic that runs in the boundary of some convex subset?

There is a good chance that the argument of Albert Borbély [3, Lemma 2.1]
can be modified to answer the following question. Assuming that the answer
is affirmative, it can be combined with the main proposition to derive further
restrictions on convex hulls in generic Riemannian manifolds.

B.2. Question. Let C be the closure of a convex hull of a set Q in a Rie-
mannian manifold. Then all points of C with rank at most 1 lie on minimizing
geodesics between points in Q.

9



The presented argument, when properly extended to infinite-dimensional
manifolds, might lead to a negative answer to the following question of Mikhael
Gromov [8, 6.B1(f)].

B.3. Question. Let X be a complete CAT(0) space (not necessarily locally
compact). Is it true that any compact set of X lies in a compact convex subset?

A surprising behavior of convex sets in complete (but not locally compact)
CAT(0) spaces is discussed by Nicolas Monod [12].

Finally let us mention that there is a result of Anatoliy Milka [11, § 4] about
rank of points on geodesics in the intrinsic metric of convex surfaces; it is closely
related to our main proposition but goes in the opposite direction.
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