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Abstract. We generalize the classical de Rham decomposition
theorem for Riemannian manifolds to the setting of geodesic metric
spaces of finite dimension.

1. Introduction

The direct product of metric spaces Y and Z is the Cartesian product
X = Y ×Z with the metric given by d((y, z), (ȳ, z̄)) =

√

d2(y, ȳ) + d2(z, z̄).
Call a metric space X irreducible if for each decomposition X = Y ×Z
one of the factors Y or Z must be a point. It is a very natural question
if a given metric space has a “unique” decomposition as a product of
finitely many irreducible spaces.
In general, no finite decomposition as a product of irreducible spaces
may exist, as an infinite product (for instance, a Hilbert cube) shows.
On the other hand, there is no uniqueness in general, even for some
subsets of the Euclidean plane ([Fou71], [Her94]).
In the realm of Riemannian geometry this question is answered by
the classical Theorem of de Rham ([dR52]). It says that for a simply
connected, complete Riemannian manifold M and each point x ∈ M ,
subspaces of the tangent space TxM that are invariant under the action
of the holonomy group Holx are in one-to-one correspondence with the
factors of M . As a consequence one derives that each simply connected
complete Riemannian manifold M admits a unique decomposition as
a direct product M = M0 × M1 × ... × Mk, where M0 is a Euclidean
space R

m (possibly a point) and all Mi, i = 1, ..., k, are irreducible
Riemannian manifolds (with more than one point) not isometric to
the real line. The uniqueness states that the factors are determined
not only up to an abstract isometry, but that the Mi-fibers through
a given point x (i.e. the fiber (Mi)x := P−1

i (Pi(x)) of the projection

Pi : M → M0 × ... × M̂i × .... × Mk) are uniquely determined up to

1991 Mathematics Subject Classification. 53C20.
Key words and phrases. de Rham decomposition theorem, Euclidean factor, di-

rect product, submetry.
1



a permutation of indices. Observe that the Euclidean space plays a
special role, since it has many different decompositions as a product of
real lines.
In [EH98] the statement about the uniqueness of the decomposition
of M was generalized to non simply connected complete Riemannian
manifolds by studying the action of the fundamental group of M on
the product decomposition of the universal covering.
Our main result presented in this paper is a broad generalization of de
Rham’s decomposition theorem. In order to state it precisely, recall
that a geodesic in a metric space X is an isometric embedding of an
interval into X. A metric space is called geodesic if each pair of its
points is connected by a geodesic. We say that a metric space is affine
if it is isometric to a linearly convex subset of a normed vector space.
Given a metric space X we define its affine rank, rankaff(X), as the
supremum over all topological dimensions of affine spaces that admit
an isometric embedding into X. Note that rankaff(X) is bounded above
by the topological dimension of X.
With this terminology our main result reads as follows.

Theorem 1.1. Let X be a geodesic metric space of finite affine rank.
Then X admits a unique decomposition as a direct product

X = Y0 × Y1 × Y2 × ... × Yn,

where Y0 is a Euclidean space (possibly a point), and where the Yi,
i = 1, ..., n, are irreducible metric spaces not isometric to the real line
nor to a point. Thus, if there is another direct product decomposition
X = Z0 × Z1 × ... × Zm of this kind then we have m = n and there
exists a permutation s of {0, 1, ..., n} such that for each point x ∈ X
the Yi-fiber through x coincides with the Zs(i)-fiber through x for all
i = 1, ..., n.

Remark 1.1. Note that the Theorem 1.1 cannot be a consequence of
some kind of “general nonsense”, as the examples of [Fou71] and [Her94]
demonstrate. Moreover, there is no similar decomposition theorem
in many other categories. For instance, there are finitely generated
groups that have many completely different decompositions as a direct
sum (cf. [Bau75]) and there are manifolds (for instance the Euclidean
space) that have completely different decompositions as products of
irreducible manifolds.

Remark 1.2. For compact subsets X of a Euclidean space R
n the

uniqueness of the decomposition of X was proved in [Mos92].

In the formulation of Theorem 1.1 the Euclidean spaces again play
a special role. As a particular case of Theorem 1.1 (that is also an
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important step in the proof) this special role can be expressed as a
funny rigidity statement:

Corollary 1.2. Let X be a geodesic metric space of finite affine rank.
Assume that X is decomposed in two different ways as Y × Ȳ = X =
Z × Z̄. Assume that the decompositions are transversal at some point
x ∈ X, i.e. for the fibers Yx, Ȳx, Zx, Z̄x we have: Yx ∩ Zx = Yx ∩ Z̄x =
Ȳx ∩ Zx = Ȳx ∩ Z̄x = {x}. Then X is a Euclidean space X = R

2m.

Using Theorem 1.1 we can analyze the group of isometries of a product
space. To appreciate the next result and the special role of Euclidean
spaces, one should recall, that the isometry group Iso(R2)of the plane
R

2 is 3-dimensional, and much larger than the two dimensional group
Iso(R) × Iso(R), i.e. the product R × R has many isometries that do
not respect the product structure. On the other hand we have:

Corollary 1.3. Let X be a geodesic space of finite affine rank and let
X = Y0 × Y1 × ...× Yn be its product decomposition as in Theorem 1.1.
Denote by P the group of all permutations s ∈ σn, such that Yi and
Ys(i) are isometric for all i = 1, ..., n. Then there is a natural exact
sequence:

1 → Iso(Y0) × Iso(Y1) × ... × Iso(Yn)
i→ Iso(X)

p→ P → 1.

Remark 1.3. In the formulation of the results above and below, the
equality sign in X = Y0 × ...× Yn or X = Y × Ȳ should be understood
as a fixed isometry I : X → Y0 × ... × Yn or I : X → Y × Ȳ . This
fixed isometry then defines projections Pi : X → Yi and P Y : X → Y ,
respectively. It also defines Y -fibers, as Yx = (P Ȳ )−1(P Ȳ (x)).

We are going to explain the basic idea behind the proof of our main
theorem. The idea is to find a class C of metric spaces that is small
enough, such that one can prove the main theorem for this class by
some direct means, and that is large enough such that each metric
space X as in Theorem 1.1 can be approximated by elements of C in
some suitable sense.
We use the class C of affine metric spaces of finite dimension. To
“approximate” general spaces by elements of C we prove that for each
metric space X, each maximal affine subset C of X is “rectangular”,
i.e. for each decomposition X = Y × Ȳ we have C = P Y (C)×P Ȳ (C).
This claim is a direct consequence of the following technical result:

Proposition 1.4. Let X = Y × Ȳ be a direct product. If a subset
C ⊂ X is affine, then so is the projection P Y (C) ⊂ Y .

3



Remark 1.4. Essentially, the statement of Proposition 1.4 is that for
C ⊂ X as above, parallel linear geodesics in C have the same slope with
respect to the product decomposition of X. If C is a normed vector
space (i.e. if each geodesic in C is part of an infinite geodesic) then
this claim is easy to verify and Proposition 1.4 for the case of normed
vector spaces C was already proven in [FS02]. In our more general case,
the result is more subtle and relies on the infinitesimal considerations
in [HL]. In [FS02] it is shown by an example, that Proposition 1.4
becomes wrong if one replaces the word “affine” by “convex subset of
a Euclidean space”.

Now we explain the heart of the proof of Corollary 1.2. Under the
assumptions of Corollary 1.2 we choose a largest affine subset C of X
that contains x. We know that C is rectangular, hence it has two mu-
tually transversal decompositions, as well. Assuming that we already
know the result for affine spaces, we deduce that C is a Euclidean space
C = R

2m. It remains to prove that C = X. First we observe that each
rectangular subset of X that contains C ∩ Yx must contain the whole
subset C (by easy linear algebra). Now take an arbitrary point z ∈ Ȳx.
Then z and C ∩Yx “span” a flat subset of X. Let C0 be a largest affine
subset of X that contains this flat one. Then C0 is rectangular, hence
it contains C and by maximality of C we have C = C0. Thus Yx ⊂ C.
Interchanging the roles of Y and Ȳ we deduce the result.
Outline of the paper: In Section 2 we discuss basic facts about
metric products. In Section 3 we discuss affine metric spaces and prove
Proposition 1.4. In Section 4 we draw some direct consequences of the
equality of slopes in an affine subset of a product. In Section 5 and
Section 6 we prove that for different decompositions Y × Ȳ = X =
Z × Z̄ and each point x ∈ X the intersection Yx ∩ Zx is a factor of
Zx = Z. In Section 7 we use this observation to reduce Theorem 1.1
to Corollary 1.2. Finally, in Section 8 we prove Corollary 1.2.

2. Preliminaries

2.1. Notations and basic observations. By d we will denote dis-
tances in metric spaces without an extra reference to the space.
For a direct product X = Y × Ȳ we will use the following notations.
By P Y : X → Y and P Ȳ : X → Ȳ we will denote the canonical
projections to the factors. (In fact the equality X = Y × Ȳ just means
that two maps P Y : X → Y and P Ȳ → Ȳ are given such that d2(x, z) =
d2(P Y (x), P Y (z)) + d2(P Y (x), P Ȳ (z)) holds for all x, z ∈ X).
For a point x ∈ X we call the subset (P Ȳ )−1(P Ȳ (x)) the Y -fiber
through x and denote it by Yx. The restriction P Y : Yx → Y is an
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isometry and we will sometimes identify Yx with Y via this isometry.
The composition P Yx of P Y : X → Y and the inverse of P Y : Yx → Y is
the natural projection of X to Yx. It sends a point z ∈ X to the unique
intersection of Ȳz and Yx. Each restriction P Yx : Yz → Yx is an isometry.
For all x, z ∈ X we have d2(x, z) = d2(x, P Yx(z)) + d2(P Yx(z), z).

2.2. Recognition of products. Assume on the other hand that a
space X is given as a union X = ∪i∈JYi (We do not assume the union
to be disjoint, moreover, Yi and Yj may coincide for different i and
j). Assume that for all i, j ∈ J a map Pij : Yi → Yj is given such
that for all i, j, k ∈ J we have Pij ◦ Pji = Id and Pjk ◦ Pij = Pik.
Furthermore, assume that for all i, j ∈ J , all x ∈ Yi and x̄ ∈ Yj we
have d2(x, x̄) = d2(x, Pij(x)) + d2(Pij(x), x̄).
We are going to show that X splits as a product with fibers Yi.
For all x, x̄ as above we have:

d2(x, x̄) = d2(x, Pij(x)) + d2(Pij(x), x̄) = d2(x̄, Pji(x̄)) + d2(Pji(x̄), x)

and

d2(Pij(x), Pji(x̄)) = d2(Pij(x), x̄)+d2(x̄, Pji(x̄)) = d2(Pij(x), x)+d2(x, Pji(x̄)).

Subtracting these equalities from another we obtain d2(x, Pij(x)) =
d2(x̄, Pji(x̄)). Therefore d(x, Pij(x)) = d(x̄, Pji(x̄)). In particular, Pij

is an isometry and we have d(Yi, Yj) = d(x, Pij(x)) for each x ∈ Yi.
Therefore, the Yi define a so called equidistant decomposition of X and
d(i, j) := d(Yi, Yj) defines a pseudo metric on J , where two indices have
distance 0 if and only if they define the same subset of X. We identify
equal fibers and may assume that different fibers are disjoint, i.e. that
J is a metric space.
For all i, j ∈ J and all x ∈ Yi, x̄ ∈ Yj we have: d2(x, x̄) = d2(Pij(x), x̄)+
d2(i, j).
Fix now a fiber Yo for some o ∈ J and consider the map P : Y0×J → X
given by P (y, i) = Poi(y). This map is surjective, by assumption. We
claim that it is an isometry.
Indeed, for all y, ȳ ∈ Yo and all i, j ∈ J we have d2(Poi(y), Poj(ȳ)) =
d2(i, j) + d2(Pij(Poi(y)), Poj(ȳ)).
But Pij(Poi(y)) = Poj(y) and d(Poj(y), Poj(ȳ)) = d(y, ȳ). This finishes
the proof.

2.3. Intersections of different fibers. Let Y × Ȳ = X = Z × Z̄ be
two decompositions of a space X. Fix a point x ∈ X and set Fx =
Yx ∩ Zx. The following lemma together with the preceding subsection
suggests that Fx has good chances to be a factor of Zx.
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Lemma 2.1. For each point p ∈ Ȳx and each point q ∈ Fx we have
d2(PZ(p), P Z(q)) = d2(PZ(p), P Z(x)) + d2(PZ(x), P Z(q)).

Proof. Identify Z with Zx and denote by p̃ the projection of p onto Zx.
Observe that x and q are already in Zx.
We have d2(q, p) = d2(q, p̃) + d2(p̃, p) and d2(x, p) = d2(x, p̃) + d2(p̃, p).
Since q ∈ Yx and p ∈ Ȳx we have d2(q, p) = d2(q, x) + d2(x, p). We
insert the second equality in the third and the third in the first one
and get d2(p̃, q) = d2(p̃, x) + d2(x, q). ¤

2.4. Geodesics in products. Recall that geodesics (if not otherwise
stated) are parameterized by the arclength. A subset C of a geodesic
metric space X is called convex (totally convex, resp.) if for each pair
of points y, z ∈ C there is some geodesic in C between these two points
(if each geodesic between y and z is contained in C, resp.).
Each geodesic γ in a product X = Y ×Ȳ has the form γ(t) = (η(at), η̄(āt))
for some geodesics η in Y and η̄ in Ȳ and some real numbers a, ā with
a2 + ā2 = 1. The numbers a and ā are called the slopes of the geodesic
γ with respect to Y and to Ȳ , respectively. Note that the slope of γ
with respect to Y is 0 if and only if γ is contained in some Ȳ -fiber.
A product X = Y × Ȳ is a geodesic space if and only if the factors
Y and Ȳ are geodesic. In this case each fiber Yx is totally convex in
X. The fact that geodesics project to geodesics implies that for each
convex subset C in a product X = Y × Ȳ the projection P Y (C) is a
convex subset of Y .

2.5. Groups of isometries. We are going to deduce Corollary 1.3
from Theorem 1.1. Thus let X = Y0 × Y1 × ... × Yn be as in Corol-
lary 1.3 and let g : X → X be an isometry. By Theorem 1.1 the isom-
etry g must induce a permutation s : {0, 1, ..., n} → {0, 1, ..., n} such
that g((Yi)x) = (Ys(i))g(x). The restriction g : (Yi)x → (Ys(i))g(x) must
be an isometry, hence Yi and Ys(i) must be isometric. In particular,
s(0) = 0. The assignment g → s is a homomorphism p : Iso(X) → P .
Interchanging isometric factors by some fixed isometry, one sees that p
is surjective.
The map i : Iso(Y0) × ... × Iso(Yn) → Iso(Y0 × ... × Yn) is given by
i(g0, g1, ..., gn)(y0, y1, ..., yn) = (g0(y0), g1(y1), ..., gn(yn)). It is a well
defined injection and satisfies p◦ i = 1. Let now g be an element in the
kernel of p. Fix a point x ∈ X. Then g induces isometries g : (Yi)x →
(Yi)g(x). Identifying (Yi)x and (Yi)g(x) with Yi via the projection P Yi

we obtain an isometry gi : Yi → Yi. Set g̃ = i(g0, g1, ..., gn). We claim
g = g̃. Consider the isometry h = g ◦ g̃−1. We have h(x) = x and
the restriction of h to (Yi)x is the identity for all i. For each point
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x̄ ∈ X we must have P (Yi)x(x̄) = P (Yi)x(h(x̄)) for all i. But this means
P Yi(x̄) = P Yi(h(x̄)), hence x̄ = h(x̄). This shows h = Id and proves
that the sequence is exact.

3. Affine spaces

3.1. Definitions. We are going to prove Proposition 1.4 in this sec-
tion. If we want to prove that projections of affine subsets are affine,
we first have to find linear geodesics in the projection. Thus we need
to work with a distinguished class of geodesics.

Definition 3.1. Let X be a metric space. A bicombing Γ on X assigns
to each pair of points (x, y) ∈ X ×X a geodesic γxy connecting x to y,
such that γxy = γyx as sets (where γxy and γyx have opposite orientation
as curves) and such that for each m ∈ γxy we have γmy ⊂ γxy.

A space with a bicombing is per definitionem a geodesic metric space.
Given a space with a bicombing Γ we will call the geodesics assigned
by Γ the special geodesics.

Example 3.1. Let X be a geodesic metric space in which there is only
one geodesic connecting each pair of points. Then X has a (unique)
natural bicombing.

A map I : X → Y between two spaces with bicombings Γ and Γ′

is called affine if it sends special geodesics to special geodesics pa-
rameterized proportionally to the arclength. Such a map I is called a
(Γ, Γ′)-isometric embedding ((Γ, Γ′)-isometry, resp.) if it is an isometric
embedding (an isometry, resp.) between the underlying metric spaces.
A subset Y of a space X with a bicombing Γ will be called Γ-convex if
for each pair of points x, y ∈ Y the geodesic γxy is contained in Y . Ob-
serve that the image of each (Γ, Γ′)-isometric embedding is a Γ′-convex
subset and that each Γ-convex subset inherits a natural bicombing.
If (Xi, Γi) are spaces with bicombings for i = 1, 2, then the direct
product X = X1×X2 has a unique bicombing such that the projections
PXi : X → Xi are affine.
For us, the main example will be the following. Let V be a normed
vector space. Then the linear geodesics (i.e. geodesics of the form
γ(t) = v + tw) define a bicombing on V . Normed vector spaces will
always be equipped with this particular bicombing.
A subset C of a normed vector space V is Γ-convex if and only if it
is linearly convex (i.e. for each x, y ∈ C and each t ∈ [0, 1] the point
tx + (1 − t)y is in C).
The notion of affine maps in this setting coincides with the usual one.
First, let V,W be normed vector spaces. Then each linear map A :
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V → W is affine. On the other hand, let F : V → W be an affine map
with F (0) = 0. Then F (tx) = tf(x) and F (x + y/2) = F (x + y)/2, for
each t ∈ R and all x, y ∈ V , hence F is linear in this case. By adding
a translation we deduce that a map F : V → W is affine if and only
if it has the form F (v) = w0 + A(v) for some w0 ∈ W and some linear
map A : V → W .
Let now X be a linearly convex subset of a normed vector space V and
let f : X → W be an affine map into a normed vector space W . We
first assume that 0 ∈ X and that f(0) = 0. Denote by C the cone over
X, i.e. C = {tx|t ≥ 0, x ∈ X}. Then C is linearly convex in V and
f̄(tx) = tf(x) is a well defined extension of f to C that is again affine.
Denote by V0 the linear hull of X. Then V0 = {x − y|x, y ∈ C}. The

map f̃(x − y) = f̄(x) − f̄(y) is well defined and affine. By the above

observation the map f̃ is linear and can be extended to a linear map
F : V → W , by linear algebra. We deduce, that a map f : X → W is
affine if and only if it is the restriction of an affine map F : V → W .

Definition 3.2. We call a space X with a bicombing Γ affine if there
is a Γ-isometric embedding I : X → V into a normed vector space.

Thus a metric space is affine in the sense of the introduction if and
only if it has a bicombing Γ such that (X, Γ) is affine.

Remark 3.2. Each metric space X has an isometric embedding into a
Banach space. If X is geodesic then the image of X is a convex subset
of X. In order to make the above definition not trivial it is necessary
to distinguish (as we did) between convex and linear convex subsets.

3.2. Three points characterization.

Proposition 3.1. Let X be a space with a bicombing Γ. If for all
points x, y, z ∈ X there is a Γ-convex subset Cx,y,z of X that is affine
and contains the three points x, y and z, then X is affine.

Proof. Fix a point o in X. Consider the space Y = X × [0,∞) and
identify points (x, t) and (z, s) if we have t · d(o, x) = s · d(o, z) and
the geodesics γox and γoz initially coincide. Moreover we identify the
subsets X × {0} and {o} × [0,∞) with a unique point in Y that we
denote by 0 and call the origin.
Denote by Z the arising set. On Z we define a metric by setting
d((x, t), (y, s)) := 1

ε
d(γox(εt), γoy(εs)) for a sufficiently small number

ε > 0. This quantity is well defined (i.e. does not depend on ε) as one
sees by making the computations in the linear subset Co,x,y as in the
assumptions. Moreover d is a metric as one derives from the triangle
inequality in X.

8



We have a multiplicative operation of [0,∞) on Z by λ·(x, t) := (x, λt).
For z1, z2 ∈ Z we have by definition d(λz1, λz2) = λd(z1, z2).
Next the space X has an isometric embedding I into Z defined through
I(x) = (x, 1). We identify X with its image in Z. By our definition we
see that for each finite subset D of Z there is some λ > 0 such that D
is contained in λX.
Taking two points z1, z2 ∈ Z we find some λ > 0 and points x1, x2 ∈ X
with λxi = zi. We extend the bicombing from X to Z by letting the
geodesic γz1z2

be the (reparameterized) curve λγx1x2
. Again considering

the triangle Cx1,x2,o we see that this definition does not depend on the
choice of λ (i.e. on the choice of x1 and x2) and that this is indeed a
bicombing on Z. Moreover, for three points z1, z2, z3 ∈ Z we define a
Γ-convex set Cz1,z2,z3

by choosing xi, i = 1, 2, 3, and λ as above, setting
Cz1,z2,z3

:= λCx1,x2,x3
. It follows that Cz1,z2,z3

is affine.
Hence Z again has the same 3-point property as X and, since X iso-
metrically embeds in Z, it is enough to prove that Z is affine.
For this purpose we define an addition on Z in the following way. For
x, y ∈ Z we set x + y := 2m where m is the midpoint of γxy. By
definition we have x + 0 = x and x + y = y + x for all x, y ∈ Z.
Considering the subset Co,x,y we see that for all x, y ∈ Z we have
λ(x + y) = λx + λy for each 0 ≤ λ ≤ 1 and therefore for each λ ≥ 0.
Let x, y ∈ Z be arbitrary. Considering the affine space Co,2x,2y we see
that for all 0 ≤ t ≤ 1 we have tx + (1 − t)y = γxy(td(x, y)).
Take now three points x, y, z ∈ Z. Then u := 1

3
(((x + y) + z) =

2
3
(1

2
(x + y)) + 1

3
z. This shows that u ∈ Cx,y,z. The same is true for

ū := 1
3
(x + (y + z)). Making the computations in Cx,y,z we derive that

u = ū. This implies that the addition is associative.
Finally considering for three arbitrary points x, y, z ∈ Z the subset
Cx,y,z we see that x+y

2
= x+z

2
implies y = z.

Hence Z with the defined addition is a commutative semi-group in
which x + y = x + z implies y = z. Let W denote the abelian group
defined by Z, i.e. W is defined as the set of all pairs (x, y) ∈ Z2 modulo
the equivalence relation (x, y) ∼ (x̄, ȳ) if and only if x+ ȳ = x̄+y. The
addition on W is defined by (x, y) + (x̄, ȳ) = (x + x̄, y + ȳ).
The set W with this addition is an abelian group and Z has the canon-
ical embedding i : Z → W defined by i(x) := (x, 0). The operation of
R

+ on Z extends to an operation on W by setting λ(x, y) := (λx, λy).
Finally we set (−1) · (x, y) := (y, x) and for each positive λ and each
w ∈ W we set (−λ) ·w := (−1)λw. Taking this together we see that W
is a vector space over R. Moreover, the embedding i : Z → W sends
Γ-geodesics to linear intervals.
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Finally we define the function | · | on W by setting |(x, y)| := d(x, y).
It remains to prove that | · | is well defined and that it is a norm.
To see that it is well defined let x, y, x̄, ȳ ∈ Z be such that (x, y) ∼
(x̄, ȳ), i.e. x + ȳ = x̄ + y. Then the midpoint m of γxȳ is also the
midpoint of γx̄y. Take the midpoint p between x and y. Considering
the space Cx,y,x̄ we see that γpx̄ intersects γxȳ in some point p1 that
is between x and m. Similarly γpȳ intersects γym in some point p2.
Therefore the subspace Cp,x̄,ȳ contains p1, p2 and m. Hence for some
small ε > 0 we can find points q1 and q̄1 on γp2m and γmx̄ and points q2

and q̄2 on γp1m and γmȳ such that d(m, q1) = d(m, q̄1) = εd(m, y) and
d(m, q2) = d(m, q̄2) = εd(m,x).
In Cp,x̄,ȳ we deduce from this that d(q1, q2) = d(q̄1, q̄2). Now looking
at the space Cx,y,m (Cx̄,ȳ,m, resp.) we see that d(q1, q2) = εd(x, y)
(d(q̄1, q̄2) = εd(x̄, ȳ), resp.). This shows that |(x, y)| = |(x̄, ȳ)| and | · |
is well defined.
From the definition we immediately conclude that |λw| = |λ||w| for
each λ ∈ R and each w ∈ W . Finally, given two points w = [(x, y)] and
v = [(x̄, ȳ)] in W we can write w = [(x+x̄, y+x̄)] and v = [(x̄+x, ȳ+x)],
i.e. we may assume that x = x̄. In this case one deduces from Cx,y,ȳ

that d(x, y) + d(x, ȳ) ≥ 2d(x, y+ȳ

2
) which implies |v| + |w| ≥ |v + w|.

This finishes the proof. ¤

As a corollary we obtain:

Corollary 3.2. Let X be a metric space and let Y be an affine subset
of X with a bicombing Γ. Then there is a maximal affine subset Y ′ of
X that contains Y and the bicombing of which extends Γ.

Proof. By Zorn’s lemma it is enough to prove that for a chain Yi of
affine subsets such that the bicombing of Yi extends the bicombing of
Yj for i ≥ j their union Y ′ is affine.
This union Y ′ has a natural bicombing that extends the bicombings of
all Yi. The three points property from Proposition 3.1 is satisfied by
Y ′, since it is satisfied by all Yi. Thus Y ′ is affine. ¤

3.3. Invariance under products. Since a projection of a product
onto a factor sends geodesics to geodesics parameterized proportionally
to the arclength, Proposition 1.4 is a direct consequence of the following
result:

Proposition 3.3. Let (X, Γ) be an affine metric space with a bicomb-
ing. Let f : X → Y be a surjective continuous map that sends each
special geodesic to a geodesic parameterized proportionally to the ar-
clength. Then Y is affine. More precisely, there is a unique bicombing
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Γ′ on Y , such that (Y, Γ′) is affine and such that f : (X, Γ) → (Y, Γ′)
is affine.

Before embarking on the proof we will cite an important special case.
Assume namely that f is bijective. Then the images of special geodesics
(reparameterized to have speed 1) define a (unique) bicombing Γ′ on
Y , such that f is affine with respect to this bicombing. The inverse
f−1 : (Y, Γ′) → (X, Γ) is an (a priori not continuous) affine equivalence.
In this case Theorem 1.3 of [HL] says that (Y, Γ′) is in fact affine. Thus
Proposition 3.3 is in fact the extension of Theorem 1.3 of [HL] to the
non-injective case.

Proof. First observe that the restriction f : C → f(C) of f to a Γ-
convex subset of X again satisfies the assumption.
If a required bicombing Γ′ exists we must have γf(x1)f(x2) = f(γx1x2

)
(as sets) for all x1, x2 ∈ X. In particular, if such a bicombing exists,
it is unique. We only need to prove that the above assignment is well
defined and that Y equipped with this bicombing is affine.
Assume first that X is a triangle, i.e. X is the linearly convex hull
of three points in a two dimensional normed vector space V . If the
triangle is degenerate, i.e. a point or an interval, then Y = f(X) is
a point or an interval as well and the conclusion is clear. Thus we
may assume that X is non-degenerate. Denote by X0 the set of inner
points of X (with respect to V ). Observe that X0 is linearly convex and
dense in X. Set Y0 = f(X0). Each fiber of f in X0 is linearly convex.
More precisely, it is the intersection of X0 with an affine subspace of
X. Hence there are three cases.
1) There is a point x ∈ X0 such that f−1(f(x)) = x. Denote by U the
set of all such points and let O be a connected component of U .
For a point z ∈ X0 and a unit vector v ∈ V we set |v|z to be the speed
of the geodesic γ(t) = f(z + tv). By continuity of f the function |v|z
is continuous in z and in v. Moreover, a point z is in U if and only if
|v|z > 0 for all unit vectors v ∈ V . By continuity of |v|z the subset U
(and therefore O) is open.
On each convex subset O1 of O the restriction f : O1 → f(O1) is
bijective. Thus one can apply [HL], and Proposition 3.3 is true for
this restriction. Hence f := O1 → f(O1) is the restriction of an affine
map between normed vector space in this case. Thus |v|z1

= |v|z2
for

all unit vectors v ∈ V and all z1, z2 ∈ O1. By connectedness and
local convexity of O we deduce that |v|z is constant on O. Hence, by
continuity of |v|z, at each boundary point z of O we still have |v|z > 0
for all unit vectors v ∈ V . By connectedness of X0 this implies X0 = U .
Hence F : X0 → Y0 is bi-Lipschitz in this case. Hence the continuous
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extension F : X → F (X) is bi-Lipschitz as well. Thus we can apply
[HL] again and obtain the validity of the statement in this case.
2) Each fiber of f is an interval. In this case one can rearrange each
triple of fibers I1, I2, I3, such that I2 is between I1 and I2, i.e. for each
point x1 ∈ I1 and x3 ∈ I3 the geodesic between x1 and x3 intersects
I2. This implies that for each triple of points in Y0 one can rearrange
them such that one point is on a geodesic between the other two. But
this implies that Y0 is an interval (i.e. a subset of a real line). In this
case Y is an interval, too (since Y0 is dense in Y ) and we are done.
3) There is only one fiber of f . In this case Y0 = f(X0) is a point.
Hence Y is a point and there is nothing to prove.
Therefore the statement is true if X is a triangle.
Let now X be arbitrary. To prove that the bicombing is well defined
choose points xi, zi ∈ X, for i = 1, 2 with f(xi) = f(zi). Considering
the triangles spanned by x1, x2, z1 and x1, z1, z2 and using the fact that
the statement is true for triangles we deduce that f(γx1x2

) = f(γx1z2
) =

f(γz1z2
). This shows that the bicombing on Y making f an affine map

is well defined.
For an arbitrary triple y1, y2, y3 ∈ Y choose x1, x2, x3 ∈ X with f(xi) =
yi. Let C be the triangle spanned by xi. Then f(C) is an affine Γ′-
convex subset that contains the points yi. Applying Proposition 3.1 we
deduce that Y is in fact affine. ¤

4. First applications

4.1. Rectangular subsets. We will call a subset S of a metric space
X rectangular with respect to the product decomposition X = Y × Ȳ
of X if S = P Y (S)×P Ȳ (S) holds. We will say that S is a rectangular
subset of X if it is rectangular with respect to each product decompo-
sition of X.

Example 4.1. If X is irreducible, then each subset S of X is rectangular.
If X = R

n, then the only rectangular subsets of X are the whole space,
the empty set and subsets with only one point.

Let now X be a metric space and let C be a maximal affine subset
of X (i.e. C with some bicombing Γ is affine and there is no larger
affine subset of X the bicombing of which extends that of C). If X
is decomposed as a direct product X = Y × Ȳ , then due to Propo-
sition 1.4 the projections P Y (C) and P Ȳ (C) are affine and therefore
so is the product C̃ = P Y (C) × P Ȳ (C) ⊂ Y × Ȳ . Moreover, the re-
strictions of the projections to C are affine (Proposition 3.3), thus the
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natural bicombing of P Y (C)×P Ȳ (C) extends the bicombing of C. By
maximality of C we deduce C = P Y (C) × P Ȳ (C). This shows:

Corollary 4.1. Let X be a metric space and C be a maximal affine
subset of X. Then C is a rectangular subset of X.

Since the dimension of a product of two affine spaces equals the sum
of the dimension of the factors we get (compare [FS02]):

Corollary 4.2. For each decomposition X = Y × Ȳ we have

rankaff(X) = rankaff(Y ) + rankaff(Ȳ ).

4.2. Equality of slopes. From Proposition 3.3 we deduce that if C
is an affine subset of a product X = Y × Ȳ then each pair of (linear)
geodesics in C that are parallel in C have the same slope with respect
to Y (and to Ȳ ).
From this we derive the following. Let X = Y × Ȳ and X = Z × Z̄ be
two decompositions of a geodesic metric space X. Let γ be a geodesic
in Y . Then the slope of the geodesic γ × {ȳ} ⊂ X with respect to
Z̄ does not depend on the point ȳ ∈ Ȳ . Indeed, for different points
ȳ1, ȳ2 ∈ Ȳ choose a geodesic η connecting them. Then γ × η ⊂ X is a
flat rectangle and the γ × ȳi are parallel sides of it.
This observation allows us to speak of the slope of a geodesic γ ∈ Y
with respect to Z̄. Observe that this slope is 0 if and only if for the
endpoints y1, y2 of γ and some (and therefore each) point ȳ ∈ Ȳ the
points (yi, ȳ) ∈ X are contained in the same Z-fiber.
In particular, we see that if Yx is contained in Zx for some point x ∈ X
then Yx̄ is contained in Zx̄ for each point x̄ ∈ X.

5. Intersections and Projections

Let X be a geodesic metric space with two decompositions Y × Ȳ =
X = Z × Z̄. Let x ∈ X be a point and set Fx = Yx ∩ Zx. Consider
T = Tx := P Y (Fx) × Ȳ ⊂ Y × Ȳ = X. Then we have:

Lemma 5.1. In the notations above the image P Z(T ) ⊂ Z splits as
PZ(T ) = P Z(Fx) × PZ(Ȳx).

Proof. Set o = P Y (x) and F = P Y (Fx). From the equality of slopes
we deduce F × {ȳ} = Fp with p = (o, ȳ) ∈ Y × Ȳ = X. This implies
that Tp = Tx for each point p ∈ Tx.
For all points q, p ∈ T the fiber Ȳq intersects Fp in a unique point.
Moreover, for this intersection point p̄ we have d2(PZ(q), P Z(p)) =
d2(PZ(q), P Z(p̄)) + d2(PZ(p̄), P Z(p)), due to Lemma 2.1.
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Now consider Z as the union Z = ∪p∈T PZ(Fp) and define the map
Ppq : PZ(Fp) → P Z(Fq) by sending P Z(p̄) to P Z(q̄), where q̄ is the
unique intersection of Ȳp̄ with Fq.
The uniqueness of the intersection shows that Ppq ◦ Pqp = Id and
that Ppq ◦ Prp = Prq for all r, q, p ∈ T . From the above equality
we deduce that for all z ∈ P Z(Fp) and all z̄ ∈ P Z(Fq) we have
d2(z, z̄) = d2(z, Ppq(z)) + d2(Ppq(z), z̄).
Hence we can apply the considerations in Subsection 2.2 and get the
desired conclusion. ¤

We believe that the image P Z(T ) ⊂ Z in the last lemma always co-
incides with Z. We will prove it below under the assumption of the
finiteness of the affine rank. First we are going to reduce it to the affine
case, which then will be finished in the next section.
We say that X has the property O if for all decompositions X =
Y × Ȳ = Z × Z̄ and each point x ∈ X the projection P Z : T → Z is
surjective, where T = Tx is defined as above.

Lemma 5.2. If each finite dimensional affine metric space has property
O then so does each geodesic metric space of finite affine rank.

Proof. Let X be decomposed as Y × Ȳ = X = Z × Z̄. We identify
Z with Zx and use the notations from above. Choose a point z ∈ Zx.
Consider a geodesic γ from x to z. Let C be a maximal affine subset
of X that contains γ. Due to Corollary 3.2 such a subset exists and
due to Corollary 4.1 it is rectangular. Therefore, C = A× Ā = B × B̄,
where A = P Y (C), Ā = P Ȳ (C), B = P Z(C) and B̄ = P Z̄(C). By our
assumption C has the property O. Therefore, for T̃ = PA(Ax∩Bx)×Ā
we get z ∈ P Bx(T̃ ). Since T̃ ⊂ T we deduce that z is contained in
PZx(T ). Since z was chosen arbitrary, we deduce P Zx(T ) = Zx. ¤

6. Linear algebra

6.1. Euclidean case. Let V be a finite dimensional vector space. We
will write convex for linearly convex below. We assume that all convex
subsets that appear below contain the origin 0.
Let 0 ∈ C be a convex subset of V . We denote by H(C) the linear hull
of C. By L(C) we denote the largest linear subspace that is contained
in C. Observe that L(C) is well defined, actually, L(C) is the union of
all linear lines in C. In particular, L(C) = 0 if and only if C does not
contain a line.
For convex subsets C1, C2 ⊂ V their sum is defined as C1 + C2 =
{c1 + c2|ci ∈ Ci}. We say that the sum is direct and write C1 ⊕ C2
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if H(C1) ∩ H(C2) = 0. We say that C is indecomposable if for each
decomposition C = C1 ⊕ C2 one of the summands is 0.
We recall the result of Gruber ([Gru70]):

Theorem 6.1. Let C be a convex subset of V that does not contain
lines. Then C has a unique decomposition C = C1 ⊕C2 ⊕ ....⊕Ck with
indecomposable Cj.

Let now V be a Euclidean vector space and C ⊂ V be a convex subset.
Then C has a unique decomposition C = L(C)⊕C1 ⊕ ....⊕Ck, where
all Ci are indecomposable and do not contain lines and where all Ci

are orthogonal to L(C) (compare [Gru70]).
For a decomposition C = C1 ⊕ C2 we have well defined projections
PCi : C → Ci defined by P Ci(c1 + c2) = ci, for all c1 ∈ C1, c2 ∈ C2. We
call the decomposition C = C1⊕C2 orthogonal if H(C1) and H(C2) are
orthogonal. Observe, that the decomposition C = C1⊕C2 is orthogonal
if and only if the natural map I : C1×C2 → C given by I(c1, c2) = c1+c2

is an isometry.

Lemma 6.2. Let V be a Euclidean space and C be a convex subset of
V . Let C = A ⊕ Ā = B ⊕ B̄ be two orthogonal decompositions. Then
PB((A ∩ B) + Ā) = B.

Proof. Decompose A as A = L(A) ⊕ A0, where A0 is orthogonal to
L(A). In the same way decompose Ā = L(Ā) ⊕ Ā0, B = L(B) ⊕ B0

and B̄ = L(B̄) + B̄0. We have L(C) = L(A) ⊕ L(Ā) = L(B) ⊕ L(B̄).
Moreover, by the orthogonality assumption A0 ⊕ Ā0 is the orthogonal
complement of L(C) in C. Since the same is true for B0 ⊕ B̄0 we have
C0 = A0⊕ Ā0 = B0⊕ B̄0. From the uniqueness of the decomposition of
C0 into a direct sum of indecomposable parts, we deduce (A0 ∩ B0) +
(Ā0 ∩ B0) = B0. In particular, P B((A ∩ B) + Ā) contains B0.
On the other hand, the equality L(B) = L(A)∩L(B)+P L(B)(L(Ā)) is
an exercise in linear algebra. (We may assume C = L(C). Considering
the quotient space C/((A ∩ B) + (Ā ∩ B̄)) one is reduced to the case
A ∩ B = Ā ∩ B̄ = {0}. In this case we must have dim(A) = dim(B̄)
and dim(B) = dim(Ā). Since the kernel of the projection P B : Ā → B
is Ā ∩ B̄ = {0}, we deduce that P B : Ā → B is injective and therefore
surjective as well.)
Combining the both equalities we arrive at P B((A∩B) + Ā) = B. ¤

In the notations used in the last lemma, we have seen B0 = B0 ∩A0 +
B0 ∩ Ā0. From this we deduce:

Lemma 6.3. Let C = A⊕Ā = B⊕B̄ be two orthogonal decompositions
of a convex subset C ⊂ V = R

n. If B ∩ A = B ∩ Ā = {0}, then
B = L(B), i.e. B is a linear space in this case.
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6.2. Banach spaces. Let V be a finite dimensional real vector space.
An ellipsoid in V is the image of the unit ball in some Euclidean space
R

N under a linear map A : R
N → V .

Recall that the map that assigns to a norm on V the unit ball K
of the norm is a one-to-one correspondence between norms on V and
centrally symmetric convex subsets of V with a non-empty interior.
Recall further, that the norm stems from a scalar product if and only
if the unit ball K of this norm is an ellipsoid.
For each norm || · || on V , there is a unique ellipsoid E of maximal
volume that is contained in the unit ball K of V (see for instance
[Ami86] or [Tho96]). This ellipsoid (called the Löwner ellipsoid) defines
a scalar product on V . Hence we have defined an assignment (V,K) →
(V,E) that assigns to a norm on V a scalar product on V . We will
denote this Euclidean space arising from a normed space V by V e.
The following easy observation is probably well known. Since we could
not find a precise reference,we include a short proof:

Lemma 6.4. If a finite dimensional normed vector space V is a direct
product V = V1×V2 of its subspaces V1, V2 then we have V e = V e

1 ×V e
2 ,

i.e. V1 and V2 are orthogonal in the Euclidean space V e.

Proof. Let K be the unit ball of V and let E be the ellipsoid in K of
maximal volume. Denote by Ei the projection of E to Vi with respect
to the decomposition V = V1 ⊕ V2. Set Ẽ := (E1 × E2) ∩ K. By
construction we have E ⊂ Ẽ ⊂ K. On the other hand, E1 and E2

are ellipsoids in Vi and x = (x1, x2) ∈ E1 × E2 is in K if and only if
||x1||2 + ||x2||2 ≤ 1, since V is the direct product of V1 and V2. This
shows that Ẽ is the unit ball of the scalar product on V , such that V1

and V2 are orthogonal with respect to this product and such that Ei is
the intersection of the unit ball of this scalar product with Vi.
By maximality of E we have E = Ẽ and we are done. ¤

6.3. General case. Let now V be a finite dimensional normed vector
space. Let C be a (linearly) convex subset of V with 0 ∈ C. Assume
that C is decomposed as a direct product C = C1 × C2. Identify Ci

with the Ci-fiber through 0. Then Ci is again linearly convex and the
assumption C = C1 × C2 is equivalent to the statement that C is a
direct sum C = C1 ⊕ C2 and that for all ci ∈ Ci we have ||c1 + c2|| =
√

||c1||2 + ||c2||2.
We claim that H(C) = H(C1) × H(C2). To see this, one can add
a translation and assume that 0 is an inner point of C in H(C). In

this case, we deduce ||c1 + c2|| =
√

||c1||2 + ||c2||2 for all ci in a small
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neighborhood of 0 in Ci. By homogeneity of the norm we deduce
||v1 + v2|| =

√

||v1||2 + ||v2||2 for all vi ∈ H(Ci).
Without loss of generality we will assume V = H(C). From Lemma 6.4
we deduce that if one replaces H(C) = V by V e, i.e. if one equips V
with the canonical scalar product defined in the previous subsection
and considers C with the new metric coming from V e, then we still
have C = C1 × C2. Observe finally, that the projections P Ci : C → Ci

remain unchanged under this procedure since they are defined in purely
linear terms.
These observations together with Lemma 6.2 show that each finite di-
mensional affine metric space has the property O, as defined in Section
5. From Lemma 5.1 and Lemma 5.2 we deduce:

Corollary 6.5. Let X be a geodesic metric space of finite affine rank.
If Y × Ȳ = X = Z × Z̄ are two decompositions of X, then for each
point x ∈ X the intersection Yx ∩ Zx is a direct factor of Zx.

This reduction of the general affine case to the Euclidean one and
Lemma 6.3 imply the following:

Corollary 6.6. Let C be an affine metric space with two decomposi-
tions C = A× Ā = B × B̄. If B ∩A = B ∩ Ā = 0 then B = L(B), i.e.
B is a Banach space.

7. Reduction

Now we are in position to reduce Theorem 1.1 to Corollary 1.2.
Observe that each metric space has non-negative affine rank and each
space that contains at least one non-constant geodesic has rank ≥ 1.
Hence the affine rank of each geodesic metric space with at least two
points is at least 1. Due to Corollary 4.2, each geodesic metric space
of finite affine rank m can have a decomposition in at most m non-
trivial factors. Therefore each such space has a decomposition X =
Y1 × Y2 × ... × Yl with irreducible factors Yi. Rearranging the factors
and taking together all factors that are isometric to R, we get at least
one decomposition as required in Theorem 1.1.
It remains to prove the uniqueness. We proceed by induction on the
affine rank m. The case m = 1 is clear, since in this case the space
X is irreducible. We assume that the uniqueness holds true for all
m′ ≤ m. Take a space X of affine rank m and consider a decomposition
X = Y0×Y1×...×Yn such that Y0 is a Euclidean space and such that the
Yi are irreducible spaces of positive rank that are non-isometric to R,
for all i ≥ 1. Let X = Z0×Z1× ...×Zk be another such decomposition.
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We may assume that X is not a Euclidean space and not irreducible,
since the result is clear in these cases.
Fix a point x ∈ X. First, assume (Zj)x = (Yi)x for some i, j ≥ 1.
Renumerating we may assume i = j = 1. Then (Y0×Y2×Y3×...×Yk)x =
(Z0 × Z2 × Z3 × ... × Zl)x ⊂ X, since this is the subset of all points x̄
of X with d(x̄, (Z1)x) = d(x̄, (Y1)x) = d(x̄, x).
Applying our inductive assumption to the space (Y0×Y2× ...×Yk)x we
deduce that k = l and that after a renumeration we have (Yi)x = (Zi)x

for all i. From the equality of slopes (Subsection 4.2) we deduce that
(Yi)x̄ = (Zi)x̄ for all 0 ≤ i ≤ k and all x̄ ∈ X.
From Corollary 6.5 and the irreducibility of the Yi for i ≥ 1 we know
that for all 0 ≤ i, j ≤ k we either have (Yi)x ∩ (Zj)x = {x} or (Yi)x =
(Zj)x.
Assume now that the intersection Gx = (Y0)x ∩ (Z0)x contains more
than one point. Then Gx is a Euclidean space and a direct factor of
(Y0)x and of (Z0)x, due to Corollary 6.5. Write Y0 as G× Ỹ0 and Z0 as
G×Z̃0. Then we have (Ỹ0×Y1×Y2×...×Yn)x = (Z̃0×Z1×...×Zk)x. By
our inductive assumption, we deduce (Yi)x = (Zj)x for some i, j ≥ 1.
The argument above shows that the decompositions X = Y0 × ... × Yn

and X = Z0 × ... × Zk coincide up to a reindexing.
Taking both observations together we may assume that (Yi)x∩ (Zj)x =
{x} for all 0 ≤ i ≤ n, 0 ≤ j ≤ k.
Under this assumptions we set Y = Yn, Ȳ = Y0 × Y1 × ... × Yn−1,
Z = Zk and Z̄ = Z0 ×Z1 × ...×Zk−1 and consider the decompositions
Y × Ȳ = X = Z × Z̄.
By assumption we have Yx ∩ Zx = {x}. If Fx = Ȳx ∩ Z̄x has more
than one point, then Fx is a non-trivial factor of Ȳx and of Z̄x, due
to Corollary 6.5. Take an irreducible factor G of Fx. Applying the
inductive assumption to Z̄ and to Ȳ , we deduce that either Gx =
(Yi)x = (Zj)x for some i, j ≥ 1, or that G is a Euclidean line and
that Gx ⊂ (Y0)x ∩ (Z0)x. Both conclusions contradict our assumption.
Therefore Z̄x ∩ Ȳx = {x}.
In the same way we deduce Yx ∩ Z̄x = Ȳx ∩ Zx = {x}. Therefore
the decompositions Y × Ȳ = X = Z × Z̄ satisfy the assumptions
of Corollary 1.2. From Corollary 1.2 (that we will prove in the next
section) we deduce that X is a Euclidean space which is in contradiction
with our assumption.
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8. Euclidean rigidity

We are going to prove Corollary 1.2 in this section. Thus let Y × Ȳ =
X = Z× Z̄ be two decompositions of a geodesic space X of finite affine
rank such that Yx ∩ Zx = Yx ∩ Z̄x = Ȳx ∩ Zx = Ȳx ∩ Z̄x = {x}.
8.1. Reduction to Banach spaces. We claim that X is a Banach
space. Indeed, let C be a maximal affine subset of X that contains
the point x. Due to Corollary 4.1, the subset C is rectangular. Hence
A× Ā = C = B × B̄, where A = P Y (C), Ā = P Ȳ (C), B = P Z(C) and
B̄ = P Z̄(C). Since Ax ∩ Bx = Ax ∩ B̄x = Āx ∩ B̄x = Āx ∩ Bx = {x},
we deduce from Corollary 6.6 that B and B̄, and therefore also C, are
Banach spaces.
We may assume that x is the origin of the Banach space C and identify
A, Ā, B, B̄ with their fibers through x = 0. From the transversality of
the decompositions we deduce that dim(A) = dim(Ā) = dim(B) =
dim(B̄). Since the projection of A to B is injective it is also surjec-
tive, i.e. P Z(Ax) = Bx. Similarly P Ȳ (Bx) = Āx. Therefore, each
rectangular subset C0 of X that contains Ax must contain C.
We claim Āx = Ȳx. Take an arbitrary point z ∈ Ȳx. Connect x and z
by a geodesic γ. Then C̃ = A × P Ȳ (γ) ⊂ X is an affine space. Take a
maximal affine subset C0 of X that contains C̃. Then C0 is rectangular
(by Corollary 4.1) and contains Ax. Therefore C0 contains C and by
maximality of C we have C0 = C. Therefore, z ∈ C ∩ Ȳx = Āx. In the
same way we see Ax = Yx. Hence C = X.

8.2. Strategy. Thus we may assume that X is a finite dimensional
Banach space. It remains to prove the following claim:

Claim 8.1. Let C be a Banach space of finite dimension. If C has
two decompositions as a direct product A × Ā = C = B × B̄ such that
A ∩ B = A ∩ B̄ = Ā ∩ B = Ā ∩ B̄ = {0} then C is a Euclidean space.

We are going to prove the claim in the following manner. If B and A
enclose a unique angle, i.e. if each line of B has the same slope with
respect to A, then the relation between the both decompositions in-
duce an easy condition on the norm, that turns out to be equivalent to
the parallelogram equality (Subsection 8.3). For the general case, we
prove in the remaining part of this section that there is a rectangular
subspace L of C that is as non-Euclidean as C and such that its de-
compositions “enclose a unique angle”. This subspace L is constructed
as the projection of some extremal subsets in the product space C2,
the extremality being described as the maximal possible violation of
the parallelogram equality.
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Before we embark on the proof, note that a subspace V of a Banach
space C is rectangular with respect to a decomposition C = C1 × C2

if and only if V = V ∩ C1 + V ∩ C2. This implies that V + W is
rectangular with respect to the decomposition C = C1 × C2 if V and
W are rectangular.

8.3. Projections and their compositions. Let C be decomposed
as above. Consider the bijective linear projections P A : B → A and
PB : A → B, and let Q := P A ◦ PB : A → A be their composition.

Lemma 8.2. Under the above assumptions Q has an eigenvector.

Proof. Let x ∈ A be arbitrary. The vectors P B(x) and P B̄(x) span
a two-dimensional Euclidean subspace F of C that contains x. If
we denote by α the angle between x and P B(x) then by definition
||PB(x)|| = cos(α)||x||. On the other hand, the projection x̄ of P B(x)
to the line spanned by x in F satisfies ||x̄|| = ||P B(x)|| cos(α). This

implies ||P B(x)||
||x|| ≤ ||P A(P B(x))||

||P B(x)|| and equality holds if and only if x is an

eigenvector of Q.

Similarly, we have ||P A(x̄)||
||x̄|| ≤ ||P B(P A(x̄))||

||P A(x̄)|| for all x̄ ∈ B. Thus, taking a

point x in the unit sphere of A such that ||P B(x)||
||x|| is maximal, we deduce

that x must be an eigenvector of Q. ¤

Note that if some a ∈ A satisfies Q(a) = λa, then for b = P B(a) we
have (P B ◦ PA)(b) = λb. Moreover, we have P A ◦ P B̄(a) = (1 − λ)a.
This shows that if a ∈ A is an eigenvector of Q, then P B(a) and
P B̄(a) generate a two-dimensional Euclidean subspace F of C that is
rectangular with respect to both decompositions of C. Making the
computations in the Euclidean space F , one concludes that 0 < λ < 1
and that ||P B(a)|| =

√
λ||a|| holds.

Lemma 8.3. Under the above assumptions let in addition Q be a mul-
tiple of the identity: Q = λIdA. Then C is Euclidean.

Proof. We have seen that in this case P Ā ◦PB = (1−λ)IdĀ. Moreover,

PA : C → A satisfies ||P B(a)|| =
√

λ||a|| for all a ∈ A. In the same
way, ||P Ā(b)|| =

√
1 − λ||b|| for all b ∈ B.

Consider the map I : A → Ā given by I(a) = 1√
λ(1−λ)

(P Ā ◦ PB)(a).

Then I is an isometry. Identify A and Ā via this isometry. Then the
space C is identified with A2 = A × A and the subspaces B and B̄ of
C are given as B = {(x, sx)|x ∈ A} and B̄ = {(−sx, x)|x ∈ A}, where

with s =
√

1−λ
λ

.
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The assumption A2 = C = B×B̄ now reads as ||(x, sx)||2+||(−sy, y)||2 =
||(x− sy, sx + y)||2, for all x, y ∈ A. Thus we have (1 + s2)||x||2 + (1 +
s2)||y||2) = ||x − sy||2 + ||sx + y||2 for all x, y ∈ A.
For s = 1 this is just the usual parallelogram equality which implies
that A is Euclidean. For general s 6= 0 it is shown in [Car62] (compare
also [Ami86], 1.16) that this equality also implies that A is Euclidean.
Since C = A × A, the conclusion follows. ¤

8.4. Projections and squares. Let a Banach space C be decomposed
as C = A × Ā. Consider the Banach space C2 = C × C and its
decomposition C2 = A2 × Ā2. Let L be a subspace of C2 that is
rectangular with respect to this decomposition. Then for each point
(v, w) ∈ L ⊂ C2 there are unique points (v1, w1) ∈ L∩A2 and (v2, w2) ∈
L∩Ā2 such that (v, w) = (v1, w1)+(v2, w2) = (v1+v2, w1+w2). Denote
by V and W the projection of L ⊂ C2 onto the first and the second
C-factor, respectively (i.e. V is the set of all v ∈ C, such that for some
w ∈ C, the point (v, w) ∈ C2 is contained in L). Then V,W ⊂ C
satisfy V = V ∩A + V ∩ Ā and W = W ∩A + W ∩ Ā. Therefore, V,W
and V + W are rectangular subspaces with respect to C = A × Ā.
Assume now that C has two transversal decompositions A× Ā = C =
B×B̄ as above. Consider the corresponding decompositions A2×Ā2 =
C2 = B2 × B̄2 and let L ⊂ C2 be a subspace that is rectangular with
respect to both decompositions. Let V (W , resp.) be the projection of
L onto the first (the second, resp.) C-factor of C2 = C × C.

Consider the orthogonal projections P A2

: B2 → A2 and PB2

: A2 →
B2 and the composition Q̃ = PA2 ◦ PB2

.
In the same way define QV : V ∩A → V ∩A and QW : W ∩A → W ∩A.
From the definition we conclude that the equality Q̃ = λIdL∩A2 for
some λ ∈ R implies that QV = λIdV ∩A and QW = λIdW∩A.
In this case we see that (V + W ) ∩ A is contained in the λ-eigenspace
of PA ◦ PB : A → A. From Lemma 8.3 we deduce that V + W is a
Euclidean space.

8.5. Extremal points. Recall that a Banach space C satisfies the
parallelogram inequality ||x + y||2 + ||x− y||2 ≤ 2(||x||2 + ||y||2) for all
x, y ∈ C if and only if C is Euclidean. In this case the above inequality
is in fact an equality for all pairs (x, y) ∈ C2.
We may reformulate this condition as follows. Consider the Banach
space C2 with the product norm and the linear map D : C2 → C2

defined by D((x, y)) = 1√
2
(x + y, x − y) for all x, y ∈ C. Then C is a

Euclidean space if and only if the bijection D has norm 1. In this case
D is in fact an isometry.
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We define M(C) to be the norm of the linear map D and we denote by
E(C) the set of all v ∈ C2 for which ||D(v)|| = M(C)||v|| holds. By
definition λv is contained in E(C) for all v ∈ E(C) and all λ ∈ R.
Let now C be decomposed as C = A× Ā and consider the induced de-
composition C2 = A2× Ā2. The subsets A2 and Ā2 are invariant under
the map D defined above. Therefore for arbitrary v ∈ A2 and w ∈ Ā2,
we get ||D(v + w)||2 = ||D(v) + D(w)||2 = ||D(v)||2 + ||D(w)||2 ≤
M(C)||v||2 + M(C)||w||2 = M(C)||v + w||2. Moreover, equality holds
if and only if v and w are contained in E(C).
This shows that the subset E(C) of C2 is rectangular with respect to
the decomposition C2 = A2 × Ā2.

8.6. Extremal subspaces. Now we are in position to finish the proof
of Claim 8.1. Thus let A × Ā = C = B × B̄ be two transversal
decompositions. Let M(C) ∈ R

+ and E(C) ⊂ C2 be defined as in the
last subsection.
Choose a largest linear subspace L0 of C2 that is contained in E(C).
By definition E(C) contains at least one line, hence dim(L0) 6= 0. Since
E(C) is rectangular with respect to the decompositions C2 = A2 × Ā2

and C2 = B × B̄2, the largest subspace L0 of E(C) is rectangular with
respect to these decompositions as well.
Denote by Q̃ : L0 ∩ A2 → L0 ∩ A2 the composition of projections
Q̃ = PA2 ◦PB2

. Due to Lemma 8.2 there is an eigenvector v of Q̃. Then
the two-dimensional subspace L of L0 that is generated by P B2

(v) and

P B̄2

(v) is rectangular with respect to the decompositions A2 × Ā2 =
C2 = B2 × B̄2.
Since L ∩ A2 is one-dimensional, the restriction of Q̃ to L ∩ A2 is a
multiple of the identity. As in Subsection 8.4, denote by V and W
the projections of L ⊂ C × C onto the first and the second C-factor,
respectively. Finally, set C̃ = V + W . In Subsection 8.4 we have seen
that C̃ is a Euclidean space.
On the other hand, L 6= {0}, hence either V or W are not {0}. Without
loss of generality assume V 6= {0} and choose some v ∈ V , v 6= 0. By
construction there is some w ∈ W with (v, w) ∈ L ⊂ E(C). Hence
||D((v, w))|| = E(C)||(v, w)|| and, since (v, w) ∈ C̃2 ⊂ C2 we deduce
that E(C) = E(C̃). But C̃ is Euclidean, hence E(C̃) = 1. Thus
E(C) = 1 and C is a Euclidean space.
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