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ON HÖLDER CONTINUOUS RIEMANNIAN
AND FINSLER METRICS

ALEXANDER LYTCHAK AND ASLI YAMAN

Abstract. We discuss smoothness of geodesics in Riemannian and Finsler
metrics.

1. Introduction

In this paper we improve and generalize a result of Calabi and Hartmann in
[CH70]. They study smoothness of isometries between equal-dimensional manifolds
with α-Hölder continuous Riemannian metrics and prove that each isometry is of
class C1,α. The main tool in the proof is Theorem 3.1 of [CH70], stating that
geodesics in α-Hölder Riemannian metrics are uniformly C1,α, but the proof of this
theorem is not correct. Although the result on the smoothness of isometries is true,
as Taylor has shown by a different method in [Tay], Theorem 3.1 is wrong for α < 1.

Indeed one of our results is the following:

Theorem 1.1. For each 0 < α ≤ 1 set β = α
2−α . There is an α-Hölder Riemannian

metric on R
2, such that geodesics near the origin are not uniformly C1,l for any

l > β.

Actually it seems to be possible but technically not trivial to construct an α-
Hölder continuous Riemannian metric for which some geodesic γ is not C1,l for all
l > β. This would show that there are manifolds (of different dimensions) with
α-Hölder Riemannian metrics and a distance-preserving embedding of one of them
into another that is at best C1,β , in contrast to the C1,α smoothness of isometries
shown by Taylor.

Remark 1.1. If α goes to 1, then the regularity of geodesics is almost C1,α, whereas
if α goes to 0, one only gets a bit more than half of the expected regularity!

In contrast to this result the first author proved in [Lyt] that geodesics in C1,α

submanifolds of smooth Riemannian manifolds are uniformly C1,α. This gives us
the following non-embeddability result:

Corollary 1.2. For 0 < α < 1 and β = α
2−α there are α-Hölder continuous Rie-

mannian metrics that (even locally) do not admit C1,l arcwise isometric embeddings
into any smooth Riemannian manifold, for any l > β.
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This result should be compared to the theorems of Nash, stating that each man-
ifold with a continuous Riemannian metric has a C1 arcwise isometric embedding
into some R

n and that for k ≥ 3 each Riemannian manifold with a Ck-Riemannian
metric has a Ck arcwise isometric embedding into some Euclidean space.

Remark 1.2. For α = 1 a statement similiar to Corollary 1.2 still holds, but for
another reason. Namely, it is shown in [Lyt] that each C1,1 submanifold of a smooth
Riemannian manifold has curvature bounded from both sides with respect to the
inner metric, whereas it is certainly not true even for a general Riemannian metric
of class C1,l, for any fixed l < 1.

The proof of Theorem 3.1 in [CH70] only shows that geodesics in α-Hölder Rie-
mannian metrics are uniformly C1, α

2 . We repeat their argument and generalize this
result to sufficiently convex Finsler metrics (see Definition 2.3 and Definition 3.1
for precise definitions):

Theorem 1.3. Let (M, | · |) be a manifold with an α-Hölder Finsler structure | · |,
such that the norms | · |x are locally uniformly of convexity type p. Then geodesics
with respect to the Finsler metric in M are locally uniformly C1, α

p .

Exactly as in the last part of [CH70], Theorem 1.3 implies that every distance-
preserving embedding between two manifolds as in Theorem 1.3 is C1, α

p .
Finally we prove the main result of this paper, showing that Theorem 1.1 is

optimal:

Theorem 1.4. Let (M, 〈·, ·〉x) be a manifold with an α-Hölder Riemannian metric.
Then geodesics in M are locally uniformly C1,β for β = α

2−α .

After recalling some basic facts about C1,α maps, we study curves in a manifold
M with a Finsler structure and compare the lengths of curves to their lengths
measured in some tangent space. Using these estimations we prove Theorem 1.3
and Theorem 1.4. The main idea is that a curve γ : [a, b] → M that is not C1,l

admits for arbitrary A > 0 arbitrary closed points t, s ∈ [a, b] such that γ( t+s
2 )

is at least A||t − s||l far away from the straight line η connecting γ(t) and γ(s).
Considering a Banach space metric on M induced by a norm | · |x for each x, we
see from the fact that the norms are sufficiently convex, that the length of γ is
much bigger than the length of η with respect to this norm. Now using the fact
that the lengths of η and γ with respect to this norm do not differ too much from
their actual lengths in M , one gets a contradiction if γ is a geodesic. The idea of
Hartman and Calabi, in order to prove Theorem 1.3, was to compute the lengths
of η and γ relative to a tangent space at the fixed point γ(t0). A better estimation
providing Theorem 1.4 is achieved by comparing at each t the quantities |γ′(t)|γ(t)

and |η′(t)|η(t).
After preliminaries in Section 2, in Section 3 we study Hölder continuous Finsler

structures, discuss examples and basics of the structure and recall the comparisons
of Calabi and Hartmann of lengths of curves measured in M , with their lengths
with respect to the constant Finsler structure | · |x = | · |x0 . In Section 4 we prove
Theorem 1.3 and Theorem 1.4. Finally in Section 5 we prove Theorem 1.1 by giving
a counterexample to the result of Calabi and Hartman.

We are grateful to Werner Ballmann and Juan Souto for helpful suggestions. We
are indebted to Reiner Schätzle for indicating a mistake in the previous version of
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our counterexample. We are also thankful to Jonathan Wahl for bringing the work
of Michael Taylor to our attention.

2. Preliminaries

Let us start with some basic conventions that shall be followed throughout this
work. A geodesic in a metric space X is an arclength parametrised curve γ : [a, b] →
X satisfying d(γ(a), γ(b)) = b − a. By || · || we will denote the Euclidean norm in
Euclidean spaces. Given a Ct manifold M a chart is a Ct diffeomorphism which
sends an open subset of R

n onto an open subset of M . We shall always omit the
neighbourhood in M and identify a chart with its image in R

n.

2.1. Hölder maps. A map f : (M, d1) → (N, d2) between metric spaces M and N
is (C, α)-Hölder, for C > 0, 1 ≥ α > 0, if for all x, z ∈ X one has d2(f(x), f(z)) ≤
Cd1(x − z)α. The map is called locally α-Hölder if M is covered by open subsets
Uj , such that each restriction f : Uj → N is (Cj , α)-Hölder for some Cj = C(Uj).

Let M and N be locally compact spaces. Let F be a family of maps fa : Da → N
defined on subsets Da of M . For subsets X ⊂ M and Y ⊂ N denote by FX,Y the
subfamily of all maps f ∈ F satisfying fa(X ∩ Da) ⊂ Y .

Definition 2.1. We will say that the family F is locally uniformly α-Hölder, if for
all compact subsets X ⊂ M and Y ⊂ N there is a positive C = C(X, Y ) > 0, such
that the restriction fa : (Da ∩ X) → Y is (C, α)-Hölder for all fa ∈ FX,Y .

Since M and N are by definition locally compact, the family F is locally uni-
formly α-Hölder if and only if the condition of Definition 2.1 is satisfied for all open
relatively compact subsets X = Uj and Y = Vi of a covering Uj of M , resp. Vi of
N .

2.2. C1,α-maps. A map f : U → R
m defined on an open subset U of R

n is locally
C1,α if it is C1 and its differential Df : U → L(Rn, Rm) is locally α-Hölder where
1 ≥ α > 0.

The following lemma is in fact a consequence of a more general Lemma 2.2.
However we state the lemma and give a proof for later reference in the case of
curves.

Lemma 2.1. Let γ : [a, b] → R
n be a C1 curve with ||γ′(t)−γ′(s)|| ≤ C||s− t||α for

all s, t ∈ (a, b). Then for all r with a < r < b we have ||γ′(r)||b−a||−(γ(b)−γ(a))|| ≤
C||b − a||1+α.

Proof. We have γ(b)−γ(a) =
∫ b

a
γ′(x)dx =

∫ b

a
γ′(r)dx+

∫ b

a
(γ′(x)−γ′(r))dx. Using

||γ′(x) − γ′(r)|| ≤ C||b − a||α we obtain the result. �

In particular this shows that under the conditions of Lemma 2.1 the distance
between γ(r) and the affine line through γ(a) and γ(b) is at most C|b − a|1+α.

Definition 2.2. A family F of maps fa : Ua → R
m defined on open subsets Ua

of R
n is called locally uniformly C1,α if the family is locally uniformly Lipschitz

and the family F̃ of differentials f̃a = (fa, Dfa) : Ua → R
m × L(Rn, Rm) is locally

uniformly α-Hölder.

We will need the following characterisation of locally uniformly C1,α families.
That result is given as Lemma 2.1 in [CH70].
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Lemma 2.2. A family F of locally uniformly Lipschitz maps fa : Ua → R
m defined

on open subsets Ua of R
n is locally uniformly C1,α, if for each ball B ⊂ R

m, one
can cover Ua by open subsets Oj, such that for each f ∈ FOj ,B, all x ∈ Oj and all
h ∈ Rn such that x+h and x−h are in Oj, one has ||f(x+h)+f(x−h)−2f(x)|| ≤
C||h||1+α for some constant C = C(Oj).

Since the composition of C1,α maps is again C1,α, the notion of a C1,α manifold
is well defined. Moreover one can speak about locally uniformly C1,α families of
maps between two C1,α manifolds.

2.3. Norms of convexity type p. Let (V, | · |) be a (finite-dimensional) normed
vector space. Recall that the modulus of convexity δ = δ|·| of the norm is defined
by

δ(ε) = inf
{

1 − |v + w|
2

| |v|, |w| ≤ 1, |v − w| ≥ ε

}
.

(See [LT79], pp. 59 - 66, for further discussion on this.)

Definition 2.3. Let κ > 0, p ≥ 2 be given. We will say that the norm | · | is
κ-convex of type p, if δ(ε) ≥ κεp for all ε < κ.

Remark 2.1. Informally speaking, the above definition means that V is at least as
convex as the Lebesgue space Lp (see [LT79] p. 63).

Example 2.2. If (V, | · |) is a κ-convex space of type p, then the same holds for
each subspace of V . On the other hand (V, | · |) is κ-convex of type p if this is true
for each two-dimensional subspace W of V .

Example 2.3. The Euclidean space is κ-convex of type 2 with κ = 1
10 . More

generally, the statement that the norm on V is κ-convex of type 2 is equivalent to
the fact that the second fundamental form of the unit sphere S of V is bounded
below by a constant ε = ε(κ) > 0.

We can now reformulate the definition in a way we will use it:

Lemma 2.3. Let the norm | · | on the vector space V be κ-convex of type p. Let
K, α > 0. Then there are positive ε = ε(κ, K, α) and λ = λ(κ, K, α) such that
for all numbers h with h ≤ ε and all v, w ∈ V with |v|, |w| ≤ h + Kh1+α and
|v + w| ≥ 2h − Kh1+α, one has |v − w| ≤ λh1+ α

p .

Proof. First we note that if | · | is κ-convex of type p, then for all H ≤ κp+1 = ε′

and for all |v0|, |w0| ≤ 1 the inequality 2− |v0 + w0| ≤ H implies |v0 −w0| ≤ λ′H
1
p

where λ′ = κ− 1
p .

Now consider v0 = v
h+Kh1+α and w0 = w

h+Kh1+α . Then |v0|, |w0| ≤ 1 and
2 − |v0 + w0| ≤ 3Khα. Thus for h with 3Khα ≤ ε′ the above remark implies that
|v0 − w0| ≤ λ′(3Khα)

1
p = ( 3K

κ )
1
p h

α
p . Thus by setting ε = ( ε′

3K )
1
α and λ = ( 3K

κ )
1
p ,

we have the result. �

3. Finsler structures

3.1. Definition and examples. A Finsler structure on a C1-manifold M is a con-
tinuous map | · | : TM → [0,∞) on the tangent bundle TM such that for all
x ∈ M the restriction | · |x : TxM → [0,∞) is a norm. Given a Finsler structure
one can speak about lengths of locally Lipschitz curves γ : [a, b] → M given by
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L(γ) =
∫ b

a
|γ′(t)|γ(t)dt. This defines as usual a length metric d on M which is

called the Finsler metric. Remark that the Finsler metrics defined by two differ-
ent Finsler structures are locally bi-Lipschitz equivalent. In particular the Finsler
metric defines the usual locally compact topology on M . Thus by the theorem of
Arzela-Ascoli M is covered by open sets Uj , such that each two points x, z ∈ Uj

are connected in M by a geodesic.

Definition 3.1. A Finsler structure | · | on a manifold M is locally uniformly of
type p, if for each compact subset X of M there is a constant κ = κ(X) > 0 such
that, for each x ∈ X, the norm | · |x is κ-convex of type p.

For an immersion φ : N → M the Finsler structure on M defines a Finsler
structure on N through |v|x = |Dxφ(v)|φ(x). In particular we get a Finsler structure
on each C1-submanifold of M and on each chart U ⊂ R

n of M .
On an open subset U of R

n with a Finsler structure |·| we consider the function õ :
U ×U → R

+ given by õ(x, y) = sup||v||≤1 |||v|x −|v|y||. Recall that || · || denotes the
Euclidean norm. The function õ is continuous and vanishes on the diagonal. Hence
on each relatively compact open subset V of U the function oV (r) = sup{õ(x, y) |
x, y ∈ V, ||x − y|| ≤ r} is finite, continuous, non-decreasing and satisfies oV (0) = 0.
Moreover, since V is relatively compact, we can find a constant C > 0 such that
1
C |v|x ≤ ||v|| ≤ C|v|x for all v ∈ R

n and all x ∈ V .
Let W be an open subset of R

m and let φ : W → V be an immersion, satisfying
||φ(x) − φ(y)|| ≤ L||x − y|| for some constant L ≤ 0. Consider the quantity u(r) =
sup||v||≤1,||x−y||≤r ||Dxφ(v) − Dyφ(v)||. Then for the induced Finsler structure on
W it is easily checked that oW (r) ≤ LoV (Lr) + C · u(r).

Hence if for all r we have oV (r) ≤ Crα for some C ≥ 0 and 1 ≥ α > 0, and if
the map φ is C1,α, we obtain oW (r) ≤ C ′rα for some C ′ ≥ 0. Hence the following
definition is meaningful.

Definition 3.2. A Finsler structure on a C1,α-manifold M is called a Cα-Finsler
structure if for each chart U and for each relatively compact open subset V of U
one has oV (r) ≤ Crα for all r ≥ 0 and some constant C = C(V ).

In other words, for all v ∈ R
n with ||v|| ≤ 1 and for all x, y in a relatively compact

set V of U , one has || |v|x − |v|y|| ≤ C||x − y||α for some constant C = C(V ).
From the considerations above the following is clear.

Example 3.1. Let M be a C1,α manifold with a Cα Finsler structure. If φ : N → M
is a C1,α immersion, then the induced Finsler structure on N is Cα. In particular
each C1,α submanifold of M inherits a Cα Finsler structure.

The next example is immediately checked in a fixed chart.

Example 3.2. Let M be a C1,α manifold with a Cα Finsler structure. Then for
a locally α-Hölder function f : M → R+ the Finsler structure | · |′ := f | · | on M
given by |v|′x = f(x)|v|x is again Cα.

The last example is probably the most interesting one.

Example 3.3. Let M1, M2 be two manifolds with boundaries N1, N2. Let g1

resp. g2 be Riemannian metrics on M1 and on M2. Assume that there is a C1,α

diffeomorphism φ : N1 → N2 with φ∗(g2) = g1. Consider the manifold M that
arises from gluing M1 and M2 along the identifications of their boundaries given
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2922 ALEXANDER LYTCHAK AND ASLI YAMAN

by the isometry φ. The manifold M is C1,α, and the Riemannian metric g that
coincides with g1 on M1 and with g2 on M2 is Cα. It is interesting to note that
even if M, N1, N2 and φ are smooth, the resulting metric g is not better than
Lipschitz. It can be smooth only in very special cases. Usually it does not even
have locally one-sided curvature bounds (compare [Kos02b] and [Kos02a]).

3.2. Comparison to the tangent spaces. Since all our results are of local nature
we will restrict ourselves for the rest of the section to a chart U ⊂ R

n, that is, a
convex subset of R

n. So let | · | be a continuous Finsler structure on U . We
can assume (considering a relatively compact subset of U instead of U) that the
function oU (r) = o(r) as defined above is finite and bounded above by C1 > 2 for
all r. Moreover, for all x ∈ U we have 1

C2
|| · || ≤ | · |x ≤ C2|| · || for some constant

C2 ≥ 2. Hence for the Finsler metric d and all x, y ∈ U one has 1
C2

d(x, y) ≤
||x − y|| ≤ C2d(x, y).

For a Lipschitz curve γ : [a, b] → U we will denote its Euclidean length by Lε(γ).
For each x ∈ U we denote by Lx(γ) the length of γ in the normed space (Rn, | · |x),
i.e. Lx(γ) =

∫ b

a
|γ′(t)|xdt. We will refer to this length as the length relative to x.

From our assumptions on U we see that 1
C2

Lε(γ) ≤ L(γ) ≤ C2Lε(γ).
The following lemma allows us to control the relative lengths of curves in terms

of their actual lengths.

Lemma 3.1. Let γ : [0, s] → U be a Lipschitz curve starting at x = γ(0). Then we
have ||L(γ) − Lx(γ)|| ≤ o(Lε(γ))Lε(γ).

Proof. We may assume that γ is parametrized by the Euclidean length. Then
L(γ) =

∫ s

0
|γ′(t)|γ(t)dt = Lx(γ) +

∫ s

0
(|γ′(t)|γ(t) − |γ′(t)|x)dt.

However, by definition we get || |γ′(t)|γ(t) − |γ′(t)|x || ≤ o(||x − γ(t)||). Since
||x − γ(t)|| ≤ t and the function o is non-decreasing, we get ||L(γ) − Lx(γ)|| ≤∫ s

0
o(t)dt ≤ o(s)s = o(Lε(γ))Lε(γ). �
Using the same argument of the proof of Lemma 3.1 one can also prove the

following lemma, which allows us to compare the relative lengths of a curve.

Lemma 3.2. Let γ : [0, s] → U be a Lipschitz curve. Then

Lx(γ) − Ly(γ) ≤ o(||x − y||)Lε(γ)

for all x, y ∈ U .

The following results are immediate applications of Lemma 3.1.

Corollary 3.3. For all x, y ∈ U one has ||d(x, y)− |x− y|x|| ≤ o(||x− y||)||x− y||,
where d denotes the Finsler metric.

In the case o(r) ≤ Crα, where C = C(U) is a constant depending only U and
1 ≥ α > 0, we obtain:

Corollary 3.4. If the Finsler structure on U is Cα, then ||L(γ) − Lx(γ)|| ≤
C ′L(γ)1+α and ||d(x, z) − |x − z|x|| ≤ C ′d(x, z)1+α for C ′ = C2

α+1C.

4. The smoothness of geodesics

Let M be a manifold with a Cα Finsler structure. We have already noted that
the statements are of local nature. Therefore from now on we fix a chart U on M
and assume that U is an open ball in R

n with a Cα Finsler structure. We denote
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by d the Finsler metric and by || · || the Euclidean metric on U , and | · |x denotes
the norm at point x induced from the Finsler structure. We assume that all the
constants introduced in Section 3.2 are the same. Thus let C > 2 be a constant,
such that for all x ∈ U we have 1

C || · || ≤ | · |x ≤ C|| · || and that the function
o satisfies o(r) = oU (r) ≤ Crα. We have 1

C d(x, y) ≤ ||x − y|| ≤ Cd(x, y) and
|| d(x, y)− |x− y|x|| ≤ ||x− y||1+α. Moreover, we assume that for all x, y in U and
for all Lipschitz curves γ in U starting at x one has ||Lx(γ) − L(γ)|| ≤ CLx(γ)1+α

and ||Lx(γ) − L(γ)|| ≤ CL(γ)1+α. Also || d(x, y) − |x − y|x|| ≤ Cd(x, y)1+α and
|| |x − y|x − |x − y|y|| ≤ C||x − y||1+α for all x, y ∈ U .

4.1. The estimations of Hartmann and Calabi and the proof of Theorem
1.3. Here we assume in addition to the above hypothesis that for each x ∈ U the
norm | · |x is κ-convex of type p. Let h < 1 be a small positive number and let
γ : [−h, h] → U be a geodesic. Set x = γ(−h), y = γ(0) and z = γ(h). Let
η : [−h, h] → U be the straight line between x and z parametrised proportional
to the Euclidean arc length and put m = η(0) = 1

2 (x + z). We will estimate the
distance |y − m|x.

Denote the geodesic sub-segment of γ connecting x and y by γ1. By Corollary
3.3 we have |x−y|x ≤ Lx(γ1) ≤ L(γ1)+CL(γ1)1+α ≤ h+Ch1+α. Similarly denote
γ([0, h]) by γ2. Thus |y−z|x ≤ |y−z|y +C||y−z|| ||x−y||α ≤ L(γ2)+CL(γ2)1+α +
C2d(y, z) (Cd(x, y))α ≤ h + (C + C3)h1+α. Moreover, we have |x− z|x ≥ d(x, z)−
Cd(x, z)1+α ≥ 2h − 4Ch1+α.

Finally, since | · | is κ-convex of type p, by applying Lemma 2.3 for K =
max{C + C3, 4C} we see that |y − m|x ≤ 2λh1+ α

p for all h ≤ ε, where λ = λ(K, κ)
and ε = ε(K, κ) are the constants given in Lemma 2.3. This means exactly that
||γ(−h) + γ(h) − 2γ(0)|| ≤ 2λh1+ α

p , and hence by Lemma 2.2 this implies Theo-
rem 1.3.

4.2. Better estimations and the proof of Theorem 1.4. Before we give the
proof of Theorem 1.4 we make two trivial remarks that are used in the following
arguments.

Remark 4.1. Let f : [a, b] → R be a positive continuous function. Then

||b − a||
∫ b

a

f2(t)dt ≥
(∫ b

a

f(t)dt

)2

.

Remark 4.2. There exists an ε (for example ε = 1
10 ) such that for all real numbers

x, a, b > 0 with ||1−x||+ ||a||+ ||b|| < ε one has
√

x + a − b ≥
√

x+ 1
3a− b. In fact

this follows directly from Taylor expansion of the square root function.

Let U be a chart with the properties as defined in the beginning of the section,
and assume in addition, that all tangent spaces (TxU, | · |x) are Euclidean spaces,
i.e. the norm | · |x stems from the a scalar product 〈·, ·〉x. Therefore the norm is
κ-convex of type 2 with κ ≥ 1

10 (see Example 2.2).
Again let h be a small number, γ : [−h, h] → U a geodesic, x = γ(−h), z = γ(h),

y = γ(0) and m = 1
2 (x + z). We may assume that m is the origin of R

n and that
the norm | · |0 is the Euclidean norm || · ||. Set e = z

||z|| and denote by P the
line generated by e. Let H be the orthogonal hyperplane to P . Remark that for
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each unit vector h ∈ H and all a ∈ U we have 〈e, h〉a = 1
4 (|e + h|2a − |e − h|2a) =

(|e+h|2a−|e+h|20)+(|e−h|20−|e−h|2a). Since ||v|x−|v|y| ≤ C||x−y||α+1 for all x, y
and v with ||v|| = 1, we obtain 〈e, h〉a ≤ 10C2(||e+h||+ ||e−h||)||a||α ≤ 10C2||a||α.

We decompose γ(t) as γ(t) = f(t)e + v(t), with v(t) ∈ H and f(t) ∈ R. By
Theorem 1.3 the geodesics are uniformly locally C1, α

2 . Therefore f and v are of
class C1 and by Lemma 2.1 choosing h small enough we may assume ||v′(t)|| ≤ ε
for arbitrary small ε > 0. Since |γ′(t)|γ(t) = 1 we see that f ′(t)|e|γ(t) ≥ 1 − ε.

Consider the straight line η : [−h, h] → U between x and z parametrised by
η(t) = f(t)e. We see that γ(t) = η(t) + v(t). Moreover, 1 − f ′(t)|e|γ(t) ≤ ε and
||v′(t)|| ≤ ε for arbitrary ε, and we can use Remark 4.2 to obtain

1 = |γ′(t)|γ(t) = (f ′(t)2|e|2γ(t) + |v′(t)|2γ(t) + 2f ′(t)〈e, v′(t)〉γ(t))
1
2

≥ f ′(t)|e|γ(t) +
1
3
(|v′(t)|2γ(t)) − 2|f ′(t)〈e, v′(t)〉γ(t)|

≥ f ′(t)|e|η(t) − C||v(t)||α +
1
C ′ ||v

′(t)||2 − C ′||v′(t)||(||γ(t)||)α,

where C ′ = max{C2

3 , 40C}.
Moreover L(γ) ≤ L(η) =

∫ h

−h
f ′(t)|e|η(t)dt, since γ is a geodesic. This, together

with the above inequality, implies

1
C ′

∫ h

−h

||v′(t)||2 ≤ C ′
∫ h

−h

(||v(t)||α + ||v′(t)|| ||γ(t)||α)dt.

Using ||γ(t)|| ≤ ||v(t)|| + 2||t|| and ||v′(t)|| ≤ 1, we see that
∫ h

−h
||v′(t)||2 ≤

1
2K(

∫ h

−h
(||v(t)||)α + ||v′(t)|| ||t||αdt), where K = 2C ′2. Thus one has either

(1)
∫ h

−h

||v′(t)||2dt ≤ K

∫ h

−h

(||v(t)||α)dt

or

(2)
∫ h

−h

||v′(t)||2dt ≤ K

∫ h

−h

||v′(t)|| ||t||αdt.

Consider the maximum v0 = max−h≤t≤h ||v(t)||. Since v(h) = v(−h) = 0,
we have v0 ≤

∫ h

−h
||v′(t)||dt. In case (2) we get from the Cauchy Schwartz in-

equality that
∫ h

−h
||v′(t)||2dt ≤ K(

∫ h

−h
||v′(t)||2dt)

1
2 (

∫ h

−h
||t||2αdt)

1
2 . This implies∫ h

−h
||v′(t)||2dt ≤ 2K2h2α+1, and using Remark 4.1 we obtain v0 ≤ 2K2hα+1.

In case (1), we obtain (
∫ h

−h
||v′(t)||dt)2 ≤ 2Kh

∫ h

−h
(||v(t)||α)dt ≤ 4Kh2vα

0 us-

ing Remark 4.1. Therefore v2
0 ≤ 4Kh2vα

0 . That implies v0 ≤ K ′h
2

2−α , where
K ′ = (4K)

1
2−α .

Since for β = α
2−α we have β < α and 2

2−α = 1 + β, for each t ∈ [−h, h] we
obtain: ||γ(t) − η(t)|| = C||v(t)|| ≤ Cv0 ≤ Ah1+β, for some A depending only on
C.

In order to apply Lemma 2.2 we have to show that ||γ(0) − m|| ≤ Lh1+β for
some constant L depending only on C. Since m is the origin we have ||γ(0) −
m|| ≤ ||γ(0) − η(0)|| + ||η(0)|| ≤ Ah1+β + ||f(0)e||. Thus we only have to show
||f(0)e|| ≤ Lh1+β for some fixed L.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
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Assume ||f(0)e|| ≥ Lh1+β with L ≥ 2C2. We may assume that f(0) < 0. We
have |x|x = |x − m|x ≤ h + Ch1+α. Thus |x − η(0)|x ≤ h + Ch1+α − |f(0)e|x ≤
h− L

2C h1+β . Then |x−γ(0)|x ≤ |x−η(0)|x+|η(0)−γ(0)|x ≤ h− L
2C h1+β +ACh1+β.

If L ≥ 4AC2 we get |x − η(0)|x ≤ h − L
4C h1+β. Using Corollary 3.4 we get a

contradiction to d(x, γ(0)) = h. Thus we have proved L ≤ 4AC2 and the proof of
Theorem 1.4 is finished.

5. The counterexample

Let 0 < α < 1 be fixed and set β = α
2−α . Consider in R

2 the graph Γ of the
function f : R → R given by f(t) = |t|1+β . Set ρ(x) = d(x, Γ) = miny∈Γ{||x − y||}.
Denote by g̃ the Euclidean metric and consider on R

2 the metric gx = (1+Aρ(x)α)g̃,
where A is a constant ≥ 100. This metric is α-Hölder, and it is locally Lipschitz
outside of Γ. At each point of Γ the new metric g coincides with the Euclidean
metric g̃. For t ∈ R denote by xt the point (t, f(t)) on Γ. We will prove that the
geodesics between x−t and xt cannot be uniformly C1,l for any l > β, i.e. we show
that geodesics between x−t and xt must be very close to Γ.

The length of the curve γt : [−t, t] → R
2 defined by γt(s) = (s, f(s)) = xs is

given by L(γt) = Le(γt) =
∫ t

−t

√
1 + (1 + β)2s2βds. Hence by Remark 4.2 and the

fact that β ≤ 1, we have for all sufficiently small t, L(γt) ≤
∫ t

−t
(1 + 2s2β)ds ≤

2t + 10t2β+1.
Now fix a small relatively compact neighbourhood U of 0 and assume that

geodesics in U are uniformly C1,l for some l > β. Let ηt : [−h, h] → R
2 be a geodesic

between x−t and xt. Hence for all s, r in [−t, t] we have ||η′
t(s)−η′

t(r)|| ≤ C||s−r||l,
where C is a constant depending only on U . By Lemma 2.1 we see that for each
r ∈ [−h, h] the distance between ηt(r) and the affine line between x−t and xt is at
most Ct1+l.

We reparametrise ηt by the first coordinate and denote the new curve by η̃t :
[−t, t] → R

2, where η̃t(s) = (s, yt(s)). From above we know yt(s) ≥ f(t)−Ctl+1 =
tβ+1(1 − Ctl−β). Since l > β for arbitrary ε > 0 and all t small enough, we get
yt(s) ≥ f(t)(1 − ε) ≥ 2

3f(t).
For each xr = (r, f(r)) ∈ Γ one has either |r| ≥ t

2 or f(r) ≤ t1+β

2 . Hence for each
s with |s| ≤ t

3 we get d(η̃t(s), Γ) ≥ 1
6 t1+β .

Now we can estimate the length of ηt by

L(ηt) = L(η̃t) ≥ Lε(η̃t) +
∫ t

−t

A(d(η̃t(r), Γ))αdr

≥ 2t + A

∫ t
3

− t
3

(
1
6
t1+β

)α

dr = 2t +
100
9

t1+α+αβ .

But by our assumption ηt is a geodesic, hence L(ηt) ≤ L(γt). We get 10t2β+1 ≥
100
9 t1+α+αβ . Since 1 + α + αβ = 1 + 2β, this is a contradiction.
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