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OPEN MAP THEOREM FOR METRIC SPACES

c© A. LYTCHAK

An open map theorem for metric spaces is proved and some applications
are discussed. The result on the existence of gradient flows of semiconcave

functions is generalized to a large class of spaces.

§1. Introduction

This paper is a continuation of [Lytb]. In [Lytb] we discussed the possibility
of differentiation of Lipschitz maps between metric spaces; here we prove
analogs of the usual submersion and immersion theorems from analysis. In
other words, we show that some properties of the infinitesimal portions of
a locally Lipschitz map imply the same properties for the map itself. We
formulate the theorems in a way not involving the concept of the differential.
However, the most interesting applications, such as those to the gradient flow
of a semiconcave function, require the existence of special tangent spaces and

differentials. As in [Lytb], we denote by f
(ti)
x : X

(ti)
x → Y

(ti)
f(x)

the blow up at

the scale (ti) of a Lipschitz function f : X → Y at the point x (see Subsection
2.8 for the definition). The immersion theorem cannot work everywhere (see
§10); however, it is valid at many points.

Proposition 1.1. Suppose f : X → Y is a locally Lipschitz map and X is
locally complete. Assume that, for some fixed ρ > 0, at each point x ∈ X

each blow up f
(ti)
x : X

(ti)
x → Y

(ti)
y satisfies ρd(0, v) 6 d(0, f

(ti)
x (v)) for all

v ∈ X
(ti)
x . Then X contains an open dense subset on which f is a locally

bi-Lipschitz embedding.

Remark 1.1. In Proposition 1.1 it is necessary to require that the conditions
are satisfied for each blow up at each point; compare Subsection 3.1.

If we want to have the conclusion at each point, we need to decompose X in
some countable disjoint union of locally closed subsets. This decomposition is
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particularly useful as far as rectifiability is concerned, and does not require any
assumptions on X (see Lemma 3.1 for the precise statement). Our submersion
theorem (Theorem 1.2) is deeper and has a much better form, since it is valid
at all points.

Theorem 1.2. Suppose f : X → Y is a locally Lipschitz map, Y is locally
geodesic, X is locally complete, and C > 0. If for each x ∈ X there exists a

blow up f
(ti)
x : X

(ti)
x → Y

(ti)
f(x) such that for each w ∈ Y

(ti)
f(x) there is v ∈ X

(ti)
x

with f
(ti)
x (v) = w and Cd(0, v) 6 d(0, w), then f is locally C̄-open for all

C̄ < C.

Remark 1.2. The word “locally” can be erased in the proposition above.

Under some additional conditions, from the fact that all blow ups are bi-
Lipschitz it can be deduced that the map itself is locally bi-Lipschitz (some
assumptions on X and Y are necessary; compare §10) Namely, the following
statement is true.

Proposition 1.3. Let X be a locally compact space, and let Y be a Lipschitz
manifold. Assume that the metric on X is locally bi-Lipschitz wiith respect
to the inner metric. Let f : X → Y be a locally Lipschitz map such that

for some C > 0 each blow up f
(ti)
x : X

(ti)
x → Y

(ti)
f(x) is C-bi-Lipschitz. Then

f : X → Y is locally bi-Lipschitz.

Remark 1.3. As the proof shows Proposition remains valid if Y is only locally
bi-Lipschitz with respect to a CAT (κ) space.

The last two results were proved and used in several particular situations
in [BGP92, Nag02, Per94] and some other papers. The following are the rigid
versions of the above results.

Corollary 1.4. Let X and Y be locally compact and locally geodesic (respec-
tively, proper and geodesic) spaces, and let f : X → Y be a locally Lipschitz

map such that at each point x ∈ X some blow up f
(ti)
x : X

(ti)
x → Y

(ti)
y is a

submetry. Then f is a local submetry (respectively, a submetry).

Corollary 1.5. Suppose f : X → Y is as in Corollary 1.4 and each blow
up at each point is an isometry. If, moreover, Y is locally bi-Lipschitz with
respect to a CAT (κ) space, then f is a local isometry.

The proof of Theorem 1.2 requires the notion of the absolute gradient of a
function, together with the result stating that if f : X → R grows at each point
(infinitesimally) at least with velocity c > 0, then f is semiopen in a sense (see
Lemma 4.1). On the other hand, this semiopenness result (certainly known to
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Petrunin and Perelman, cf. [PP94]) can be used as the main ingredient in the
construction of gradient curves of functions with semicontinuous gradients.
Recall that a gradient curve of a function is a curve that grows as fast as
f does at (almost) each point (see Definition 6.1 and Definition 6.2). The
existence of gradient curves can be shown in all locally compact spaces. The
following result can be regarded as a Peano theorem for metric spaces.

Proposition 1.6. Let X be locally compact, and let f : X → R be a map with
lower semicontinuous absolute gradients. Then a maximal gradient curve
η : [0, a) → X of f starts at each point x ∈ X . If X is complete and f is
bounded or admits a uniform Lipschitz constant, then each η is complete,
i.e., a = ∞.

However, in order to get uniqueness and a reasonable gradient flow, we need
some assumptions on the differentiable structure of the space. We say that a
space X is appropriate if it is locally compact and locally geodesic, the upper
and the lower angle between each pair of geodesics starting at the same point

coincide, and each blow up X
(ti)
x is naturally isometric to the geodesic cone Cx

(see Definition 8.1). Each space that is infinitesimally cone-like in the sense of
[Lytb] is appropriate. In particular all (proper, finite-dimensional) Aleksandrov
spaces, all manifolds with Hölder continuous Riemannian metrics, and all sets
of positive reach in a smooth Riemannian manifold with the inner metric,
and all surfaces with an integral curvature bound [Res93] are appropriate.
All subanalytic subsets of Euclidean space are appropriate with respect to the
inner metric [BL]. Moreover, the products and the open subsets of and the
Euclidean cones over such spaces are appropriate.

Theorem 1.7. Suppose X is either an appropriate space or an open subset
of a (not necessarily locally compact) space with one-sided curvature bound.
Let f : X → R be a semiconcave function. Then, for each x ∈ X , a unique
maximal gradient curve starts at x. Moreover, the locally defined gradient
flow is locally Lipschitz. The flow is complete if X is complete and either
f is bounded from above, or f has a global Lipschitz constant. The flow is
1-Lipschitz if f is concave and X is complete and geodesic.

This result was proved in [Sha77] in the case of Riemannian manifolds and
was used to study the souls of nonnegatively curved manifolds. In the case of
Alexandrov spaces with lower curvature bound, the same fact was proved in
[PP94]; it served as a main tool in the study of such spaces. In [Pet99] it was
applied (without proof) to spaces with an upper curvature bound. In the case
of proper spaces we get the following soul theorem.
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Corollary 1.8. Suppose X is proper, geodesic, and appropriate. Let f : X →
R be a concave function that attains its maximum on a set S. Then the
gradient flow bt : X → X is 1-Lipschitz and converges to a 1-Lipschitz
retraction b∞ : X → S.

The soul theorem is related to the following more general statement con-
cerning regular sublevel sets (see Definition 7.3). In [Lyta] this statement was
developed further in a more general context.

Corollary 1.9. Let X be as in Theorem 1.7, let f : X → R be a semiconcave
function, and let Ut = f−1[t,∞) be a regular sublevel set of f . Then for some
r, K > 0 and all x0, x1 ∈ Ut with d(x0, x1) = s < r there is a point m ∈ Ut

satisfying d(m, xi) 6 s
2 (1 + Ks2).

We proceed as follows. After the preliminaries in §3 we discuss the case of
injective differentials and prove Proposition 1.1. In §§4, 5 we prove Theorem 1.2
and Proposition 1.3 and present the differential characterizations of submetries
and isometries. In §6 we prove Proposition 1.6. §§7 and 9 are devoted to
semiconcave functions. In §8 we recall some results about tangent cones and
differentials in metric spaces, to be used in §9. Finally, in §10 we give some
examples showing that our assumptions in the first three propositions are
essential.

I am very grateful to Werner Ballmann for encouragement and many helpful
remarks. I am indebted to Sergei Buyalo for pointing out several mistakes in
the preliminary version of the paper and for many useful hints.

§2. Preliminaries and notation

2.1. Notation. By R
n we denote the Euclidean space of dimension n, and

R
+ stands for the set of positive real numbers. By d we shall always denote

the metric in a metric space, without an extra reference to the space. The
closed metric ball of radius r around x will be denoted by Br(x). A subset of
a topological space is locally closed if it is the intersection of an open and a
closed set. A metric space X is said to be locally complete if each point has a
complete neighborhood in X . Each locally compact space is locally complete,
and each locally closed subset of a locally complete space is locally complete.

From the Baire theorem for closed subsets we get the following.

Lemma 2.1. If a locally complete space X is a countable union of locally
closed subsets Xn, then the union of the sets Un of inner points of Xn is
dense in X .

A metric space X is proper if all closed bounded subsets of X are compact.
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2.2. Lipschitz maps. A map f : X → Y between metric spaces is C-
Lipschitz if d(f(x), f(z)) 6 Cd(x, z) for all x, z ∈ X . The map f is called
a C-bi-Lipschitz embedding if, moreover, d(f(x), f(z)) >

1
C d(x, z). By defini-

tion, a locally bi-Lipschitz map is a topologically open map that is a locally
bi-Lipschitz embedding.

2.3. Open maps. Let C, r > 0; we say that a locally Lipschitz map f : X → Y
is (C, r)-open at a point x ∈ X if for all x̄ ∈ Br(x) and all r̄ 6 r − d(x, x̄)
we have BCr̄(f(x̄)) ⊂ f(Br̄(x̄)). Observe that in this case f is (C, r− r̄)-open
at each x̄ with r̄ = d(x, x̄) < r. We say that f is locally C-open if for each
x ∈ X there is r > 0 such that f is (C, r)-open at x, and f is C-open if the
above condition is satisfied for all x ∈ X and all r > 0.

Note that each locally C-open map is topologically open. A locally C-bi-
Lipschitz map is locally C-open. A locally C-open map is locally bi-Lipschitz
if and only if it is locally injective.

2.4. Submetries. A map f : X → Y is called a (local) submetry if it is
(locally) 1-Lipschitz and (locally) 1-open. If a (local) submetry is (locally)
injective, then it is a (local) isometry.

2.5. Curves. Let γ : [t, a) → X be a locally Lipschitz curve, and let L(γ)

denote its length. If the (nonnegative) number limε→0
d(γ(t),γ(t+ε))

ε
exists, we

denote it by mD+
t and call it the metric differential of γ at t. In fact, this

metric differential exists at almost every point s ∈ [t, a), and we have the area
formula L(γ) =

∫ a

t
(mD+

s γ)ds (see [BBI01, p. 57]).

2.6. Geodesics. A geodesic in X is an isometric embedding of an interval
into X . The space X is said to be geodesic if for all points x 6= z in X the set
Γx,z of all geodesics connecting x and z is not empty. The space X is locally
geodesic if it is covered by open subsets Uj such that all points z, z̄ in Uj

are joined in X by a geodesic. In a connected locally geodesic space each two
points are connected by a Lipschitz curve.

Example 2.1. Each geodesic space is locally geodesic. Each open subset of a
locally geodesic space is locally geodesic. By the Arzela–Ascoli theorem, each
locally compact inner metric space is locally geodesic.

2.7. Curvature bounds. A space X is called a CAT (κ) space (respectively, a
space with curvature at least κ) if it is complete and geodesic and the triangles
in X are not thicker (respectively, not thinner) than the triangles in the two-
dimensional simply connected manifold M2

κ of constant curvature κ. We refer
the reader to [BBI01] for the theory of such spaces.
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2.8. Ultralimits. We choose and fix a nonprincipal ultrafilter ω on the set of
natural numbers N (see [BH99, pp. 77–80]). By limω(Xi, xi) we denote the
ultralimit of a sequence of pointed metric spaces (see[BH99] and [Lytb]). For
a sequence of Lipschitz maps fi : (Xi, xi) → (Yi, yi), we denote by limω fi the

ultralimit f : limω(Xi, xi) → limω(Yi, yi). For a sequence εj → 0, let X
(εj)
x

denote the blow up X
(εj)
x = limω( 1

εj
X, x). The blow ups X

(ti)
x are spaces with

a distinguished origin 0 = (x, x, x...). In blow ups, we shall denote by |v| the
distance |v| = d(v, 0). For each zero sequence (ti), a locally Lipschitz map

f : (X, x) → (Y, y) determines a blow up f
(ti)
x : (X

(ti)
x , 0) → (Y

(ti)
y , 0).

Example 2.2. Suppose f : X → Y is a locally Lipschitz map. Let xi 6= x
be a sequence of points converging to x, with f(xi) = f(x) = y. Then, for

ti = d(x, xi), the point v = (xi) ∈ X
(ti)
x satisfies |v| = 1 and f

(ti)
x (v) = 0.

Example 2.3. Let γ be a Lipschitz curve in X , and let f : X → Y be a locally
Lipschitz map. Assume that, for some fixed C > 0, for each x ∈ X there is a

zero sequence (ti) such that |f
(ti)
x (v)| 6 C|v| (respectively, |f

(ti)
x (v)| > C|v|)

for all v ∈ X
(ti)
x . Then from the area formula we get L(f(γ)) 6 CL(γ)

(respectively, L(f(γ)) > CL(γ)) [BBI01, p. 57]. In the first case we see that
if X is (locally) geodesic, then f is (locally) C-Lipschitz.

The ultralimit limω(X, x) of the constant sequence (X, x) is called the ul-
traproduct of X and will be denoted by Xω. The space X is isometrically
embedded in Xω, and X = Xω if and only if X is a proper space.

§3. Injective blow ups

3.1. Decomposing a map. We start with a decomposition of a Lipschitz map
into pieces with respect to its differential behavior. Let f : X → Y be a locally
Lipschitz map. We consider the Borel function f̄ : X → [0,∞) defined by

f̄(x) = lim infx̄→x
d(f(x),f(x̄))

d(x,x̄) .

Observe that f̄(x) > ρ if and only if for all zero sequences (ti) and all

v ∈ X
(ti)
x we have d(0, f

(ti)
x (v)) > ρd(0, v). Moreover, f̄(x) = 0 if and only if

there is a zero sequence (ti) and some v ∈ X
(ti)
x with |v| = d(0, v) = 1 and

f
(ti)
x (v) = 0 ∈ Y

(ti)
f(x)

.

Thus, X can be split into disjoint Borel subsets X = ∪Xn ∪ S in such a
way that f̄(x) >

1
n for each x ∈ Xn, and S = {x ∈ X |f̄(x) = 0}. Next, note

that S admits a disjoint Borel decomposition S = S1 ∪ S2, where S1 is the set

of all x ∈ X such that for each(!) zero sequence (ti) there is a point v ∈ X
(ti)
x

with d(v, 0) = 1 and f
(ti)
x = 0.
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Remark 3.1. If a point x is in S2, then the blow ups of f at x at different
scales are essentially different. In particular, at such points the map f cannot
be metrically differentiable (cf. [Lytb]).

In general, it is difficult to say something about the behavior of f on S1 and
S2, as well as about the size of f(S). For example, it may happen that X = S2

even for quite tame spaces (see the example of [KM03]). However, by the
theory of [Kir94], for each measurable subset X of Rn and a locally Lipschitz
map f : X → Y to an arbitrary metric space Y , the n-dimensional Hausdorff
measure of S2 (hence, also of f(S2)) and of the image f(S1) vanishes.

3.2. The injective part. On the subsets Xn defined above, the map f is not
far from being a bi-Lipschitz embedding. In the case of X ⊂ R

n, this result is
the starting point of the geometric measure theory of [Kir94].

Lemma 3.1. Let f : X → Y be a locally Lipschitz map. Assume that f̄ > ρ on
X , i.e., we are under the assumptions of Proposition 1.1. Then for each ε > 0
the space X has a decomposition X = ∪1

�
m

�
∞Xm in a countable disjoint

union of locally closed subsets Xm such that if x, z ∈ Xm and d(x, z) < 1
m
,

then d(f(x), f(z)) > (ρ − ε)d(x, z). In particular, the restriction f : Xm → Y
is a locally bi-Lipschitz embedding.

Proof. Let Zn be the set of all points x ∈ X such that if z ∈ X and
d(x, z) < 1

n
, then d(f(x), f(z)) > (ρ − ε)d(x, z). The sets Zn are closed,

and the assumption f̄ > ρ implies X = ∪Zn. Now it suffices to consider the
subsets Xm = Zm \ Zm−1. •

Using Lemma 2.1, we immediately get Proposition 1.1. Also, from Lemma 3.1
we obtain the following rectifiability result (see [Fed70] for the definition).

Corollary 3.2. Let X be a separable metric space. Assume that for each point
x ∈ X there is a neighborhood U and a Lipschitz map f : U → Rn such that
the assumptions of Lemma 3.1 are satisfied with some ρ = ρ(U) > 0. Then
X is n-dimensionally countably rectifiable.

§4. Open map theorem

Our study of open maps starts with the following definition (see [Pla02,
p. 862]).

Definition 4.1. Let f : X → R be a locally Lipschitz function, and let x ∈ X .

We denote by |∇xf | the nonnegative number max{0, lim supx̄→x
f(x̄)−f(x)

d(x̄,x) }; we

call |∇xf | the absolute gradient of f at the point x.
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Note that the absolute gradient |∇xf | is nonnegative and is bounded from
above by the Lipschitz constant of f near x. Actually, |∇xf | is the supremum

of all C > 0 such that for some zero sequence (ti) there is a point v ∈ X
(ti)
x

with |v| = 1 and f
(ti)
x (v) > C.

Example 4.1. If f is differentiable at x (see [Lytb]), then |∇xf | = 0 if and only
if Dxf 6 0 on TxX , and |∇xf | = sup{Dxf(v)|v ∈ TxX, |v| = 1} otherwise.

Example 4.2. Let x ∈ X be a point. Consider the distance function dx :
X → R and set f = −dx. If X is a geodesic space, then |∇zf | = 1 for

each z 6= x. Actually, for each zero sequence ti we have f
(ti)
z (v) = 1, where

v = (γ(ti)) ∈ X
(ti)
z is the starting direction of a geodesic γ from z to x. From

the next lemma it is easy to deduce that if X is proper and |∇zf | = 1 for each
z 6= x, then each point z ∈ X is connected with x by a geodesic.

Lemma 4.1. Suppose f : X → R is a locally Lipschitz map, x ∈ X , and
f(x) = 0. For C, r > 0, assume that the ball Br(x) is complete and that
|∇zf | > C for each z with d(z, x) < r and f(z) > f(x). Then for each
0 < C̄ < C there is a point z ∈ X with d(z, x) 6 r and f(z) = C̄r.

Proof. Let l : A → X (where A is a subset of the interval [0, C̄r] containing 0)
be a 1

C̄
-Lipschitz map such that f ◦ l(t) = t for all t ∈ A and l(0) = x. By the

Zorn lemma, there is a maximal subset A ⊂ [0, C̄r] on which such a map l can
be defined. By the completeness of Br(x), this maximal set A must be closed.
Let t be the maximum of A. We are done if t = C̄r. Assuming that t < C̄r,
consider the point z = l(t). We have d(z, x) < r. Since |∇zf | > C > C̄,
we can find a point z0 close to z with f(z0) − f(z) > C̄d(z, z0). Then the
extension of l to l̄ : A ∪ {f(z0)} → X given by l̄(f(z0)) := z0 is 1

C̄
-Lipschitz.

This contradicts the maximality of A. •

This lemma allows us to study the sublevel sets Ut = f−1[t,∞). Namely,
we can apply Lemma 4.1 to all points x̄ ∈ Br(x) instead of x. Letting C̄
converge to C, we get the following.

Corollary 4.2. Under the assumptions of Lemma 4.1, for each x̄ ∈ Br(x) and
each 0 6 r̄ 6 r − d(x, x̄) we have d(x̄, Uf(x̄)+Cr̄) 6 r̄.

Remark 4.3. If Br(x) is compact, it is easy to show (arguing as in Lemma 4.4
below) that x̄ and Uf(x̄)+Cr̄ are connected by a curve of length not exceeding
r̄.

Proposition 4.3. Suppose f : X → Y is a locally Lipschitz map, x ∈ X ,
and C, r > 0. Assume that the ball Br(x) is complete, and that for each
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z ∈ Br(x) there exists a zero sequence (ti) such that for each w ∈ Y
(ti)
f(z)

there

is v ∈ X
(ti)
z with f

(ti)
z (v) = w and C|v| 6 |w|.

If Y is geodesic, then f is (C̄, r)-open at x for each 0 < C̄ < C.

Proof. We set y = f(x) and fix C̄ < C. It suffices to prove that BC̄r(y) ⊂
f(Br(x)). Fix a point ȳ in BC̄r(y), assume that ȳ /∈ f(Br(x)), and consider
the distance function dȳ : Y → R and the composition h = −dȳ ◦ f . Since Y
is geodesic, we can refer to Example 4.2 to show that |∇zh| > C for each
z ∈ Br(x).

Hence, by Lemma 4.1, there is a point z ∈ Br(x) with C̄r = h(z) −
h(x) = d(ȳ, f(x))− d(ȳ, f(z)). Since d(ȳ, f(x)) 6 C̄r, we get ȳ = f(z), which
contradicts the fact that ȳ /∈ f(Br(x)). •

If we assume Y to be only locally geodesic, then the same argument works
if it is known that all points y1, y2 ∈ BC̄r(y) are connected in Y by a geodesic.
This finishes the proof of Theorem 1.2.

Under the assumptions of Proposition 4.3, assume that, moreover, Br(x) is
compact. Then f is (C, r)-open at x. Putting C = 1 and using Example 2.3,
we get a proof of Corollary 1.4.

Example 4.4. Let X be a proper, geodesically complete CAT (κ) space. Let Z
be a closed subset of X . Assume that for each x ∈ X with d(x, Z) < r there
is only one point z ∈ Z with d(x, z) = d(x, Z). Then at each point x ∈ X
with 0 < d(x, Z) < r the 1-Lipschitz distance function dZ : X → R

+ has a
1-open differential, by geodesic completeness and the first variation formula.
Therefore, we see that dZ is locally 1-open, i.e., as above, each point x ∈ X
lies on a geodesic γ : [0, r] → X with d(γ(t)), Z) = t. Thus, Z has positive
reach at least r in X (cf. [Lyta]).

We finish this section with the following useful observation.

Lemma 4.4. Let f : X → Y be a locally Lipschitz and locally C-open map.
Let γ : [0, Cr] → Y be a 1-Lipschitz curve in Y starting at y = γ(0) = f(x). If
the ball Br(x) is compact, then there is a 1

C
-Lipschitz curve γ̄ : [0, Cr] → X

with γ(0) = x and f ◦ γ̄ = γ.

Proof. For each n > 0, we can use Proposition 4.3 and induction on i to
find points xi

n, 0 6 i 6 2n, such that x0
n = x, f(xi

n) = γ( i
2nCr), and for

0 6 i 6 2n−1 the inequality d(xi
n, xi+1

n ) 6
1
C d(γ( i

2nCr), γ( i+1
2n Cr)) is fulfilled.

Let An denote the set of all numbers of the form i
2n Cr, 0 6 i 6 2n; we

have constructed a 1
C
-Lipschitz map ηn : An → X with ηn(0) = x and such

that f ◦ ηn is the restriction of γ to An.
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Since the ball Br(x) is compact, we can choose a limit map γ̄ = limω ηn :
[0, Cr] → Br(x), obtaining the desired curve. •

§5. A funny construction and bi-Lipschitz maps

We start with a funny and quite general construction that makes a local
submetry from a locally Lipschitz and locally open map. First, let f : X → Y
be an L-Lipschitz map; we assume that X and Y are locally compact and

locally geodesic and that X is connected. On X we consider a pseudometric d̃

defined by d̃(x, z) = inf L(f(γ)), where the infimum is taken over all Lipschitz
curves γ connecting x and z.

Let X̃ denote the corresponding metric space, i.e., X̃ is obtained from X

by identifying points with d̃(x, z) = 0. The natural projection p : X → X̃ is
locally L-Lipschitz and surjective. The projection is locally bi-Lipschitz if each
point x ∈ X is contained in an open set U such that for each Lipschitz curve
γ ⊂ U we have L(γ) 6 CL(f(γ)) for some constant C = C(U). The map f

induces a map f̃ : X̃ → Y with f = f̃ ◦p. We observe that the map f̃ is locally
1-Lipschitz.

Example 5.1. Let G be a Carnot group, and let f : G → R
k be the canonical

projection onto the horizontal part. Then f is a submetry, and G̃ = G because
the rectifiable curves in G must be horizontal. On the other hand, if the set G
is considered with a Euclidean metric, then G̃ = R

k and f̃ is an isometry.

Assume now that, moreover, f is locally C-open. Since X is locally compact,

we may apply Lemma 4.4 to show that the map f̃ : X̃ → Y is locally 1-open;
hence, it is a local submetry. Now we are ready to prove Proposition 1.3.

So, let X be a connected locally compact space on which the metric is
locally bi-Lipschitz with respect to the inner metric. Let f : X → Y be a
locally Lipschitz map onto a Lipschitz manifold, and suppose that each blow

up f
(ti)
x is C-bi-Lipschitz.

We can replace the metric on X by the inner metric and assume that X
is locally geodesic. Changing the metric on Y by a bi-Lipschitz map, we may
assume that Y = Rn. If we replace X by an open relatively compact subset,
then the assumptions will survive (with another constant C). By Example 2.3,
for each curve γ in X we have L(γ) 6 CL(f ◦γ). Since R

n is geodesic, by the

above construction we get a local submetry f̃ : X̃ → R
n. Since the projection

p : X̃ → X is bi-Lipschitz, we may replace X by X̃. Thus, it suffices to prove
the following statement: if X is a locally compact locally geodesic space and

f : X → Rn is a local submetry such that each blow up f
(ti)
x is C-bi-Lipschitz,

then f : X → Rn is a local isometry.
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Each blow up f
(ti)
x is a submetry, and since it is bi-Lipschitz, it must be

an isometry. Each fiber must be discrete by Example 2.2. Hence, for each
x there is a neighborhood Br(x) of x such that for all z ∈ Br(x) we have
d(x, z) = d(f(x), f(z)). This implies that each geodesic γ : [a, b] → X is
mapped by f onto a curve γ̄ in Y that consists of finitely many geodesic
segments, i.e., for some sequence a = a0 < a1 < ... < an = b the curve
γ̄ : [ai, ai+1] → R

n is a geodesic. Moreover, the incoming and the outcoming

directions of γ̄ at γ̄(ai) form an angle of π, because f
(ti)
x is an isometry for

x = γ(ai). But in R
n such a curve γ̄ is a geodesic. In particular, γ(a) 6= γ(b).

This shows that each subset U of X that is geodesic in X contains at most
one point of each fiber of f . Consequently, f : Br(x) → Rn is injective for
some r = r(x) > 0. This implies that f is a local isometry.

This finishes the proof of Proposition 1.3 and Corollary 1.5.

§6. Gradient-like and gradient curves

6.1. Existence. Let X be a space, f : X → R a locally Lipschitz function. We
shall say that f has (lower) semicontinuous absolute gradients if limω |∇xi

f | >

|∇xf | for each sequence xi → x in X . We call x a critical point of f if
|∇xf | = 0. The semicontinuity implies that the set U of noncritical points is
open.

Definition 6.1. Let f be a locally Lipschitz function in X . A curve η :
[a1, a2) → X avoiding the set of critical points of f is called a gradient-
like curve of f if η is 1-Lipschitz and for the right-hand side differential we
have (f ◦ η)+(t) = |∇η(t)f | for all t ∈ [a1, a2).

Lemma 6.1. Suppose f : X → R is a locally Lipschitz function with semicon-
tinuous absolute gradients on a locally compact space X . Then a gradient-
like curve η : [0, a) → X starts at each noncritical point x of f .

Proof. By the semicontinuity of the absolute gradients, we can find r > 0
such that f is L-Lipschitz in Br(x) and |∇zf | > C > 0 for each z ∈ Br(x).
Assuming that Br(x) is compact, for simplicity we set f(x) = 0. We construct
a gradient-like curve η of length at least r starting at x.

As in §4, we denote by Ut the closed set f−1[t,∞) ⊂ X . For each ρ > 0 in
Br(x) we choose a maximal sequence x = x0, x1, ..., xn(ρ) with f(xi) = iρ and

d(xi, xi+1) = d(xi, U(i+1)ρ). By Corollary 4.2, we have d(xi, xi+1) 6
ρ
C
. Since

f is L-Lipschitz, we have d(xi, xi+1) >
ρ
L
. Moreover, the maximality of the

sequence implies that d(x, xn(ρ)) > r − ρ
C .

Putting t0 = 0, we define by induction ti+1 = ti + d(xi, xi+1), and let Aρ

denote the set {t0, t1, ..., tn(ρ)}. Consider the map ηρ : Aρ → Br(x) given by
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ηρ(ti) := xi. By construction, ηρ is a 1-Lipschitz map defined on a subset of the

compact interval [0, L
C r]. The map fρ = f ◦ ηρ satisfies fρ(t̄)− fρ(t) > C(t̄− t)

for all t̄ > t ∈ Aρ.
If, moreover, for some T = Aρ∩[t1, t2] the image ηρ(T ) is contained in a ball

V on which |∇zf | > C̄, then for all t, t̄ ∈ T we obtain fρ(t̄)−fρ(t) > C̄(t̄− t),
again by Corollary 4.2.

Now, let η be a limit map of some sequence ηρj
with ρj → 0. Using

ultralimits, we can consider, e.g., the map η = limω ηρj
: limω Aρ → Br(x)ω.

Since Br(x) is compact, Br(x)ω = Br(x). The subsets Aρ of the real line
converge to a finite interval I in the Gromov–Hausdorff topology; hence, η
is a 1-Lipschitz curve in Br(x) starting at x and ending at the boundary of
Br(x).

For an arbitrary s ∈ I , consider the point z = η(s). For ε > 0, we consider
a ball V around z of some positive radius r̃ and such that |∇z̄f | > |∇zf | − ε
for each z̄ ∈ V . If ρ is so small that ηρ is close to η, then a part of ηρ of length
r̃
2 is contained in V ; hence, fρ(t̄) − fρ(t) > C̄(t̄ − t) with C̄ = |∇zf | − ε and
all t, t̄ close to s.

Thus, lim inft→0
f◦η(s+t)−f◦η(s)

t
> |∇zf |. Since η is 1-Lipschitz, the very

definition of |∇zf | shows that the above lower limit is in fact a limit, and it is
equal to |∇zf |. Therefore, (f ◦ η)+(t) = |∇zf |, and η is indeed a gradient-like
curve of f starting at x. •

Remark 6.1. The compactness of Br(x) was used at two steps in the proof
above. First, we chose points xi+1 ∈ U(i+1)ρ satisfying d(xi, xi+1) = d(xi, U(i+1)ρ).
However, should we have chosen xi+1 such that d(xi, xi+1) − d(xi, U(i+1)ρ) 6

ρ3, the same construction would still work. A more important point was the
limiting procedure, where the fact that Bx(r)ω = Bx(r) was used. At this
place the compactness assumption cannot be avoided. See however Subsection
9.3 for a trick.

Observe that the last argument in the proof of Lemma 6.1 shows that for
each gradient-like curve η : [0, a) → X the metric differential mD+

t η (see
Subsection 2.5) exists and is equal to 1 for all t ∈ [0, a). In particular, η is
parametrized by arclength.

6.2. Reparametrization. In order to continue gradient-like curves to the set
of noncritical points and to study the gradient flow of semiconcave functions,
we reparametrize the gradient-like curves. For a gradient-like curve η, by the
semi-continuity of absolute gradients we have

f ◦ η(t + ε) − f ◦ η(t)

ε
=

1

ε

∫ t+ε

t

(f ◦ η)+(r)dr =
1

ε

∫ t+ε

t

|∇η(t+r)f |dr.
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Therefore,

lim
ε→0

1

ε

∫ t+ε

t

|∇η(t+r)f |dr = |∇η(t)f |.

We want to reparametrize a gradient-like curve η to obtain another curve
η̃(t) = η(l(t)) for some monotone Lipschitz map l : [0, ã) → [0, a) such that
mD+

t η̃ = |∇η̃(t)f |, i.e., such that l+(t) = |∇η(l(t))f |.
The existence of such l follows directly from the next lemma.

Lemma 6.2. Let g : [0, a) → R be a locally bounded lower semicontinuous

positive function satisfying limε→0
1
ε

∫ t+ε

t
g(r)dr = g(t) for all t ∈ [0, a). Then

for some ρ > 0 there is a monotone bijective Lipschitz function f : [0, ρ) →
[0, a) with f+(t) = g(f(t)) for all t ∈ [0, ρ).

Proof. The existence of a map f solving the differential equation locally is
deduced precisely as in the usual theorem of Peano. (Find a solution of the

equation f(t) =
∫ t

0 g(f(s))ds using the Arzela–Ascoli theorem. The assump-

tions imposed on g imply that f+(t) = g(f(t)) for all t in the interval of
definition of f). A priori, a solution is a monotone function; taking a maximal
solution (with the help of the Zorn lemma), we get the required result. •

This shows that a gradient curve starts at each noncritical point.

Definition 6.2. Let f : X → R be a function with semicontinuous absolute
gradients. A curve η : [0, a) → X is called a gradient curve of f if for all
t ∈ [0, a) we have mD+

t η = |∇η(t)f | and (f ◦ η)+ = |∇η(t)f |
2.

If x is a critical point of f , then the constant curve η(t) = x is a gradient
curve starting at x. Now, consider a maximal gradient curve η : [0, a) → X
starting at an arbitrary point x. First, assume that a < ∞. If L(η) = ∞, then
∫ a

0 |∇η(t)f |dt = ∞, whence
∫ a

0 |∇η(t)f |
2dt = ∞. We see that in this case f

admits no uniform Lipschitz constant, and limt→a f(η(t)) = ∞. If L(η) < ∞
and the point z = limη(ti) exists for some sequence ti → a (which is always
the case if X is complete), then z = limt→a η(t), and adding to η a gradient
curve starting at z, we get a contradiction with the maximality of η. This
finishes the proof of Proposition 1.6.

Finally, we note that if for a gradient curve η : [0,∞) → X of f and some
sequence tj → ∞ the point z = lim η(ti) exists, then z must be a critical point
of f .

§7. Semiconcave functions

7.1. Basics. Recall that a function f : I → R defined on an interval I ⊂ R is
said to be λ-concave for a real number λ if the function f + λt2 is concave on
I . This is equivalent to the inequality f ′′ 6 −2λ (in the weak sense).
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The following lemma is well known.

Lemma 7.1. A λ-concave function f : I → R is locally Lipschitz and dif-
ferentiable (from both sides) at each point. For all t, t + ε ∈ I we have
f(t + ε) − f(t) 6 εf+(t) − λε2 and f+(t) − f−(t + ε) > 2λε.

Definition 7.1. Let λ be a real number. A locally Lipschitz function f : X →
R on a metric space X is said to be λ-concave if the restriction of f to
each geodesic is λ-concave. Next, f is semiconcave if each point x has a
neighborhood U such that the restriction of f to U is λ(x)-concave for some
real number λ(x).

The disadvantage of this definition is that it is not stable under limits, as
the following example shows.

Example 7.1. Let B be a finite-dimensional Banach space. If the norm of B
is uniformly convex, then the geodesics are affine lines, and each function
that is semiconcave on the Euclidean space R

n is also semiconcave on B.
If the norm of B is not strongly convex, then a function as above may fail
to be semiconcave, because geodesics in B may have corners. Approximating
a non-strongly-convex norm on a two-dimensional Banach space by strongly
convex norms, and letting fj be the same function, we see that λ-concavity is
not stable under limits.

This motivates the following stable definition.

Definition 7.2. We say that a locally Lipschitz map f : X → R is weakly λ-
concave on a subset Z of X if for all x1, x2 ∈ Z there is at least one geodesic
γ in X connecting x1 and x2 and such that f ◦ γ is λ-concave. We call f a
weakly semiconcave function if X is covered by open sets U such that on
each of them f is weakly λ(U)-concave for some real number λ(U).

If X is a (locally) geodesic space (this will be from now on), then each
λ-concave function is also (locally) weakly λ-concave. Example 7.1 shows that
the converse may fail. However, if geodesics between each two points are
unique, then weak semiconcavity implies semiconcavity. For example, this
is the case for the general CAT (κ) spaces. We indicate another important
situation where this is true.

Example 7.2. Let X be a space with curvature bounded from below by κ.
Consider an arbitrary geodesic γ in X . Then γ is a unique geodesic between
arbitrary inner points of γ. This shows that on X each weakly semiconcave
function is also semiconcave.

The advantage of weak concavity is in stability under limits (see the lemma
below), which follows directly from the fact that the ultralimits of geodesics
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are geodesics and that a pointwise limit of a sequence of L-Lipschitz λj-
concave functions on an interval is (lim(λj))-concave.

Lemma 7.2. Let fj : (Xj, xj) → (R, tj) be L-Lipschitz functions, and let
f = limω fj : (X, x) → (R, t) be their ultralimit. If fj is weakly λj-concave on
the ball Br(xj) and limj→∞ λj = λ, then f is weakly λ-concave on the ball
Br(x).

For example, let f : X → R a fixed weakly semiconcave function. Consider-
ing f = fj , we see that the ultraproduct fω : Xω → R is weakly semiconcave

in a neighborhood of X ⊂ Xω. Taking fj = f : ( 1
tj

X, x) → R, we get a weakly

0-concave function f
(ti)
x : X

(tj)
x → R.

The next lemma is also well known (see [Pla02, p. 865]).

Lemma 7.3. Let f : CX → R be a homogeneous weakly 0-concave function
of a geodesic Euclidean cone CX . Assume that f is positive for some x ∈
CX . Then there is a unique point v ∈ X with f(v) = sup{f(x)|x ∈ X}.
Moreover, for each other point w ∈ X we have f(w) 6 f(v)〈v, w〉.

Proof. We view X as the unit sphere of CX . Let xi ∈ X be a sequence
such that f(xi) → sup{f(x)|x ∈ X}. We choose a geodesic γ between xi

and xj such that f ◦ γ is concave. For the midpoint v of γ we have |v| =
√

1 − 1
4d(xi, xj)2 and 2f(v) > f(xi) + f(xj). This shows that xi must be a

Cauchy sequence, because otherwise f( v
|v|

) = 1
|v|

f(v) is larger than lim f(xj) =

sup{f(x)|x ∈ X}. The last statement of the lemma follows in the same way,
by considering a midpoint m of a geodesic γ between tv and w as t → ∞. •

The following semicontinuity result for a single function can be found in
[Pla02, p. 864].

Lemma 7.4. Let fj : (Xj, xj) → R be as in Lemma 7.2, and let f : (X, x) → R

be their ultralimit. Then limω |∇xj
fj | > |∇xf |.

Proof. We may assume that |∇xf | > 0. Given a small number ε > 0, we
choose a point z = (zj) ∈ X such that d(z, x) < ε and f(z)− f(x) > (|∇xf | −
ε)d(x, z). Let γj ∈ Γxj ,zj

be a geodesic such that fj ◦ γj is λj-concave. Then

(fj ◦ γj)
+ > |∇xf | −3ε if ε is sufficiently small and fj(zj)−fj (xj) > (|∇xf | −

2ε)d(xj, zj). This implies the claim. •

7.2. Sublevel sets. In particular, for a single weakly semiconcave function
f : X → R the absolute gradients vary semicontinuously. Using this semicon-
tinuity, we can study the sublevel sets of f outside the critical locus.
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Definition 7.3. Let f : X → R be a weakly semiconcave function. We say that
the sublevel set Ut = f−1[t,∞) is (C, r, λ)-regular if for all z with f(z) < t
and d(z, Ut) < r we have |∇zf | > C and f is weakly λ-concave in the ball
B2r(z).

The sublevel set is said to be regular if it is (C, r, λ)-regular for some λ ∈ R

and some C, r > 0.

Example 7.3. Let X be a CAT (1) space, let x ∈ X , and let f = −dx. Then
the sublevel sets Ut coincide with the balls B−t(x). For t > −π the sublevel
set Ut of f is regular.

Now we prove that the regular sublevel sets are not too far from being
convex; this property plays a crucial role in [Lyta], see also Corollary 1.9.

Lemma 7.5. Suppose f : X → R is weakly semiconcave and Ut is a (C, r, λ)-
regular sublevel set of f . Then for all x0, x1 ∈ Ut with d(x0, x1) < r and
some midpoint m̄ between x0 and x1 there is a point m ∈ Ut satisfying
d(m, m̄) 6 Kd(x0, x1)

2 with K = max{0,− λ
C
}.

Proof. Let γ be a geodesic between x0 and x1 such that f is λ-concave on
γ. Then for the midpoint m of γ we get f(m) − t > λd(x0, x1)

2. If λ is
nonnegative, then Ut is convex and there is nothing to prove. If λ < 0, then
we can apply Corollary 4.2, which shows that d(m, Ut) 6 − λ

C d(x0, x1)
2. •

Remark 7.4. If f is λ-concave, then the above statement remains valid for
each midpoint m between x0 and x1.

§8. Differentials in metric spaces

We refer to [Lytb] for the details on differentials. Let X be an arbitrary
metric space, and let x ∈ X . We denote by Γx the set of all geodesics start-
ing at x. On Γx × [0,∞) we define a pseudometric by d((γ1, t1), (γ2, t2)) =

lim sups→0
d(γ1(st1),γ2(st2))

s
. The geodesic cone Cx at x is the completion of

the metric space arising from Γx × [0,∞). For each zero sequence (ti), there

is a natural 1-Lipschitz map exp
(ti)
x : Cx → X

(ti)
x given by exp

(ti)
x ((γ, s)) =

(γ(sti)) ∈ X
(ti)
x . The upper angle is equal to the lower angle (see [BBI01,

p. 96]) if and only if Cx is a Euclidean cone and each exponential map exp
(ti)
x is

an isometric embedding. In this case we identify Cx with its image exp
(ti)
x (Cx)

in X
(ti)
x .

Definition 8.1. We say that a locally geodesic locally compact space is appro-
priate if for each x ∈ X the geodesic cone Cx is a Euclidean cone and for each

zero sequence (ti) the exponential map exp
(ti)
x : Cx → X

(ti)
x is an isometry.
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Let f : X → R be a locally Lipschitz function. We say that f is direc-
tionally differentiable at x if for each geodesic γ ∈ Γx the composition f ◦ γ
is differentiable from the right at 0. If f is directionally differentiable at x,
then f determines a homogeneous Lipschitz map Dxf : Cx → R such that

Dxf = f
(ti)
x ◦ exp

(ti)
x for each zero sequence (ti).

A Lipschitz curve γ : [t, a) → X is said to be strongly differentiable (from
the right) at t with differential v ∈ Cγ(t) if for each zero sequence (ti) the

point (γ(t + ti)) ∈ X
(ti)
γ(t) coincides with exp

(ti)
x (v).

Finally, let X be an arbitrary space, and let x, z be two points in X con-
nected by a geodesic γ. Assume that at x and z the upper angles and the
lower angles between geodesics coincide. Let µ and ν be two Lipschitz curves
starting at x (respectively, at z) strongly differentiable at 0 with differentials
v ∈ Cx (respectively, w ∈ Cz). Let γ+ ∈ Cx (respectively, γ− ∈ Cz) be the
original (respectively, the terminal) direction of γ. Then we have the following
first variation inequality (see [Lytb]).

Lemma 8.1. If under the above conditions the function l(t) = d(µ(t), ν(t)) is
differentiable at 0 from the right, then l+(0) 6 −〈γ+, v〉 − 〈γ−, w〉.

§9. Gradient flow

9.1. Differentiation of semiconcave functions. Suppose f : X → R is a
semiconcave function defined on a locally geodesic space X . Since the re-
striction of f to each geodesic is differentiable, at each point x ∈ X we
get a unique homogeneous (directional) differential Dxf : Cx → R such that

Dxf = f
(ti)
x ◦ exp

(ti)
x for each zero sequence (ti). If z is a point in X close

to x and f is λ-concave on γ ∈ Γx,z, then from Lemma 7.1 we deduce that
(f ◦ γ)+ · d(x, z) > f(z) − f(x) − λd(x, z)2. This immediately implies that
|∇xf | = sup{Dxf(v)|v ∈ Cx, |v| = 1}.

Now, assume that X is an appropriate space in the sense of Definition 8.1.

Then exp
(ti)
x is an isometry; hence, the cone Cx is a geodesic Euclidean cone

and Dxf is a weakly concave function on Cx. By Lemma 7.3, either x is a
critical point of f and we set ∇xf = 0 ∈ Cx in this case, or Dxf attains its
maximum |∇xf | on the unit sphere Sx of Cx at a unique point v, and then
we set ∇xf =|∇xf |v. From Lemma 7.3 we conclude that in both cases the
inequality Dxf(w) 6 〈∇xf, w〉 is fulfilled.

9.2. Gradient curves. In this and the next subsection, X is an appropriate
space and f : X → R is a fixed semiconcave function. Since X is assumed to be
locally compact, a maximal gradient curve η : [0, a) → X starts at each point
(Proposition 1.6). For each t ∈ [0, a), the curve η is strongly differentiable
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from the right, and η+(t) = ∇η(t)f by Lemma 7.3, because for each zero

sequence (ti) the point v = (η(t + ti)) ∈ X
(ti)
η(t)

= Cη(t) satisfies |v| = |∇η(t)f |

and Dη(t)f(v) = |∇η(t)f |
2.

Assume that η1 and η2 are two gradient curves defined on the same interval
[0, a) and contained in a small open set where f is λ-concave. Consider the
locally Lipschitz function l(t) = d(η1(t), η2(t)). Let γ : [0, s] → X be a geodesic
between x = γ(0) = η1(0) and z = γ(s) = η2(0). By Lemma 8.1, we have
l+(0) 6 −〈γ+,∇xf〉 − 〈γ−,∇zf〉 if l+(0) exists. Consequently, by Lemma 7.3
and Lemma 7.1, we get l+(0) 6 −Dxf(γ+) − Dzf(γ−) = −(f ◦ γ)+(0) + (f ◦
γ)−(s) 6 −2λs.

Thus, l+(t) 6 −2λl(t) for all t where l+(t) exists. Since l is a locally
Lipschitz function, l+(t) exists for almost every t.

Remark 9.1. The above inequality is equivalent to (ln ◦ l)+ 6 −2λ.

This shows that at each point at most one gradient curve starts. Hence,
we can consider the flow φ : D ⊂ X × R defined by φt(x) = φ(x, t) = η(t),
where η is the gradient curve starting at x. The subset D is the set where the
flow φ is defined, and D is an open neighborhood of X × {0} ⊂ X × R, by
Proposition 1.6. We have proved the following statement.

Proposition 9.1. Let f : X → R be a locally Lipschitz semiconcave function.
If X is appropriate, then precisely one gradient curve starts at each point
x ∈ X . The flow along the gradient curves is locally defined and locally
Lipschitz. It is locally 1-Lipschitz if the function f is concave.

We note that the Lipschitz constant of the flow on a set U depends only on
the concavity constant of f on U . Using Proposition 1.6, we get Theorem 1.7
in the case of appropriate spaces.

Now, assume that X is a proper, geodesic, and appropriate space. Let f :
X → R be a concave function. In this case the set S of critical points of f is
easily seen to be the set of all points where f attains its global maximum. We
assume that S is not empty. Then S is a totally convex subset of X . For each
p ∈ S and each gradient line η : [0,∞) → X of f , the function d(p, η(t)) is
monotone nonincreasing; therefore, η is contained in a bounded set. Since this
set is compact, for some sequence ti → ∞ the point z = limη(ti) exists. This
point must be critical, and the fact that d(z, η(t)) is monotone nonincreasing
shows that z = limt→∞ η(t). Thus, each gradient line γ of f in X \ S has
exactly one limit point in S, and we see that the map φ∞ := limt→∞ φt is a
well-defined 1-Lipschitz retraction of X onto S. This proves Corollary 1.8.

9.3. Semiconcave functions in nonproper spaces. Assume that Z is a ge-
odesic space with one-sided curvature bound, U ⊂ Z is an open subset, and
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f : U → R is a semiconcave function. Then the ultraproduct Zω has the same
curvature bound, so that fω is a semiconcave function in a neighborhood of

U in Xω. Moreover, for each z ∈ U the blow up f
(ti)
z : Z

(ti)
z → R is a con-

cave function. Suppose z is not a critical point of f . First, assume that Z has
curvature bounded from above. Then, by the results of [Nik95] (cf. [Lytb]),

Cz is a totally geodesic subset of Z
(ti)
z . Therefore, Lemma 7.3 applies to the

restriction Dzf : Cz → R of the concave function f
(ti)
z : Z

(ti)
z → R. If Z has

curvature bounded from below, then Cz may fail to be a convex subset of

Z
(ti)
z . However, for arbitrary points v, w ∈ Cz, each geodesic γ between v and

w determines together with v and w a Euclidean triangle [Lytb]. Therefore,
the proof of Lemma 7.3 applies again.

Let η be a gradient curve of f . Then η is a locally Lipschitz curve; hence,
by [Lytb], it is strongly differentiable almost everywhere. Arguing as above,
we see that η+(t) = ∇η(t)f almost everywhere. Again arguing as above, we
concude that at most one gradient curve starts at each point and that the
gradient flow is locally Lipschitz whenever it is defined. Now, let x ∈ Z be an
arbitrary noncritical point at which no gradient curve and (as a consequence)
no gradient-like curve starts. Using the construction of Lemma 6.1, we see
that the curves ηρj

(defined in the proof of Lemma 6.1) do not converge.
Consequently, we can choose two different subsequences tn, sn → 0 of the
sequence ρj such that the curves η1 = limω ηtn and η2 = limω ηsn

in the
ultraproduct Xω are different. As in Lemma 6.1, we see that η1 and η2 are
gradient-like curves of fω : Xω → R starting at x ∈ X ⊂ Xω. Hence, we get
different gradient curves of fω in Xω starting at x. But Xω is again a space
with one-sided bounded curvature, and we arrive at a contradiction.

Thus, Theorem 1.7 is also valid for general spaces with one-sided curvature
bound.

9.4. Regular sublevel sets. We are going to prove Corollary 1.9. So, let Ut

be a (C, r, λ)-regular sublevel set of a semiconcave function f : X → R. By
our assumptions on X , the gradient flow of f exists and is locally Lipschitz.
Since the infimum of two λ-concave functions is λ-concave, we may assume
that t = max f , replacing f by f̄(x) = max{f(x), t}. Also, we may assume
that λ < 0.

Let x0, x1 ∈ Ut be such that d(x0, x1) = s < r, let γ be a geodesic between
x0 and x1, and let m̄ be its midpoint. Consider the gradient curve η of f
starting at m̄. Our assumptions and Lemma 7.5 imply that the point m =
η(K̄s2) is contained in Ut, for some fixed K̄ > 0. The gradient curves ηi

starting at xi are constant. For s sufficiently small, the gradient curve η is
contained in the ball B2r(m̄) where the function f is λ-concave. Therefore,
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we may apply the considerations of Subsection 9.2 to show that the function
li(t) = d(η(t), ηi(t)) satisfies li(0) = s

2 and (ln◦li)
+ 6 −2λ.

We obtain ln(li(K̄s2)) 6 ln(li(0)) − 2λK̄s2. It follows that d(xi, m) 6
s
2e−2λK̄s2

. Using the Taylor expansion of the exponential function, for suf-
ficiently small s we can estimate the right-hand side from above by s

2(1 −

4λK̄s2). This finishes the proof of Corollary 1.9.

§10. Some easy counterexamples

In R2, consider the graph Γ of the function y = x2. Let Γ1 ⊂ R3 be
obtained by rotation of Γ around the x-axis. The tangent space of Γ1 at the
origin coincides with the x-axis, and at each other point the tangent space is
2-dimensional. Let Γ2 denote the intersection of Γ1 with the (x, y) plane, i.e.,
Γ2 consists of two copies of Γ attached to each other at the origin.

Example 10.1. The projection of Γ2 to the x-axis has an almost isometric
differential at each point close to 0, but the projection is not locally injective.

Example 10.2. On Γ1 the inner metric is locally bi-Lipschitz with respect to
the induced metric. Consider the map f : Γ1 → Γ1 that sends a point (x, v)
with v = (y, z) to (x, O(v)), where O is a map of the (y, z)-plane to itself

given by O(v) = ||v||Õ( v
||v||), and Õ : S1 → S1 is defined by Õ(z) = z2 (in

the language of complex numbers). Observe that the map f is differentiable
at each point, and the differential at each point is bi-Lipschitz. However, f is
not locally injective at the origin.

Example 10.3. Consider the interval I = [−1, 1] on the x-axis in R3. To each
point xn = ( 1

n
, 0) in I we attach a C∞-loop γn of length 1

n2 that starts and ends
orthogonally to I . Consider the curve γ starting at (1, 0) that runs through I
and all the loops γn in the natural order. Parametrized by arclength, γ satisfies
the conditions of Proposition 1.1, but it is not locally injective at the point x
with γ(x) = 0.
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