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Abstract. In this article, we develop a geometric method to construct solutions of the
classical Yang–Baxter equation, attaching to the Weierstrass family of plane cubic curves
and a pair of coprime positive integers, a family of classical r–matrices. It turns out that
all elliptic r–matrices arise in this way from smooth cubic curves. For the cuspidal cubic
curve, we prove that the obtained solutions are rational and compute them explicitly. We
also describe them in terms of Stolin’s classification and prove that they are degenerations
of the corresponding elliptic solutions.

1. Introduction

Let g be the Lie algebra sln(C) and U = U(g) be its universal enveloping algebra. The
classical Yang–Baxter equation (CYBE) is

(1) [r12(x1, x2), r13(x1, x3)] + [r13(x1, x3), r23(x2, x3)] + [r12(x1, x2), r23(x2, x3)] = 0,

where r : (C2, 0) −→ g ⊗ g is the germ of a meromorphic function. The upper indices
in this equation indicate various embeddings of g ⊗ g into U ⊗ U ⊗ U . For example, the
function r13 is defined as

r13 : C2 r−→ g⊗ g
ρ13−→ U ⊗ U ⊗ U,

where ρ13(x⊗ y) = x⊗ 1⊗ y. Two other maps r12 and r23 have a similar meaning.
A solution of (1) (also called r–matrix in the physical literature) is unitary if r(x1, x2) =

−ρ
(
r(x2, x1)

)
, where ρ is the automorphism of g ⊗ g permuting both factors. A solution

of (1) is non-degenerate if its image under the isomorphism

g⊗ g −→ End(g), a⊗ b 7→
(
c 7→ tr(ac) · b

)
is an invertible operator for some (and hence, for a generic) value of the spectral parameters
(x1, x2). On the set of solutions of (1) there exists a natural action of the group of
holomorphic function germs φ : (C, 0) −→ Aut(g) given by the rule

(2) r(x1, x2) 7→ r̃(x1, x2) :=
(
φ(x1)⊗ φ(x2)

)
r(x1, x2).

It is easy to see that r̃(x1, x2) is again a solution of (1). Moreover, r̃(x1, x2) is unitary
(respectively non-degenerate) provided r(x1, x2) is unitary (respectively non-degenerate).
The solutions r(x1, x2) and r̃(x1, x2) related by the formula (2) for some φ are called gauge
equivalent.

According to Belavin and Drinfeld [4], any non-degenerate unitary solution of the equa-
tion (1) is gauge-equivalent to a solution r(x1, x2) = r(x2 − x1) depending just on the
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difference (or the quotient) of spectral parameters. This means that (1) is essentially
equivalent to the equation

(3)
[
r12(x), r13(x+ y)

]
+
[
r13(x+ y), r23(y)

]
+
[
r12(x), r23(y)

]
= 0.

By a result of Belavin and Drinfeld [3], a non-degenerate solution of (3) is automatically
unitary, has a simple pole at 0 with the residue equal to a multiple of the Casimir element,
and is either elliptic or trigonometric, or rational. In [3], Belavin and Drinfeld also gave a
complete classification of all elliptic and trigonometric solutions of (3). A classification of
rational solutions of (3) was achieved by Stolin in [33, 34].

In this paper we study a connection between the theory of vector bundles on curves
of genus one and solutions of the classical Yang–Baxter equation (1). Let E = V (wv2 −
4u3 − g2uw

2 − g3w
3) ⊂ P2 be a Weiestraß curve over C, o ∈ E some fixed smooth point

and 0 < d < n two coprime integers. Consider the sheaf of Lie algebras A := Ad(P),
where P is a simple vector bundle P of rank n and degree d on E (note that up to an
automorphism A does not depend on a particular choice of P). For any pair of distinct
smooth points x, y of E, consider the linear map A

∣∣
x
−→ A

∣∣
y

defined as the composition:

(4) A
∣∣
x

res−1
x−→ H0

(
A(x)

) evy−→ A
∣∣
y
,

where resx is the residue map and evy is the evaluation map. Choosing a trivialization

A(U)
ξ−→ sln

(
O(U)

)
of the sheaf of Lie algebras A for some small neighborhood U of o, we

get the tensor rξ(E,(n,d))(x, y) ∈ g⊗ g. The first main result of this paper is the following.

Theorem A. In the above notations we have:
• The tensor-valued function rξ(E,(n,d)) : U ×U −→ g⊗ g is meromorphic. Moreover,

it is a non-degenerate unitary solution of the classical Yang–Baxter equation (1).
• The function rξ(E,(n,d)) is analytic with respect to the parameters g2 and g3.

• A different choice of trivialization A(U)
ζ−→ sln

(
O(U)

)
gives a gauge equivalent

solution rζ(E,(n,d)).

Our next aim is to describe all solutions of (3) corresponding to elliptic curves. Let
ε = exp

(
2πid
n

)
and I :=

{
(p, q) ∈ Z2

∣∣0 ≤ p ≤ n − 1, 0 ≤ q ≤ n − 1, (p, q) 6= (0, 0)
}

.
Consider the following matrices

(5) X =


1 0 . . . 0
0 ε . . . 0
...

...
. . .

...
0 0 . . . εn−1

 and Y =


0 1 . . . 0
...

...
. . .

...
0 0 . . . 1
1 0 . . . 0

 .

For any (k, l) ∈ I denote Zk,l = Y kX−l and Z∨k,l = 1
nX

lY −k.

Theorem B. Let τ ∈ C be such that Im(τ) > 0 and E = C/〈1, τ〉 be the corresponding
complex torus. Let 0 < d < n be two coprime integers. Then we have:

(6) r(E,(n,d))(x, y) =
∑

(k,l)∈I

exp
(
−2πid

n
kz
)
σ
(d
n

(
l − kτ

)
, z
)
Z∨k,l ⊗ Zk,l,
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where z = y − x and

(7) σ(a, z) = 2πi
∑
n∈Z

exp(−2πinz)
1− exp

(
−2πi(a− 2πinτ)

)
is the Kronecker elliptic function. Hence, r(E,(n,d)) is the elliptic r–matrix of Belavin [2],
see also [3, Proposition 5.1].

Our next goal is to describe the solutions of (1) corresponding to the data (E, (n, d))
for the cuspidal cubic curve E = V (wv2 − u3). Using the classification of simple vector
bundles on E due to Bodnarchuk and Drozd [7] as well as methods developed by Bur-
ban and Kreußler [14], we derive an explicit recipe to compute the tensor rξ(E,(n,d))(x, y)
from Theorem A. It turns out that the obtained solutions of (1) are always rational. By
Stolin’s classification [33, 34], the rational solutions of (1) are parameterized by certain
Lie algebraic objects, which we shall call Stolin triples. Such a triple (l, k, ω) consists of

• a Lie subalgebra l ⊆ g,
• an integer k such that 0 ≤ k ≤ n,
• a skew symmetric bilinear form ω : l× l→ C which is a 2-cocycle, i.e.

ω
(
[a, b] , c

)
+ ω

(
[b, c] , a

)
+ ω

(
[c, a] , b

)
= 0

for all a, b, c ∈ l,
such that for the k-th parabolic Lie subalgebra pk of g (with p0 = pn = g) the following
two conditions are fulfilled:

• l + pk = g,
• ω is non-degenerate on (l ∩ pk)× (l ∩ pk).

Let 0 < d < n be two coprime integers, e = n − d. We construct a certain matrix J ∈
Matn×n(C) whose entries are equal to 0 or 1 (and their positions are uniquely determined
by n and d) such that the pairing

ωJ : pe × pe −→ C, (a, b) 7→ tr
(
J t · [a, b]

)
is non-degenerate. The following result was conjectured by Stolin.

Theorem C. Let E be the cuspidal cubic curve and 0 < d < n a pair of coprime integers.
Then the solution r(E,(n,d)) of the classical Yang–Baxter equation (1), described in Theorem
A, is gauge equivalent to the solution r(g,e,ωJ ) attached to the Stolin triple (g, e, ωJ).

Moreover, we derive an algorithm to compute the solution r(E,(n,d)) explicitly. In particu-
lar, for d = 1 this leads to the following closed formula (see Example 9.7):

r(E,(n,1)) ∼ r(g,n−1,ω) =
c

y − x
+

+x

e1,2 ⊗ ȟ1 −
n∑
j=3

e1,j ⊗

n−j+1∑
k=1

ej+k−1,k+1

− y
ȟ1 ⊗ e1,2 −

n∑
j=3

n−j+1∑
k=1

ej+k−1,k+1

⊗ e1,j


+

n−1∑
j=2

e1,j ⊗

n−j∑
k=1

ej+k,k+1

+

n−1∑
i=2

ei,i+1 ⊗ ȟi −
n−1∑
j=2

n−j∑
k=1

ej+k,k+1

⊗ e1,j − n−1∑
i=2

ȟi ⊗ ei,i+1

+

n−2∑
i=2

(
n−i∑
k=2

(
n−i−k+1∑

l=1

ei+k+l−1,l+i

)
⊗ ei,i+k

)
−
n−2∑
i=2

(
n−i∑
k=2

ei,i+k ⊗
(
n−i−k+1∑

l=1

ei+k+l−1,l+i

))
,
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where c is the Casimir element in g⊗ g with respect to the trace form, ei,j are the matrix
units for 1 ≤ i, j ≤ n, and ȟl is the dual of hl = el,l − el+1,l+1, 1 ≤ l ≤ n − 1. Theorem
A implies, that up to a certain (not explicitly known) gauge transformation and a change
of variables, this rational solution is a degeneration of the Belavin’s elliptic r–matrix (6)
for ε = exp

(
2πi
n

)
. It seems that it is rather difficult to prove this result using just direct

analytic methods.

Finally, we show that the solutions r(E,(n,d)) and r(E,(n,e)) are gauge equivalent.

Notations and terminology. In this article we shall use the following notations.

− k denotes an algebraically closed field of characteristic zero.

− Given an algebraic variety X, Coh(X) respectively VB(X) denotes the category of
coherent sheaves respectively vector bundles on X. We denote O the structure sheaf of X.
Of course, the theory of Yang–Baxter equations is mainly interesting in the case k = C. In
that case, one can (and probably should) work in the complex analytic category. However,
all relevant results and proofs of this article remain valid in that case, too.

− We denote by Db
coh(X) the triangulated category of bounded complexes of O–modules

with coherent cohomology, whereas Perf(X) stands for the triangulated category of perfect
complexes, i.e. the full subcategory of Db

coh(X) admitting a bounded locally free resolution.

−We always write Hom, End and Ext when working with global morphisms and extensions
between coherent sheaves whereas Lin is used when we work with vector spaces. If not
explicitly otherwise stated, Ext always stands for Ext1.

− For a vector bundle F on X and x ∈ X, we denote by F
∣∣
x

the fiber of F over x, whereas
kx denotes the skyscraper sheaf of length one supported at x.

− A Weierstraß curve is a plane projective cubic curve given in homogeneous coordinates
by an equation wv2 = 4u3 + g2uw

2 + g3w
3, where g1, g2 ∈ k. Such a curve is always

irreducible. It is singular if and only if ∆(g2, g3) = g3
2 + 27g2

3 = 0. Unless g2 = g3 = 0, the
singularity is a node, whereas in the case g2 = g3 = 0 the singularity is a cusp.

− A Calabi–Yau curve E is a reduced projective Gorenstein curve with trivial dualizing
sheaf. Note that the complete list of such curves is actually known, see for example [32,
Section 3]: E is either

• an elliptic curve,
• a Kodaira cycle of n ≥ 1 projective lines (for n = 1 it is a nodal Weierstraß curve),

also called Kodaira fiber of type In,
• a cuspidal plane cubic curve (Kodaira fiber II), a tachnode cubic curve (Kodaira

fiber III) or a generic configuration of n concurrent lines in Pn−1 for n ≥ 3.
The irreducible Calabi–Yau curves are precisely the Weierstraß curves. For a Calabi–Yau
curve E we denote by Ĕ the regular part of E.

− We denote by Ω the sheaf of regular differential one–forms on a Calabi–Yau curve E,
which we always view as a dualizing sheaf. Taking a non-zero section w ∈ H0(Ω), we get
an isomorphism of O–modules O w−→ Ω.
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− Next, P will always denote a simple vector bundle on a Calabi–Yau curve E, i.e. a
locally free coherent sheaf satisfying End(P) = k. Note that we automatically have:
Ext(P,P) ∼= k.

− Finally, for n ≥ 2 we denote a = gln(k) and g = sln(k). For 1 ≤ k ≤ n − 1 we denote
by pk the k-th parabolic subalgebra of g.

Plan of the paper and overview of methods and results.

The main message of this article is the following: to any triple (E, (n, d)), where

• E is a Weierstraß curve,
• 0 < d < n is a pair of coprime integers,

one can canonically attach a solution r(E,(n,d)) of the classical Yang–Baxter equation (1)
for the Lie algebra g = sln(C), see Section 4. The construction goes as follows.

Let P be a simple vector bundle of rank n and degree d on E and A = Ad(P) be the sheaf
of traceless endomorphisms of P. Obviously, A is a sheaf of Lie algebras on E satisfying
H0(A) = 0 = H1(A). In can be shown that A does not depend on the particular choice
of P and up to an isomorphism determined by n and d, see Proposition 2.14.

Let x, y be a pair of smooth points of E. Since the triangulated category Perf(E) has a
(non-canonical) structure of an A∞–category, we have the following linear map

m3 : Hom(P,kx)⊗ Ext(kx,P)⊗ Hom(P,ky) −→ Hom(P,kx).

Using Serre duality, we get from here the induced linear map

mx,y : sl
(
Hom(P,kx)

)
−→ pgl

(
Hom(P,ky)

)
and the corresponding tensor mx,y ∈ pgl

(
Hom(P,kx)

)
⊗ pgl

(
Hom(P,ky)

)
. It turns out

that this element mx,y is a triangulated invariant of Perf(E), i.e. it does not depend on a
(non-canonical) choice of an A∞–structure on the category Perf(E).
Let E be an elliptic curve. According to Polishchuk, [31, Theorem 2], the tensor mx,y is
unitary and satisfies the classical Yang–Baxter equation

(8)
[
m12
x1,x2

,m13
x1,x3

]
+
[
m12
x1,x2

,m23
x2,x3

]
+
[
m12
x1,x2

,m13
x1,x3

]
= 0.

Relation (8) follows from the following two ingredients.

• The A∞–constraint

m3 ◦
(
m3 ⊗ 1⊗ 1+ 1⊗m3 ⊗ 1+ 1⊗ 1⊗m3

)
+ · · · = 0

on the triple product m3.
• Existence of a cyclic A∞–structure with respect of the canonical Serre–pairing on

the triangulated category Perf(E).

The unitarity of mx,y follows from existence of a cyclic A∞ structure as well. To generalize
the relation (8) on singular Weierstraß curves as well as on the relative situation of genus
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one fibrations, we need the following result (Theorem 3.7): the diagram

(9)

A
∣∣
x

Y1 // sl
(
Hom(P,kx)

)

mx,y

��

H0
(
A(x)

)resx

OO

evy
��

A
∣∣
y

Y2 // pgl
(
Hom(P,ky)

)
is commutative, where Y1 and Y2 are certain canonical anti-isomorphisms of Lie algebras.
A version of this important fact has been stated in [31, Theorem 4(b)].

Using the commutative diagram (9), we prove Theorem A. As a consequence, we obtain
the continuity property of the solution r(E,(n,d)) with respect to the Weierstraß parameters
g2 and g3 of the curve E. This actually leads to certain unexpected analytic consequences
about classical r–matrices, see Corollary 9.10.

The above construction can be rephrased in the following way. Let E be an arbitrary
Weierstraß cubic curve. Then there exists a canonical meromorphic section

r ∈ Γ
(
Ĕ × Ĕ, p∗1A⊗ p∗2A

)
,

where p1, p2 : Ĕ × Ĕ → E are canonical projections, satisfying the equation[
r12, r13

]
+
[
r13, r23

]
+
[
r12, r23

]
= 0,

see Theorem 4.4. It seems that in the case of elliptic curves, similar ideas have been
suggested already in 1983 by Cherednik [16]. For an elliptic curve E with a marked point
o ∈ E, the Lie algebra sel(E,(n,d)) := Γ

(
E \ {o},A

)
was studied by Ginzburg, Kapranov

and Vasserot [21], who constructed its realization using “correspondences” in the spirit of
the geometric representation theory.

Talking about the proposed method of constructing of solutions of the classical Yang–
Baxter equation, one may pose following natural question: to what extent is this method
constructive? It turns out, that one can end up with explicit solutions in the case of all
types of the Weierstraß curves. See also [14], where the similar technique in the case of
solutions of the associative Yang–Baxter equation has been developed.

We first show that for an elliptic curve E, the corresponding solution r(E,(n,d)) is the
elliptic r–matrix of Belavin given by the formula (6), see Theorem 5.5. This result can
be also deduced from [31, Formula (2.5)]. However, Polishchuk’s proof, providing on one
side a spectacular and impressive application of methods of mirror symmetry, is on the
other hand rather undirect, as it requires the strong A∞–version of the homological mirror
symmetry for elliptic curves, explicit formulae for higher products in the Fukaya category
of a torus and finally leads to a more complicated expression than (6).

Next, we focus on solutions of (1) originating from the cuspidal cubic curve E = V (uv2−
w3). The motivation to deal with this problem comes from the fact that all obtained
solutions turn out to be rational, which is the most complicated class of solutions from
the point of view of the Belavin–Drinfeld classification [3]. Our approach is based on the
general methods of study of vector bundles on the singular curves of genus one developed in
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[18, 10, 6] and especially on Bodnarchuk–Drozd classification [7] of simple vector bundles
on E. The above abstract way to construct solutions of (1) can be reduced to a very
explicit recipe (see Algorithm 6.7), summarized as follows.

• To any pair of positive coprime integers d, e such that e+d = n we attach a certain
matrix J = J(e, d) ∈ Matn×n(C), whose entries are either 0 or 1.
• For any x ∈ C, the matrix J defines a certain linear subspace Sol

(
(e, d), x)

)
in

the Lie algebra of currents g[z]. For any x ∈ C, we denote the evaluation map by
φx : g[z]→ g.
• Let resx := φx and evy := 1

y − xφy. It turns out that resx and evy yield iso-

morphisms between Sol
(
(e, d), x)

)
and g. Moreover, these maps are just the co-

ordinate versions of the sheaf-theoretic morphisms resx : H0
(
A(x)

)
→ A

∣∣
x

and
evy : H0

(
A(x)

)
→ A

∣∣
y

appearing in the diagram (9).

The constructed matrix J turns out to be useful in a completely different situation.
Let p = pe denote the e-th parabolic subalgebra of g. This Lie algebra is known to be
Frobenius, see for example [19] and [33]. We prove (see Theorem 7.2) that the pairing

ωJ : p× p −→ C, (a, b) 7→ tr
(
J t · [a, b]

)
is non-degenerate, making the Frobenius structure on p explicit. This result will later be
used to get explicit formulae for the solutions r(E,(n,d)).

The study of rational solutions of the classical Yang–Baxter equation (1) was a subject
of Stolin’s investigation [33, 34, 35]. The first basic fact of his theory states that the gauge
equivalence classes of rational solutions of (1) with values in g, which satisfy a certain
additional Ansatz on the residue, stand in bijection with the conjugacy classes of certain
Lagrangian Lie subalgebras w ⊂ g((z−1)) called orders. The second basic result of Stolin’s
theory states that Lagrangian orders are parameterized (although not in a unique way)
by certain triples (l, k, ω) mentioned in the Introduction.

The problem of description of all Stolin triples (l, k, ω) is known to be representation-
wild, as it contains as a subproblem [3, 33] the wild problem of classification of all abelian
Lie subalgebras of g [17]. Thus, it is natural to ask what Stolin triples (l, k, ω) correspond
to the “geometric” rational solutions r(E,(n,d)), since the latter ones have discrete combi-
natorics and obviously form a “distinguished” class of rational solutions. This problem is
completely solved in Theorem C, what is the third main result of this article.

Acknowledgement. This work was supported by the DFG project Bu–1866/2–1. We are
grateful to Alexander Stolin for introducing us in his theory rational solutions of the
classical Yang–Baxter equation and sharing his ideas.

2. Some algebraic and geometric preliminaries

In this section we collect some known basic facts from linear algebra, homological alge-
bra, and the theory of vector bundles on Calabi–Yau curves, which are crucial for further
applications.

2.1. Preliminaries from linear algebra. For a finite dimensional vector space V over
k we denote by sl(V ) the Lie subalgebra of End(V ) consisting of endomorphisms with zero
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trace and pgl(V ) := End(V )/〈1V 〉. Since the proofs of all statements from this subsection
are completely elementary, we left them to the reader as an exercise.

Lemma 2.1. The non-degenerate bilinear pairing tr : End(V ) × End(V ) −→ k, (f, g) 7→
tr(fg) induces another non-degenerate pairing tr : sl(V ) × pgl(V ) −→ k, (f, ḡ) 7→ tr(fg).
In particular, for any finite dimensional vector space U we get a canonical isomorphism
of vector spaces

pgl(U)⊗ pgl(V ) −→ Lin
(
sl(U), pgl(V )

)
.

Lemma 2.2. The Yoneda map Y : End(V ) −→ End(V ∗), assigning to an endomorphism
f its adjoint f∗, induces an anti-isomorphisms of Lie algebras

• Y1 : sl(V ) −→ sl(V ∗) and
• Y2 : sl(V ) −→ pgl(V ∗), f 7→ f̄∗, where f̄∗ is the equivalence class of f∗.
• The following diagram

sl(V )× sl(V )
Y1×Y2 //

tr
%%LLLLLLLLLLL

sl(V ∗)× pgl(V ∗)

tr
xxpppppppppppp

k

is commutative.

Note that the fist part of the statement is valid for any field k, whereas the second one is
only true if dimk(V ) is invertible in k.

Lemma 2.3. Let H ⊆ V be a linear subspace. Then we have the canonical linear map
rH : End(V ) −→ Lin(H,V/H) sending an endomorphism f to the composition H −→
V

f−→ V −→ V/H. Moreover, the following results are true.
• We have: rH(1V ) = 0. In particular, there is an induced canonical map r̄H :

pgl(V ) −→ Lin(H,V/H).
• Let f ∈ End(V ) be such that for any one-dimensional subspace H ⊆ V we have:
rH(f) = 0. Then f̄ = 0 in pgl(V ).
• Let U be a finite dimensional vector space and g1, g2 : U −→ pgl(V ) be two linear

maps such that for any one-dimensional subspace H ⊆ V we have: r̄H◦g1 = r̄H◦g2.
Then g1 = g2.

2.2. Triple Massey products. In this article, we use the notion of triple Massey prod-
ucts in the following special situation.

Definition 2.4. Let D be a k–linear triangulated category, P, X and Y some objects of
D satisfying the following conditions:

(10) End(P) = k and Hom(X ,Y) = 0 = Ext(X ,Y).

Consider the linear subspace

(11) K := Ker
(
Hom(P,X )⊗ Ext(X ,P) ◦−→ Ext(P,P)

)
.

and a linear subspace H ⊆ Hom(P,Y). The triple Massey product is the map

(12) MH : K −→ Lin
(
H,Hom(P,Y)/H

)



VECTOR BUNDLES AND YANG–BAXTER EQUATION 9

defined as follows. Let t =
∑p

i=1 fi ⊗ ωi ∈ K and h ∈ H. Consider the following
commutative diagram in the triangulated category D:

P

f̃

������������������

f=

 f1

...
fp


��

P ı //

h
��

A
p

//

h̃����������
X ⊕ · · · ⊕ X

(ω1,...,ωp)
// P[1].

ky

The horizontal sequence is a distinguished triangle in D determined by the morphism
(ω1, . . . , ωp). Since

∑p
i=1 ωifi = 0 in Ext(P,P), there exists a morphism f̃ : P −→ A such

that pf̃ = f . Note that such a morphism is only defined up to a translation f̃ 7→ f̃ + λı
for some λ ∈ k. Since Hom(X ,Y) = 0 = Ext(X ,Y), there exists a unique morphism
h̃ : A −→ Y such that h̃ı = h. We set:

(
MH(t)

)
(h) := h̃f̃ . �

The following result is well-known, see for instance [20, Exercise IV.2.3].

Proposition 2.5. The map MH is well-defined, i.e. it is independent of a presentation
of t ∈ K as a sum of simple tensors and a choice of the horizontal distinguished triangle.
Moreover, MH is k–linear.

2.3. A∞–structures and triple Massey products. Let B be a k–linear Grothendieck
abelian category, A be its full subcategory of Noetherian objects and E the full subcategory
of injective objects. For simplicity, we assume A to be Ext–finite. The derived category
D+(B) is equivalent to the homotopy category Hot+, b

coh (E). This identifies the triangulated
category D = Db

A(B) of complexes with cohomology from A with the corresponding full
subcategory of Hot+, b

coh (E). Since Hotbcoh(E) is the homotopy category of the dg–category
Comb

coh(E), by the homological perturbation lemma of Kadeishvili [24], the triangulated
category D inherits a structure of an A∞–category. This means that for any n ≥ 2,
i1, i2, . . . , in ∈ Z and objects F0,F1, . . . ,Fn of D, we have linear maps

mn : Exti1(F0,F1)⊗ Exti2(F1,F2)⊗ · · · ⊗ Extin(Fn−1,Fn) −→ Exti1+···+in+(2−n)(F0,Fn)

satisfying the identities

(13)
∑
r,s,t≥0
r+s+t=n

(−1)r+stmr+1+t

(
1 · · · ⊗ 1︸ ︷︷ ︸
r times

⊗ms ⊗ 1 · · · ⊗ 1︸ ︷︷ ︸
s times

)
= 0,

where m2 is the composition of morphisms in D. The higher operations
{
mn}n≥3 are

unique up to an A∞–automorphism of D. On the other hand, they are not determined by
the triangulated structure of D, although they turn out to be compatible with the Massey
products. Throughout this subsection, we fix some A∞–structure

{
mn}n≥3 on D.
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Assume we have object P, X and Y of D satisfying the conditions of Definition 2.4.
Consider the linear map

m = m∞3 : Hom(P,X )⊗ Ext(X ,P)⊗ Hom(P,Y) −→ Hom(P,Y).

It induces another linear map K −→ End
(
Hom(P,ky)

)
assigning to an element t ∈

K the functional g 7→ m(t ⊗ g). Composing this map with the canonical projection
End

(
Hom(P,Y)

)
−→ pgl

(
Hom(P,Y)

)
, we obtain the linear map

(14) mPX ,Y : K −→ pgl
(
Hom(P,Y)

)
.

Lemma 2.6. The map mPX ,Y does not depend on the choice of an A∞–structure on D.

Proof. Of coarse, we may without loss of generality assume that Hom(P,Y) 6= 0. First
note that for any choice of an A∞–structure on D and any one-dimensional linear subspace
H ⊆ Hom(P,Y), the following diagram

(15)

K

MH
''OOOOOOOOOOOOOO

mPX ,Y
// pgl
(
Hom(P,Y

)
r̄Huukkkkkkkkkkkkkkk

Lin
(
H,Hom(P,Y)/H

)
is commutative. Here, MH is the triple Massey product (12) and r̄H is the canonical linear
map from Lemma 2.3. This compatibility between the triangulated Massey products and
higher A∞–products is well-known, see for example [26] a proof of a much more general
statement. Let

{
mn

}
n≥3

be another A∞–structure on D. From the last part of Lemma
2.3 it follows that mPX ,Y = mPX ,Y . This proves the claim. �

2.4. On the sheaf of Lie algebras Ad(F). Let X be an algebraic variety over k and F
a vector bundle on X.

Definition 2.7. The locally free sheaf Ad(F) of the traceless endomorphisms of F is
defined by via the following short exact sequence

(16) 0 −→ Ad(F) −→ End(F) TrF−→ O −→ 0,

where TrF : End(F) −→ O is the canonical trace map.

In the proposition below we collect some basic facts on the vector bundle Ad(F).

Proposition 2.8. In the above notation the following statements are true.
• The vector bundle Ad(F) is a sheaf of Lie algebras on X.
• Next, we have: H0

(
Ad(F)

)
= 0.

• For any L ∈ Pic(X) we have the natural isomorphism of sheaves of Lie algebras
Ad(F) −→ Ad(F ⊗ L) which is induced by the natural isomorphism of sheaves of
algebras End(F) −→ End(F ⊗ L).
• We have a symmetric bilinear pairing Ad(F)× Ad(F) −→ O given on the level of

local sections by the rule (f, g) 7→ tr(fg). This pairing induces an isomorphism of
O–modules Ad(F) −→ Ad(F)∨.
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2.5. Serre duality pairing on a Calabi–Yau curve. Let E be a Calabi–Yau curve
and w ∈ H0(Ω) a no-where vanishing regular differential form. For any pair of objects
F ,G ∈ Perf(E) we have the bilinear form

(17) 〈− , −〉 = 〈− , −〉wF ,G : Hom(F ,G)× Ext(G,F) −→ k

defined as the composition

Hom(F ,G)× Ext(G,F) ◦−→ Ext(F ,F) TrF−→ H1(O) w−→ H1(Ω) t−→ k,

where ◦ denotes the composition operation, TrF is the trace map and t is the canonical
morphism described in [14, Subsection 4.3]. The following result is well-known, see for
example [14, Corollary 3.3] for a proof.

Theorem 2.9. For any F ,G ∈ Perf(E) the pairing 〈− , −〉wF , G is non-degenerate. In
particular, we have an isomorphism of vector spaces

(18) S = SF , G : Ext(G,F) −→ Hom(F ,G)∗,

which is functorial in both arguments.

Let P be a simple vector bundle on E and x, y ∈ Ĕ a pair of points from the same
irreducible components. Note that we are in the situation of Definition 2.4 for D = Perf(E),
X = kx and Y = ky. Note the following easy fact.

Lemma 2.10. Let K be as in (11). Then the linear isomorphism

S : Hom(P,kx)⊗ Ext(kx,P) 1⊗ S−−−→ Hom(P,kx)⊗ Hom(P,kx)∗ ev−→ End
(
Hom(P,kx)

)
identifies the vector space K with sl

(
Hom(P,kx)

)
.

2.6. Simple vector bundles on Calabi–Yau curves. In this subsection, we collect
some basic results on the classification of vector bundles on (possibly reducible) Calabi–
Yau curves.

Definition 2.11. Let
{
E(1), . . . , E(p)

}
be the set of the irreducible components of a

Calabi–Yau curve E. For a vector bundle F on E we denote by

deg(F) = (d1, . . . , dp) ∈ Zp

its multi-degree, where di = deg
(
F
∣∣
E(i)

)
for 1 ≤ i ≤ p.

For d ∈ Zp we denote Picd(E) :=
{
L ∈ Pic(E)

∣∣deg(L) = d
}
. In particular, for o =

(0, . . . , 0) we set: J(E) = Pico(E). Then J(E) is an algebraic group called Jacobian of E.

Proposition 2.12. For k = C we have the following isomorphisms of Lie groups:

J(E) ∼=


C/Λ if E is elliptic,
C∗ if E is a Kodaira cycle,
C in the remaining cases.

Moreover, for any multi-degree d we have a (non-canonical) isomorphism of algebraic
varieties J(E) −→ Picd(E).
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A proof of this result follows from [22, Exercise II.6.9] or [6, Theorem 16].

Next, recall the description of simple vector bundles on Calabi–Yau curves.

Theorem 2.13. Let E be a reduced plane cubic curve with p irreducible components and
P be a simple vector bundle on E. Then the following statements are true.

• Let n = rk(P) be the rank of P and d = d1(P) + · · · + dp(P) = χ(P) its degree.
Then n and d are mutually prime.
• If E is irreducible then P is stable.
• Let n ∈ N and d = (d1, . . . , dp) ∈ Zp be such that gcd(n, d1 + · · ·+dp) = 1. Denote

by ME(n,d) the set of simple vector bundles on E of rank n and multi-degree
d. Then the map det : ME(n,d) −→ Picd(E) is a bijection. Moreover, for any
P 6∼= P ′ ∈ME(n,d) we have: Hom(P,P ′) = 0 = Ext(P,P ′).
• The group J(E) acts transitively on ME(n,d). Moreover, given P ∈ ME(n,d)

and L ∈ J(E), we have: P ∼= P ⊗ L ⇐⇒ L⊗n ∼= O.

Comment on the proof. In the case of elliptic curves all these statements are due to Atiyah
[1]. The case of a nodal Weierstraß curve has been treated by the first-named author in
[9], the corresponding result for a cuspidal cubic curve is due to Bodnarchuk and Drozd
[7]. The remaining cases (Kodaira fibers of type I2, I3, III and IV) are due to Bodnarchuk,
Drozd and Greuel [8]. Their method actually allows to prove this theorem for arbitrary
Kodaira cycles of projective lines. In that case, one can also deduce this result from
another description of simple vector bundles obtained in [11, Theorem 5.3]. On the other
hand, this result is still open for n concurrent lines in Pn−1 if n ≥ 4.

Proposition 2.14. Let E be a reduced plane cubic curve and P be a simple vector bundle
on E of rank n and multi-degree d. Then the following results are true.

• The sheaf of Lie algebras A = An,d := Ad(P) does not depend on the choice of
P ∈ME(n,d).
• We have: H0(A) = 0 = H1(A). Moreover, this result remains true for an arbitrary

Calabi–Yau curve.
• For L ∈ J(E) \ {O} we have: H0(A⊗ L) 6= 0 if and only if L⊗n ∼= O. Moreover,

in this case we have: H0(A⊗ L) ∼= k ∼= H1(A⊗ L).

Proof. The first part follows from the transitivity of the action of J(E) on ME(n,d) (see
Theorem 2.13) and the fact that Ad(P) ∼= Ad(P⊗L) for any line bundle L (see Proposition
2.8). The second statement follows from the long exact sequence

0→ H0(A) −→ End(P)
H0(TrP )−−−−−→ H0(O) −→ H1(A) −→ Ext(P,P) −→ H1(O)→ 0,

the isomorphisms End(P) ∼= k ∼= Ext(P,P), H0(O) ∼= k ∼= H1(O) and the fact that
H0(TrP)(1P) = rk(P).
To show the last statement, note that we have the exact sequence

0 −→ H0(A⊗ L) −→ Hom(P,P ⊗ L) −→ H0(L)

and H0(L) = 0. By Theorem 2.13 we know that Hom(P,P ⊗ L) = 0 unless L⊗n ∼= O. In
the latter case, H0(A⊗ L) ∼= End(P) ∼= k. Since A⊗ L is a vector bundle of degree zero,
by the Riemann-Roch formula we obtain that H1(A⊗ L) ∼= k. �



VECTOR BUNDLES AND YANG–BAXTER EQUATION 13

3. Triple products on Calabi–Yau curves and the classical Yang–Baxter
equation

In this section we shall explain an interplay between the theory of vector bundles on
Calabi–Yau curves, triple Massey products, A∞–structures and the classical Yang–Baxter
equation. Let E be a Calabi–Yau curve, x, y ∈ Ĕ a pair of points from the same irreducible
component of E and P a simple vector bundle on E. By (14) and Lemma 2.10, we have
the canonical linear map

(19) mx, y := mPkx,ky : sl
(
Hom(P,kx)

)
−→ pgl

(
Hom(P,ky)

)
.

By Lemma 2.1, this map corresponds to a certain (canonical) tensor

(20) mx,y ∈ pgl
(
Hom(P,kx)

)
⊗ pgl

(
Hom(P,ky)

)
.

3.1. The case of an elliptic curve. The following result is due to Polishchuk, see [31,
Theorem 2].

Theorem 3.1. Let E be an elliptic curve, P be a simple vector bundle on E and x1, x2, x3 ∈
E be pairwise distinct. Then we have the following equality

(21)
[
m12
x1,x2

,m13
x1,x3

]
+
[
m12
x1,x2

,m23
x2,x3

]
+
[
m12
x1,x2

,m13
x1,x3

]
= 0,

where both sides are viewed as elements of g1 ⊗ g2 ⊗ g3. Here, gi = pgl
(
Hom(P,kxi)

)
for

i = 1, 2, 3. Moreover, the tensor mx1,x2 is unitary:

(22) mx2,x1 = −τ
(
mx1,x2

)
where τ : g1 ⊗ g2 −→ g2 ⊗ g1 is the map permuting both factors.

Idea of the proof. The equality (22) follows from existence of an A∞–structure on Db
coh(E)

which is cyclic with respect to the pairing (17). In particular, this means that for any
objects F1,F2,G1,G2 in Db

coh(E) and morphisms a1 ∈ Hom(F1,G1), a2 ∈ Hom(F2,G2), ω1 ∈
Ext(G1,F2) and ω2 ∈ Ext(F2,G1) we have:

(23)
〈
m(a1 ⊗ ω1 ⊗ a2), ω2

〉
= −

〈
a1,m(ω1 ⊗ a2 ⊗ ω2)

〉
= −

〈
m(a2 ⊗ ω2 ⊗ a1), ω1

〉
,

where m = m∞3 is the triple product this A∞–structure. A proof of the existence of such an
A∞–structure has been outlined by Polishchuk in [30, Theorem 1.1], see also [25, Theorem
10.2.2] for a different approach using non-commutative symplectic geometry. The identity
(23) applied to F1 = F2 = P and Gi = kxi leads to the equality (22). The fact that mx1,x2

satisfies the classical Yang–Baxter equation (21) follows from (22) and the equality

m ◦ (m⊗ 1⊗ 1+ 1⊗m⊗ 1+ 1⊗ 1⊗m) + other terms = 0

(which is one of the equalities (13)) viewed as a linear map

Hom(P,kx1)⊗ Ext(kx1 ,P)⊗ Hom(P,kx2)⊗ Ext(kx2 ,P)⊗ Hom(P,kx3)→ Hom(P,kx3).

�

Remark 3.2. Up to now, we are not aware of a complete proof of existence of an A∞–
structure on the triangulated category Perf(E) for a singular Calabi–Yau curve E, which
is cyclic with respect to the pairing (17). Hence, in order to derive the identities (21) and
(22) for a singular Weierstraß curve E, we use a different approach which is similar in
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spirit to the work [14]. Following [31], we give another description of the tensor mx,y and
show some kind of its continuity with respect to the degeneration of the complex structure
on E. This approach also provides a constructive way of computing of the tensor mx,y.

3.2. Residues and traces. Let Ω be the sheaf of regular differential one–forms on a
(possibly reducible) Calabi–Yau curve E, w ∈ H0(Ω) some no-where vanishing regular
differential form and x, y ∈ Ĕ a pair points from the same irreducible component of E.
First recall that we have the following canonical short exact sequence

(24) 0 −→ Ω −→ Ω(x)
resx−−→ kx −→ 0.

The section w induces the short exact sequence

(25) 0 −→ O −→ O(x) −→ kx −→ 0.

Hence, for any vector bundle F we get a short exact sequence of coherent sheaves

(26) 0 −→ F ı−→ F(x)
resFx−−→ F ⊗ kx −→ 0.

Next, recall the following result relating categorical traces with the usual trace of an
endomorphism of a finite dimensional vector space.

Proposition 3.3. In the above notation, the following results are true.
• There is an isomorphism of functors δx : Hom(kx, − ⊗ kx) −→ Ext(kx, − ) from

the category of vector bundles on E to the category of vector spaces over k, given
by the boundary map induced by the short exact sequence (26).
• For any vector bundle F on the curve E and a pair of morphisms b : F −→ kx, a :
kx −→ F ⊗ kx, we have the equality:

(27) tw
(
TrF (δx(a) ◦ b)

)
= tr(a ◦ bx),

where TrF : Ext(F ,F) −→ H1(O) is the trace map and tw is the composition
H0(O) w−→ H0(Ω) t−→ k of the isomorphism induced by w and the canonical map
t described in [14, Subsection 4.3].

Comment on the proof. The first part of the statement is just [14, Lemma 4.18]. The
content of the second part is explained by the following commutative diagram:

0 // F //

��

Q //

��

F //

b
��

0

0 // F //

��

R //

��

kx
//

a

��

0

0 // F ı // F(x)
resFx // F ⊗ kx // 0.

The lowest horizontal sequence of this diagram is (26). The middle sequence corresponds
to the element δx(a) ∈ Ext(kx,F) and the top one corresponds to δx(a) ◦ b ∈ Ext(F ,F).
The endomorphism a ◦ bx ∈ End(F

∣∣
x
) is the induced map in the fiber of F over x. The

equality (27) follows from [14, Lemma 4.20]. �
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Proposition 3.4. The following diagram of vector spaces is commutative.

Hom(F ,kx)⊗ Ext(kx,F)
1 ⊗ S

// Hom(F ,kx)⊗ Hom(F ,kx)∗

Hom(F ,kx)⊗ Hom(kx,F ⊗ kx)

1⊗ δFx

OO

◦
��

1 ⊗ tr
// Hom(F ,kx)⊗ Hom(F ⊗ kx,kx)∗

1⊗ can

OO

ev
��

Lin(F
∣∣
x
,F
∣∣
x
)

Y1 // End
(
Lin(F

∣∣
x
, k)

)
.

Here, S is given by (18), δFx is the isomorphism from Proposition 3.3, ◦ is m2 composed
with the induced map in the fiber over x, Y1 is the canonical isomorphism of vector spaces
from Lemma 2.1, ev and tr are canonical isomorphisms of vector spaces and can is the
isomorphism induced by resFx .

Proof. The commutativity of the top square is given by [14, Lemma 4.21]. The commuta-
tivity of the lower square can be easily verified by diagram chasing. �

Lemma 3.5. The following diagram of vector spaces is commutative.

Hom(F ,kx)⊗ Ext(kx,F) S //

T

��

End
(
Hom(F ,kx)

)

��

K
S //

T
��

6 V

iiRRRRRRRRRRRRRRRRR
sl
(
Hom(F ,kx)

)( �

55llllllllllllll

��

sl(F
∣∣
x
)

Y1 //

hH

vvllllllllllllll
sl
(
Lin(F

∣∣
x
,k)
)

� v

))RRRRRRRRRRRRR

End(F
∣∣
x
) Y // End

(
Lin(F

∣∣
x
,k)
)

In this diagram, S is the isomorphism induced by the Serre duality (18), Y and Y1 are
canonical isomorphisms from Lemma 2.2, K is the subspace of Hom(F ,⊗kx)⊗Ext(kx,F)
defined in (11), T is the composition of 1⊗ (δFx )−1 from Proposition 3.4 and ◦, whereas T
is the restriction of T . The remaining arrows are canonical morphisms of vector spaces.

Proof. Commutativity of the big square is given by Proposition 3.4. For the left small
square it follows from the equality (27) whereas the commutativity of the remaining parts
of this diagram is obvious. �

3.3. Geometric description of the triple Massey products. Let E, P, x and y be
as at the beginning of this section. In what follows, we shall frequently use the notation
A := Ad(P) and E := End(P).

Lemma 3.6. We have a canonical isomorphism of vector spaces

(28) resx := H0(resAx ) : H0
(
A(x)

)
−→ A

∣∣
x
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induced by the short exact sequence (26). Moreover, we have the canonical morphism

(29) evy := H0(evAy ) : H0
(
A(x)

)
−→ A

∣∣
y

obtained by composing the induced map in the fibers with the canonical isomorphism
A(x)

∣∣
y
−→ A

∣∣
y
. When E is a reduced plane cubic curve, evy is an isomorphism if and

only if n ·
(
[x]− [y]

)
6= 0 in J(E), where n = rk(P).

Proof. The short exact sequence

0 −→ A ı−→ A(x)
resAx−→ A⊗ kx −→ 0

yields the long exact sequence

0 −→ H0(A) −→ H0
(
A(x)

) resx−−→ A
∣∣
x
−→ H1(A).

Thus, the first part of the statement follows from the vanishing H0(A) = 0 = H1(A) given
by Proposition 2.14.

In order to show the second part note that we have the canonical short exact sequence

0 −→ O(−y) −→ O
evy−→ ky −→ 0

yielding the short exact sequence

0 −→ A(x− y) −→ A(x) −→ A(x)⊗ ky −→ 0.

Hence, we get the long exact sequence

0 −→ H0
(
A(x− y)

)
−→ H0

(
A(x)

) evy−−→ A
∣∣
y
−→ H1

(
A(x− y)

)
.

Since the dimensions of H0
(
A(x)

)
and A

∣∣
y

are the same, evy is an isomorphism if and only
if H0

(
A(x − y)

)
= 0. By Proposition 2.14, this vanishing is equivalent to the condition

n ·
(
[x]− [y]

)
6= 0 in J(E). �

The following key result was stated for the first time in [31, Theorem 4].

Theorem 3.7. In the notation as at the beginning of this section, the following diagram
of vector spaces is commutative:

(30)

A
∣∣
x

Y1 // sl
(
Hom(P,kx)

)

mx,y

��

H0
(
A(x)

)resx

OO

evy
��

A
∣∣
y

Y2 // pgl
(
Hom(P,ky)

)
.

In this diagram, mx,y is the linear map (19) induced by the triple A∞–product in Perf(E),
resx and evy are the linear maps (28) and (29), whereas Y 1 and Y2 are obtained by com-
posing the canonical isomorphisms Y1 and Y2 from Lemma 2.2 with the canonical isomor-
phisms induced by Hom(P, kz) −→ Lin

(
P
∣∣
z
, k
)

for z ∈ {x, y}.
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3.4. A proof of the Comparison Theorem. We split the proof of Theorem 3.7 into
three smaller logical steps.

Step 1. First note that we have a well-defined linear map

ı! : Hom
(
P,P(x)

)
−→ End

(
Hom(P,ky)

)
defined as follows. Let g ∈ Hom

(
P,P(x)

)
and h ∈ Hom(P,ky) be arbitrary morphisms.

Then there exists a unique morphism h̃ ∈ Hom(P,ky) such that ı ◦ h̃ = h, where ı : P −→
P(x) is the canonical inclusion. Then we set: ı!(g)(h) = h̃◦g. It follows from the definition
that ı!(ı) = 1Hom(P,ky). This yields the following result.

Lemma 3.8. We have a well-defined linear map

ı̄! :
Hom

(
P,P(x)

)
〈ı〉

−→ pgl
(
Hom(P,ky)

)
given by the rule: ı̄!(ḡ) = h 7→ g ◦ h̃.

Lemma 3.9. The canonical morphism of vector spaces

(31)  : H0
(
A(x)

)
−→

Hom
(
P,P(x)

)
〈ı〉

given by the composition

H0
(
Ad(P)(x)

)
↪→ H0

(
End(P)(x)

)
−→ Hom

(
P,P(x)

)
−→

Hom
(
P,P(x)

)
〈ı〉

is an isomorphism.

Proof. The short exact sequences (16) and (25) together with the vanishing H0(A) = 0 =
H1(A) imply that we have the following commutative diagram

0 // H0(O) // H0
(
O(x)

) 0 // k // H1(O)

0 // H0(E) //

OO

H0
(
E(x)

)
OO

// E
∣∣
x

tr

OO

// H1(E)

OO

0 // 0

OO

// H0
(
A(x)

)
OO

resx // A
∣∣
x

OO

// 0.

OO

The fact that  is an isomorphism follows from a straightforward diagram chase. �

Lemma 3.10. The following diagram is commutative.

Hom
(
P,P(x)

) evy
//

ı!

��

End(P
∣∣
y
)

Y
��

End
(
Hom(P,ky)

) can // End
(
Lin(P

∣∣
y
,k)
)
.

Proof. The result follows from a straightforward diagram chase. �
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Proposition 3.11. The following diagram is commutative.

(32)

H0
(
A(x)

) evy
//



��

sl(P
∣∣
y
)

Y2

��
Hom

(
P,P(x)

)
〈ı〉

ı̄! // pgl
(
Hom(P,ky)

)
// pgl
(
Lin(P

∣∣
y
,k)
)
.

In particular, if E is a reduced plane cubic curve then ı̄! is an isomorphism if and only if
n ·
(
[x]− [y]

)
6= 0 in J(E).

Proof. Note that the following diagram is commutative:

sl
(
P
∣∣
y

)
� � // End(P

∣∣
y
)

Y

,,XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

H0
(
A(x)

)evy

OO

� � //


&&MMMMMMMMMMM

Hom
(
P,P(x)

) ı! //

��

evy

OO

End
(
Hom(P,ky)

)
//

��

End
(
Lin(P

∣∣
y
,k)
)

��
Hom

(
P,P(x)

)
〈ı〉

ı̄! // pgl
(
Hom(P,ky)

)
// pgl
(
Lin(P

∣∣
y
,k)
)
.

Indeed, the right top square is commutative by Lemma 3.10, the commutativity of the
remaining parts is straightforward. Hence, the diagram (32) is commutative, too.

Next, observe that all maps in the diagram (32) but ı̄! and evy are isomorphisms. By
Lemma 3.6, the map evy is an isomorphism if and only if n ·

(
[x]− [y]

)
6= 0 in J(E). This

proves the second part of this Proposition. �

Note that from the exact sequence (26) we get the induced map

R := H0
(
resEnd(P)

x

)
: Hom

(
P,P(x)

)
−→ End

(
P
∣∣
x

)
sending an element g ∈ Hom

(
P,P(x)

)
to
(
resPx ◦ g)x ∈ End

(
P
∣∣
x

)
. Clearly, R(ı) = 0, thus

we obtain the induced map

(33) R :
Hom

(
P,P(x)

)
〈ı〉

−→ End
(
P
∣∣
x

)
.

Lemma 3.12. In the above notation, the following statements are true.

(1) Im(R) = sl
(
P
∣∣
x

)
.

(2) Moreover, the map R :
Hom

(
P,P(x)

)
〈ı〉 −→ sl

(
P
∣∣
x

)
is an isomorphism.
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Proof. The result follows from the commutativity of the diagram

H0
(
Ad(P)(x)

) resx //



��

sl
(
P
∣∣
x

)
_�

��
Hom

(
P,P(x)

)
〈ı〉

R // End
(
P
∣∣
x

)
and the fact that the morphisms resx and  are isomorphisms. �

Step 2. The next result is the key part of the proof of Theorem 3.7.

Proposition 3.13. The following diagram is commutative.

sl
(
P
∣∣
x

) T // K
MH

))RRRRRRRRRRRRRRRRRRRRR

Hom
(
P,P(x)

)
〈ı〉

R

OO

ı! // pgl
(
Hom(P,ky)

) r̄H // Lin
(
H,Hom(P,ky)/H

)
.

Proof. We show this result by diagram chasing. Recall that the vector space K is the
linear span of the simple tensors f ⊗ ω ∈ Hom(P,kx) ⊗ Ext(kx,P) such that ω ◦ f = 0.
Let 0 −→ P κ−→ Q p−→ kx −→ 0 be a short exact sequence corresponding to an element
ω ∈ Ext(kx,P). Recall that by Proposition 3.3 there exists a unique a ∈ Hom(kx,P ⊗kx)
such that ω = δx(a).

Since Hom(kx,ky) = 0 = Ext(kx,ky), for any h ∈ Hom(P,ky) there exist unique
elements h̃ ∈ Hom(Q,ky) and h̃′ ∈ Hom

(
P(x),ky

)
such that the following diagram is

commutative:
P

f

��

f̃

{{xxxxxxxxxxxxxxxxxxx

0 // P κ //

h
��

????????

1P

��

Q
p

//

t

��

h̃||zzzzzzzzz
kx

//

a

��

0

ky

0 // P ı //

h
??��������

P(x)

h̃′
aaCCCCCCCC

resPx // P ⊗ kx // 0.

Although a lift f̃ ∈ Hom(P,Q) is only defined up to a translation f̃ 7→ f̃ + λκ for some

λ ∈ k, we have a well-defined element t ◦ f̃ ∈ Hom
(
P,P(x)

)
〈ı〉 such that R

(
t ◦ f̃

)
= a ◦ fx.

By definition, T (a ◦ fx) = f ⊗ ω. It remains to observe that(
r̄H ◦ ı̄!([tf̃ ])

)
(h) = [h̃′tf̃ ] = [h̃f ] =

(
MH(f ⊗ ω)

)
(h).
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Since R and T are isomorphisms and the vector space K is generated by simple tensors,
this concludes the proof. �

Step 3. Now we are ready to proceed with the proof of Theorem 3.7. Note that the
following diagram is commutative.

sl
(
Hom(P,kx)

) can1 // sl
(
Lin(P

∣∣
x
,k)
)

K

S
55jjjjjjjjjjjjjjjjjjj

MH

��

m̃x,y

""FFFFFFFFFFFFFFFFFFFFFFFFFFF sl(P
∣∣
x
)

Y1

ggPPPPPPPPPPPP
Too

Hom
(
P,P(x)

)
〈ı〉

R
88ppppppppppp

ı̄!

vvnnnnnnnnnnnn

H0
(
A(x)

)
oo

resx

OO

evy

��

pgl
(
Hom(P,ky)

)
r̄Huujjjjjjjjjjjjjjj

can2
((RRRRRRRRRRRRR

Lin
(
H,Hom(P,ky)/H

)
pgl
(
Lin(P

∣∣
y
,k)
)

sl
(
P
∣∣
y

)Y2oo

where m̃x,y = mP
kx,ky

from (14). Indeed, by Lemma 3.5 we have the equality Y1 ◦ T =
can1 ◦S, which gives commutativity of the top square. Next, the equality r̄H ◦ m̃x,y = MH

just expresses the commutativity of the diagram (15). The equality R ◦  = resx follows
from the definition of the map R, see (33).

The equality Y2◦evy = can2◦ı̄!◦ is given by Proposition 3.11, yielding the commutativity
of the right lower part. Finally, by Proposition 3.13 we have the equality r̄H ◦ ı̄! =
MH ◦T ◦R. Since this equality is true for any one-dimensional subspace H ⊆ Hom(P,ky),
Lemma 2.3 implies that m̃x,y ◦ T ◦ R = ı̄!. This finishes the proof of commutativity of
the above diagram. It remains to conclude that the commutativity of the diagram (30)
follows as well and Theorem 3.7 is proven. �

Corollary 3.14. Let E be an elliptic curve over k, P a simple vector bundle on E,
A = Ad(P) and x, y ∈ R two distinct points. Let rx,y ∈ A

∣∣
x
⊗A

∣∣
y

be the image of the linear
map evy ◦ res−1

x ∈ Lin(A
∣∣
x
,A
∣∣
y
) under the linear isomorphism Lin(A

∣∣
x
,A
∣∣
y
) −→ A

∣∣
x
⊗A

∣∣
y

induced by the Killing form A
∣∣
x
× A

∣∣
x
−→ k, (a, b) 7→ tr(a ◦ b). Then rx,y is a solution

of the classical Yang–Baxter equation: for any pairwise distinct points x1, x2, x3 ∈ E we
have:

(34)
[
r12
x1,x2

, r13
x1,x3

]
+
[
r12
x1,x2

, r23
x2,x3

]
+
[
r12
x1,x2

, r13
x1,x3

]
= 0,

where both sides of the above identity are viewed as elements of A
∣∣
x1
⊗ A

∣∣
x2
⊗ A

∣∣
x3

.
Moreover, the tensor rx1,x2 is unitary:

(35) rx2,x1 = −τ
(
rx1,x2

)
,
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where τ : A
∣∣
x1
⊗A

∣∣
x2
−→ A

∣∣
x2
⊗A

∣∣
x1

is the map permuting both factors.

Proof. By Theorem 3.7, the tensor rx,y is the image of the tensor mx,y from (19) under
the isomorphism

pgl
(
Hom(P,kx)

)
⊗ pgl

(
Hom(P,ky)

) Y 2⊗Y 2−−−−→ A
∣∣
x
⊗A

∣∣
y
.

Since Y 2 is an anti-isomorphism of Lie algebras, the equality (34) is a corollary of (21).
In the same way, the equality (35) is a consequence of (22). �

Now we generalize Corollary 3.14 to the case of the singular Weierstraß curves.

4. Genus one fibrations and CYBE

We start with the following geometric data.

• Let E
p−→ T be a flat projective morphism of relative dimension one between

algebraic varieties. We denote by Ĕ the regular locus of p.
• We assume there exists a section ı : T → Ĕ of p.
• Moreover, we assume that for all points t ∈ T the fiber Et is an irreducible Calabi–

Yau curve.
• The fibration E

p−→ T is embeddable into a smooth fibration of projective surfaces
over T and ΩE/T

∼= OE .

Example 4.1. Let ET ⊂ P2 × A2 −→ A2 =: T be the elliptic fibration given by the
equation wv2 = 4u3 + g2uw

2 + g3w
3 and let ∆(g2, g3) = g3

2 + 27g2
3 be the discriminant of

this family. This fibration has a section (g2, g3) 7→
(
(0 : 1 : 0), (g2, g3)

)
and satisfies the

condition ΩE/T
∼= OE .

The following result is well-known.

Lemma 4.2. Consider (n, d) ∈ N × Z such that gcd(n, d) = 1. Then there exists P ∈
VB(E) such that for any t ∈ T its restriction P

∣∣
Et

is simple of rank n and degree d.

Sketch of the proof. Let Σ := ı(T ) ⊂ E and I∆ be the structure sheaf of the diagonal ∆ ⊂
E×T E. Let FMI∆ be the Fourier–Mukai transform with the kernel I∆. By [12, Theorem
2.12], FMI∆ is an auto-equivalence of the derived category FMI∆ . By [13, Proposition
4.13(iv)] there exists an auto-equivalence F of the derived category Db

coh(E), which is a
certain composition of the functors FMI∆ and − ⊗O(Σ) such that F(OΣ) ∼= P[0], where
P is a vector bundle on E having the required properties. �

Now we fix the following notation. Let P be as in Lemma 4.2 and A = Ad(P). We
set X := E ×T Ĕ ×T Ĕ and B := Ĕ ×T Ĕ. Let q : X −→ B be the canonical projection,
∆ ⊂ Ĕ×T Ĕ the diagonal, B := B\∆ and X := q−1(B). The elliptic fibration q : X −→ B
has two canonical sections hi, i = 1, 2, given by hi(y1, y2) = (yi, y1, y2). Let Σi := hi(B)
and A be the pull-back of A on X. Note that the relative dualizing sheaf Ω = ΩX/B is
trivial. Similarly to (24) one has the following canonical short exact sequence

(36) 0 −→ Ω −→ Ω(Σ1)
resΣ1−→ OΣ1 −→ 0,
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see [14, Subsection 3.1.2] for a precise construction. By the assumptions from the beginning
of this section, there exists an isomorphism OX −→ ΩX/B induced by a nowhere vanishing
section w ∈ H0(ΩE/T ). It gives the following short exact sequence

(37) 0 −→ A −→ A(Σ1)
resAΣ1−→ A

∣∣
Σ1
−→ 0.

In a similar way, we have another canonical sequence

(38) 0 −→ A(Σ1 − Σ2) −→ A(Σ1) −→ A(Σ1)
∣∣
Σ2
−→ 0.

Proposition 4.3. In the above notation, the following results are true.
• We have the vanishing q∗(A) = 0 = R1q∗(A).
• The coherent sheaf q∗

(
A(Σ1)

)
is locally free.

• Moreover, we have the morphism of locally free sheaves on B given by the composi-
tion q∗

(
A(Σ1)

)
−→ q∗

(
A(Σ1)

∣∣
Σ2

)
−→ q∗

(
A
∣∣
Σ2

)
, which is an isomorphism outside

of the closed subset ∆n :=
{

(t, x, y)
∣∣ n · ([x]− [y]

)
= 0 ∈ J(Et)

}
⊂ B.

Proof. Let z = (t, x, y) ∈ B be an arbitrary point. By the base-change formula we have:
Lı∗z
(
Rq∗(A)

) ∼= RΓ(A
∣∣
Et

) = 0, where the last vanishing is true by Proposition 2.14. This
proves the first part of the theorem.
Thus, applying q∗ to the short exact sequence (37), we get an isomorphism

res1 := q∗
(
resAΣ1

)
: q∗

(
A(Σ1)

)
−→ q∗

(
A
∣∣
Σ1

)
.

For i = 1, 2, let pi : B := Ĕ×Ĕ −→ E be the composition of i-th canonical projection with
the canonical inclusion Ĕ ⊆ E. It is easy to see that we have a canonical isomorphism
γ : q∗

(
A
∣∣
Σi

)
−→ p∗i (A). Hence, the coherent sheaf q∗

(
A(Σ1)

)
is locally free on B.

To prove the last part, first note that the canonical morphism q∗
(
A
∣∣
Σ2

)
−→ q∗

(
A(Σ1)

∣∣
Σ2

)
is an isomorphism on B. Moreover, by Proposition 2.14, the subset ∆n is precisely the
support of the complex Rq∗

(
A(Σ1 − Σ2)

)
. In particular, this shows that ∆n is a proper

closed subset of B. Finally, applying q∗ to the short exact sequence (38), we get a mor-
phism of locally free sheaves ev2 : q∗

(
A(Σ1)

)
−→ p∗2(A), which is an isomorphism on the

complement of ∆n. This proves the proposition. �

Theorem 4.4. In the above notation, let r ∈ Γ
(
B, p∗1(A) ⊗ p∗2(A)

)
be the meromorphic

section which is the image of ev2 ◦ res−1
1 under the canonical isomorphism

Hom
(
p∗1(A), p∗2(A)

)
−→ H0

(
p∗1(A)∨ ⊗ p∗2(A)

)
−→ H0

(
p∗1(A)⊗ p∗2(A)

)
.

The last isomorphism above is induced by the canonical isomorphism A −→ A∨ from
Proposition 2.8. Then the following statements are true.

• The poles of r lie on the divisor ∆. In particular, r is holomorphic on B.
• Moreover, r is non-degenerate on the complement of the set ∆n.
• The section r satisfies a version of the classical Yang–Baxter equation:[

r12, r13
]

+
[
r12, r23

]
+
[
r13, r23

]
= 0,

where both sides are viewed as meromorphic sections of p∗1(A)⊗ p∗2(A)⊗ p∗3(A).
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• Moreover, the section r is unitary. This means that

(39) σ∗(r) = −r̃ ∈ H0
(
p∗2(A)⊗ p∗1(A)

)
,

where σ is the canonical involution of B = Ĕ×T Ĕ and r̃ is the section correspond-
ing to the morphism ev1 ◦ res−1

2 .
• In particular, Corollary 3.14 is also true for singular Weierstraß cubic curves.

Proof. By Proposition 4.3, we have the following morphisms in VB(B):

p∗1(A) res1←− q∗
(
A(Σ1)

)
−→ q∗

(
A(Σ1)

∣∣
Σ2

) ı←− q∗
(
A
∣∣
Σ2

) γ−→ p∗2(A).

Moreover, γ is an isomorphism, whereas res1 and ı become isomorphisms after restricting
on B. This shows that the section r ∈ Γ

(
B, p∗1(A) ⊗ p∗2(A)

)
is indeed meromorphic with

poles lying on the diagonal ∆. Since ev2 ◦ res−1
1 is an isomorphism on B \∆n, the section

r is non-degenerate on B \∆n.
To prove the last two parts of the theorem, assume first that the generic fiber of E is

smooth. Let t ∈ T be such that Et is an elliptic curve. Then in the notation of Corollary
3.14, for any z = (t, x, y) ∈ B have have:

ı∗z(r) = rx,y ∈
(
A
∣∣
Et

)∣∣∣
x
⊗
(
A
∣∣
Et

)∣∣∣
y
,

where we use the canonical isomorphism

ı∗z
(
p∗1(A)⊗ p∗2(A)

)
−→

(
A
∣∣
Et

)∣∣∣
x
⊗
(
A
∣∣
Et

)∣∣∣
y
.

Let x1, x2 and x3 be three pairwise distinct points of Et and x̄ = (t, x1, x2, x3) ∈ Ĕ ×T
Ĕ ×T Ĕ. By Corollary 3.14 we have:

(40) ı∗x̄

([
r12, r13

]
+
[
r12, r23

]
+
[
r13, r23

])
= 0.

In a similar way, we have the equality:

(41) ı∗z
(
σ∗(r) + r̃

)
= 0.

Since the section r is continuous on B, the equalities (40) and (41) are true for the singular
fibers of E as well. In particular, the statement of Corollary 3.14 is also true for singular
Weierstraß cubic curves. This implies that Theorem 4.4 is true for an arbitrary genus one
fibrations satisfying the conditions from the beginning of this section. �

Summary. Let E
p−→ T , ı : T −→ E and w ∈ H0

(
ΩE/T

)
be as at the beginning of the

section, P be a relatively stable vector bundle on E of rank n and degree d (recall that
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we automatically have gcd(n, d) = 1) and A = Ad(P).

ooooooooo

ooooooooo 88888

�����
kkkkkkkk

kkkkkkkk

ooooo

ooooo

••
•

For any closed point of the base t ∈ T let U be a small neighborhood of the point ı(t) ∈ Et0 ,
V be a small neighborhood of

(
t, ı(t), ı(t)

)
∈ E ×T E, O = Γ(U,O) and M = Γ(V,M),

where M is the sheaf of meromorphic functions on E ×T E. Taking an isomorphism of
Lie algebras ξ : A(U) −→ sln(O), we get the tensor-valued meromorphic function

rξ = rξ(E,(n,d)) ∈ sln(M)⊗M sln(M),

which is the image of the canonical meromorphic section r ∈ Γ
(
E ×T E, p∗1(A) ⊗ p∗2(A)

)
from Theorem 4.4. Then the following statements are true.

• The poles of rξ lie on the diagonal ∆ ⊂ E ×T E.
• Moreover, for a fixed t ∈ T this function is a unitary solution of the classical Yang–

Baxter equation (1) in variables (y1, y2) ∈ {t}×(U ∩Et)×(U ∩Et) ⊂ V ⊂ E×T E.
In other words, we get a family of solutions rξt (y1, y2) of the classical Yang–Baxter
equation, which is analytic as the function of the parameter t ∈ T .
• Let ξ′ : A(U) −→ sln(O) be another isomorphism of Lie algebras and ρ := ξ′ ◦ ξ−1.

Then we have the following commutative diagram:

A(U)
ξ

zzvvvvvvvvv
ξ′

$$IIIIIIIII

sln(O)
ρ

// sln(O).

Moreover, for any (t, y1, y2) ∈ V \∆ we have:

rξ
′
(y1, y2) =

(
ρ(y1)⊗ ρ(y2)

)
· rξ(y1, y2) ·

(
ρ−1(y1)⊗ ρ−1(y2)

)
.

In other words, the solutions rξ and rξ
′

are gauge equivalent.

Remark 4.5. One possibility to generalize Theorem 4.4 and for an arbitrary Calabi–Yau
curve E can be achieved by showing that any simple vector bundle on E can be obtained
from the structure sheaf O by applying an appropriate auto-equivalence of the triangulated
category Perf(E) (some progress in this direction has been recently achieved by Hernández
Ruipérez, López Mart́ın, Sánchez Gómez and Tejero Prieto in [23]). Once it is done, going
along the same lines as in Lemma 4.2, one can construct a sheaf of Lie algebras A on
a genus one fibration E

p−→ T such that for the smooth fibers A
∣∣
Et
∼= An,d and for the

singular ones A
∣∣
Et
∼= An,d for n, d and d as in Proposition 2.14.
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At this moment one can pose the following natural question: How constructive is the
suggested method of finding of solutions of the classical Yang–Baxter equation (1)? Ac-
tually, one can work out a completely explicit recipe to compute the tensor rξ(E,(n,d)) for
all types of Weierstraß cubic curves, see for example [14], where an analogous approach
to the associative Yang–Baxter equation has been elaborated. The following result can be
found in [14, Chapter 6] and also in [31].

Example 4.6. Fix the following basis

h =
(

1 0
0 −1

)
, e =

(
0 1
0 0

)
, f =

(
0 0
1 0

)
of the Lie algebra g = sl2(C). For the pair (n, d) = (2, 1) we get the following solutions
r(E,(2,1)) of the classical Yang–Baxter equation (3).

• In the case E is elliptic, we get the elliptic solution of Baxter:

(42) rell(z) =
cn(z)
sn(z)

h⊗ h+
1 + dn(z)

sn(z)
(e⊗ f + f ⊗ e) +

1− dn(z)
sn(z)

(e⊗ e+ f ⊗ f),

• In the case E is nodal, we get the trigonometric solution of Cherednik

(43) rtrg(z) =
1
2

cot(z)h⊗ h+
1

sin(z)
(e⊗ f + f ⊗ e) + sin(z)e⊗ e.

• In the case E is cuspidal, we get the rational solution

(44) rrat(z) =
1
z

(
1
2
h⊗ h+ e12 ⊗ e21 + e21 ⊗ e12

)
+ z(f ⊗ h+ h⊗ f)− z3f ⊗ f.

Remark 4.7. It is a non-trivial analytic consequence of Theorem 4.4 that up a certain
(unknown) gauge transformation and a change of variables, the rational solution (44) is a
degeneration of the elliptic solution (42) and the trigonometric solution (43).

In the second part of this article, we describe solutions of (1) corresponding to the
smooth respectively cuspidal Weierstraß curves. All of them turn out to be elliptic respec-
tively rational. We shall recover all elliptic solutions respectively certain distinguished
rational solutions. Note that rational solutions of (1) are most complicated and less un-
derstood from the point of view of the Belavin–Drinfeld classification [3].

5. Vector bundles on elliptic curves and elliptic solutions of the
classical Yang–Baxter equation

Let τ ∈ C be such that Im(τ) > 0 and E = C/〈1, τ〉 the corresponding complex torus.
Let 0 < d < n be two coprime integers and A = An,d be the sheaf of Lie algebras from
Proposition 2.14.

Proposition 5.1. The sheaf A has the following complex–analytic description:

(45) A ∼= C× g / ∼, with (z,G) ∼ (z + 1, XGX−1) ∼ (z + τ, Y GY −1),

where X and Y are the matrices (5).
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Proof. We first recall some well-known technique to work with holomorphic vector bundles
on complex tori, see for example [5, 27].

• Let C ⊃ Λ = Λτ := 〈1, τ〉 ∼= Z2. An automorphy factor is a pair (A, V ), where V is a
finite dimensional vector space over C and A : Λ×C −→ GL(V ) is a holomorphic function
such that A(λ+ µ, z) = A(λ, z + µ)A(µ, z) for all λ, µ ∈ Λ and z ∈ C. Such a pair defines
the following holomorphic vector bundle on the torus E:

E(A, V ) := C× V/ ∼, where (z, v) ∼
(
z + λ,A(λ, z)v

)
∀(λ, z, v) ∈ Λ× C× V.

Two such vector bundles E(A, V ) and E(B, V ) are isomorphic if and only if there exists a
holomorphic function H : C→ GL(V ) such that

B(λ, z) = H(z + λ)A(λ, z)H(z)−1 for all (λ, z) ∈ Λ× C.

Assume that E = E(Cn, A). Then Ad(E) ∼= E
(
g, ad(A)

)
, where ad(A)(λ, z)(G) := A(λ, z) ·

G ·A(λ, z)−1 for G ∈ g.

• Quite frequently, it is convenient to restrict ourselves on the following setting. Let
Φ : C −→ GLn(C) be a holomorphic function such that Φ(z + 1) = Φ(z) for all z ∈ C. In

other words, we assume that Φ factors through the covering map C exp(2πi(−))−−−−−−−→ C∗. Then
one can define the automorphy factor (A,Cn) in the following way.

− A(0, z) = In is the identity matrix.

− For any a ∈ Z>0 we set:

A(aτ, z) = Φ
(
z + (a− 1)τ

)
· · · · · Φ(z) and A(−aτ, z) = A(aτ, z − aτ)−1.

− For any a, b ∈ Z we set: A(aτ + b, z) = A(aτ, z).

Let E(Φ) := E(A,Cn) be the corresponding vector bundle on E.

• Consider the holomorphic function ψ(z) = exp
(
−πidτ − 2πid

n z
)

and the matrix

Ψ =


0 1 . . . 0
...

...
. . .

...
0 0 . . . 1
ψn 0 . . . 0

 .

It follows from Oda’s description of simple vector bundles on elliptic curves [28], that the
vector bundle E(Ψ) is simple of rank n and degree d. See also [14, Proposition 4.1.6] for
a proof of this result.

• Denote ε = exp(2πid
n ), η = ε−1 and ρ = exp(−2πid

n τ). Consider the function H =
diag

(
ψn−1, . . . , ψ, 1

)
: C −→ GLn(C) and the matrices X ′ = diag(ηn−1, . . . , η, 1), Z ′ =

diag(ρn−1, . . . , ρ, 1), and

Y ′ =


0 ρn−1 . . . 0
...

...
. . .

...
0 0 . . . ρ
1 0 . . . 0

 .
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Let B(λ, z) = H(z + λ)A(λ, z)H(z)−1, where A(λ, z) is the automorphy factor defined by
the function Φ. Then we have: B(1, z) = X ′ andB(τ, z) = ψ · Y ′.
• Note that ad(B) = ad(ϕ ·B) ∈ End(g) for an arbitrary holomorphic function ϕ. Hence,
after the conjugation of X ′ and Y ′ with an appropriate constant diagonal matrix and a
subsequent rescaling, we get: A ∼= E

(
ad(C), g

)
, where C(1, z) = X andC(τ, z) = Y. This

concludes the proof. �

Let I :=
{

(p, q) ∈ Z2
∣∣0 ≤ p ≤ n − 1, 0 ≤ q ≤ n − 1, (p, q) 6= (0, 0)

}
. For any (k, l) ∈ I

denote Zk,l = Y kX−l and Z∨k,l = 1
nX

lY −k. Recall the following standard result.

Lemma 5.2. The following is true.
• The operators ad(X), ad(Y ) ∈ End(g) commute.
• The set

{
Zk,l

}
(k,l)∈I is a basis of g.

• Moreover, for any (k, l) ∈ I we have:

ad(X)(Zk,l) = εkZk,l and ad(Y )(Zk,l) = εlZk,l.

• Let can : g⊗ g −→ End(g) be the canonical isomorphism sending a simple tensor
G′ ⊗G′′ to the linear map G 7→ tr(G′ ·G) ·G′′. Then we have:

can(Z∨k,l ⊗ Zk,l)(Zk′,l′) =
{
Zk,l if (k′, l′) = (k, l)
0 otherwise.

Next, recall the definition of the first and third Jacobian theta-functions [27].

(46)


θ̄(z) = θ1(z|τ) = 2q

1
4

∞∑
n=0

(−1)nqn(n+1) sin
(
(2n+ 1)πz

)
,

θ(z) = θ3(z|τ) = 1 + 2
∞∑
n=1

qn
2

cos(2πnz),

where q = exp(πiτ). They are related by the following identity:

(47) θ
(
z +

1 + τ

2

)
= i exp

(
−πi

(
z +

τ

4
))
θ̄(z).

For any x ∈ C consider the function ϕx(z) = − exp
(
−2πi(z + τ − x)

)
. The next result is

well-known, see [27] or [14, Section 4.1].

Lemma 5.3. The following results are true.
• The vector space C f−→ C

∣∣∣∣∣∣
f is holomorphic
f(z + 1) = f(z)
f(z + τ) = ϕx(z)f(z)


is one-dimensional and generated by the theta-function θx(z) := θ

(
z + 1+τ

2 − x
)
.

• We have: E(ϕx) ∼= OE
(
[x]
)
.

Let U ⊂ C be a small open neighborhood of 0 and O = Γ(U,OC) be the ring of holomorphic
functions on U . Let z be a coordinate on U , C π−→ E the canonical covering map,
w = dz ∈ H0(E,Ω) a no-where vanishing differential form on E, Γ(U,A)

ξ−→ sln(O) the
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canonical isomorphism induced by the automorphy data (X,Y ) and x, y ∈ U a pair of
distinct points. Consider the following vector space

Sol
(
(n, d), x

)
=

C F−→ g

∣∣∣∣∣∣
F is holomorphic
F (z + 1) = XF (z)X−1

F (z + τ) = ϕx(z)Y F (z)Y −1

 .

Proposition 5.4. The following diagram

A
∣∣
x

x

��

H0
(
A(x)

)resAx (w)
oo

evAy
//



��

A
∣∣
y

y

��
g Sol

(
(n, d), x

)resxoo
evy

// g

is commutative, where for F ∈ Sol
(
(n, d), x

)
we have:

resx(F ) =
F (x)
θ′
(

1+τ
2

) and evy(F ) =
F (y)

θ
(
y − x+ 1+τ

2

) .
The linear isomorphism  is induced by the pull-back map π∗.

Comment on the proof. This result can be proven along the same lines as in [14, Section
4.2], see in particular [14, Corollary 4.2.1], hence we omit the details here. �

Now we are ready to prove the main result of this section.

Theorem 5.5. The solution r(E,(n,d))(x, y) of the classical Yang–Baxter equation (1) con-
structed in Section 4, is given by the following expression:

(48) r(E,(n,d))(x, y) =
∑

(k,l)∈I

exp
(
−2πid

n
kv
)
σ
(d
n

(
l − kτ

)
, v
)
Z∨k,l ⊗ Zk,l,

where v = x− y and σ(u, z) is the Kronecker elliptic function (7).

Proof. We first have to compute an explicit basis of the vector space Sol
(
(n, d), x

)
. For

this, we write:

F (z) =
∑

(k,l)∈I

fk,l(z)Zk,l.

The condition F ∈ Sol
(
(n, d), x

)
yields the following constraints on the coefficients fk,l:

(49)
{
fk,l(z + 1) = εkfk,l(z)
fk,l(z + τ) = εlϕx(z)fk,l(z).

It follows from Lemma 5.3 that the space of solutions of the system (49) is one–dimensional
and generated by the holomorphic function

fk,l(z) = exp
(
−2πid

n
kz
)
θ
(
z +

1 + τ

2
− x− d

n
(kτ − l)

)
.
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From Proposition 5.4 and Lemma 5.2 it follows that the solution r(E,(n,d))(x, y) is given
by the following formula:

r(E,(n,d))(x, y) =
∑

(k,l)∈I

rk,l(v)Z∨k,l ⊗ Zk,l,

where v = y − x and

rk,l(v) = exp
(
−2πid

n
kv
)θ′(1 + τ

2

)
θ
(
v +

1 + τ

2
− d

n
(kτ − l)

)
θ
(
−d
n

(kτ − l)
)
θ(v)

.

Relation (47) implies that

rk,l(v) = exp
(
−2πid

n
kv
) θ̄′(0)θ̄

(
v − d

n
(kτ − l)

)
θ̄
(
−d
n

(kτ − l)
)
θ̄(v)

Let σ(u, z) be the Kronecker elliptic function (7). It remains to observe that formula (48)
follows now from the identity

σ(u, x) =
θ̄′(0)θ̄1(u+ x)
θ̄(u)θ̄(x)

.

�

6. Vector bundles on the cuspidal Weierstraß curve and the classical
Yang–Baxter equation

The goal of this section is to derive an explicit algorithm to compute the solution
r(E,(n,d)) of (1), corresponding to a pair of coprime integers 0 < d < n and the cuspidal
Weierstraß curve E, which has been constructed in Section 4.

6.1. Some results on vector bundles on singular curves. We first recall some general
technique to describe vector bundles on singular projective curves, see [6, 10, 18] and
especially [14, Section 5.1].

Let X be a reduced singular (projective) curve, π : X̃ −→ X its normalisation, I :=
HomO

(
π∗(OX̃),O

)
= AnnO

(
π∗(OX̃)/O

)
the conductor ideal sheaf. Denote by η : Z =

V (I) −→ X the closed Artinian subscheme defined by I (its topological support is pre-
cisely the singular locus of X) and by η̃ : Z̃ −→ X̃ its preimage in X̃, defined by the
Cartesian diagram

(50)
Z̃

η̃
//

π̃

��

X̃

π

��

Z
η

// X.

In what follows we shall denote ν = ηπ̃ = πη̃.

In order to relate vector bundles on X and X̃ we need the following construction.
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Definition 6.1. The category Tri(X) is defined as follows.

• Its objects are triples
(
F̃ ,V, θ

)
, where F̃ ∈ VB(X̃), V ∈ VB(Z) and

θ : π̃∗V −→ η̃∗F̃
is an isomorphism of O

Z̃
–modules.

• The set of morphisms HomTri(X)

(
(F̃1,V1, θ1), (F̃2,V2, θ2)

)
consists of all pairs (f, g),

where f : F̃1 −→ F̃2 and g : V1 −→ V2 are morphisms of vector bundles such that
the following commutative

π̃∗V1
θ1 //

π̃∗(g)

��

η̃∗F̃1

η̃∗(f)

��

π̃∗V2
θ2 // η̃∗F̃2

is commutative.

The importance of Definition 6.1 is explained by the following theorem.

Theorem 6.2. Let X be a reduced curve. Then the following results are true.
• Let F : VB(X) −→ Tri(X) be the functor assigning to a vector bundle F the triple

(π∗F , η∗F , θF ), where θF : π̃∗(η∗F) −→ η̃∗(π∗F) is the canonical isomorphism.
Then F is an equivalence of categories.
• Let G : Tri(X) −→ Coh(X) be the functor assigning to a triple (F̃ ,V, θ) the coher-

ent sheaf F := ker
(
π∗F̃ ⊕ η∗V

(c, −θ̄)−−−−→ ν∗η̃
∗F̃
)
, where c = cF̃ is the canonical mor-

phism π∗F̃ −→ π∗η̃∗η̃
∗F̃ = ν∗η̃

∗F̃ and θ̄ is the composition η∗V
can−→ η∗π̃∗π̃

∗V =−→
ν∗π̃
∗V ν∗(θ)−−−→ ν∗η̃

∗F̃ . Then the coherent sheaf F is locally free. Moreover, the func-
tor G is quasi-inverse to F.

A proof of this Theorem can be found in [10, Theorem 1.3]. �

Let T =
(
F̃ ,V, θ

)
be an object of Tri(X). Consider the morphism

conj(θ) : End
Z̃

(π̃∗V) −→ End
Z̃

(η̃∗F̃),

sending a local section ϕ to θ ϕ θ−1. Then we have the following result.

Proposition 6.3. Let F := G(T ). Then we have:

EndX(F) ∼= G
(
End

X̃
(F̃), EndZ(V), conj(θ)

)
,

where conj(θ) is the morphism making the following diagram

π̃∗EndZ(V)
conj(θ)

//

can

��

η̃∗End
X̃

(F̃)

can

��

End
Z̃

(π̃∗V)
conj(θ)

// End
Z̃

(η̃∗F̃)

commutative. Similarly, we have: Ad(F) ∼= G
(
Ad(F̃),Ad(V), conj(θ)

)
.



VECTOR BUNDLES AND YANG–BAXTER EQUATION 31

A proof of Proposition 6.3 can be deduced from Theorem 6.2 using the standard technique
of sheaf theory and is therefore omitted.

6.2. Simple vector bundles on the cuspidal Weierstraß curve. Now we recall the
description of the simple vector bundles on the cuspidal Weierstraß curve following the
approach of Bodnarchuk and Drozd [7], see also [14, Section 5.1.3].

1. Throughout this section, E = V (wv2 − u3) ⊆ P2 is the cuspidal Weierstraß curve.

2. Let π : P1 −→ E be the normalization of E. We choose homogeneous coordinates
(z0 : z1) on P1 in such a way that π

(
(0 : 1)

)
is the singular point of E. In what follows,

we denote ∞ = (0 : 1) and 0 = (1 : 0). Abusing the notation, for any x ∈ k we also
denote by x ∈ Ĕ the image of the point x̃ = (1 : x) ∈ P1, identifying in this way Ĕ with
A1 = P1 \ {∞} =: U∞. Let t = z0

z1
, then we have: k[U∞] = k[t]. Let R = k[ε]/ε2 and

k[t]→ R be the canonical projection. Then in the notation of the previous subsection we
have: Z ∼= Spec(k) and Z̃ ∼= Spec(R).

3. By the theorem of Birkhoff–Grothendieck, for any F ∈ VB(E) we have:

π∗F ∼=
⊕
c∈Z
OP1(c)⊕nc .

A choice of homogeneous coordinates on P1 yields two distinguished sections z0, z1 ∈
H0
(
OP1(1)

)
. Hence, for any e ∈ N we get a distinguished basis of the vector space

HomP1

(
OP1 ,OP1(e)

)
given by the monomials ze0, z

e−1
0 z1, . . . , z

e
1. Next, for any c ∈ Z we fix

the following isomorphism

ζOP1 (c) : OP1(c)
∣∣
Z̃
−→ O

Z̃

sending a local section p to p
zc1
∣∣
Z̃

. Thus, for any vector bundle F̃ =
⊕
c∈Z
OP1(c)⊕nc of rank

n on P1 we have the induced isomorphism ζF̃ : F̃
∣∣
Z̃
−→ O⊕n

Z̃
.

4. Consider the set Σ :=
{

(a, b) ∈ N× N
∣∣ gcd(a, b) = 1

}
and for any (a, b) ∈ Σ \

{
(1, 1)

}
denote:

ε(a, b) =
{

(a− b, b), a > b
(a, b− a), a < b.

Now, starting with a pair (e, d) ∈ Σ, we construct a finite sequence of elements of Σ ending
with (1, 1), defined as follows. We put (a0, b0) = (e, d) and, as long as (ai, bi) 6= (1, 1), we
set (ai+1, bi+1) = ε(ai, bi). Let

(51) J(1,1) =
(

0 1
0 0

)
∈ Mat2×2(C).

Assume that the matrix

J(a,b) =
(
A1 A2

0 A3

)
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with A1 ∈ Mata×a(k) and A3 ∈ Matb×b(k) has already been defined. Then for (p, q) ∈ Σ
such that ε(p, q) = (a, b), we set

(52) J(p,q) =



 0 1 0
0 A1 A2

0 0 A3

 , p = a

 A1 A2 0
0 A3 1

0 0 0

 , q = b.

Hence, to any tuple (e, d) ∈ Σ we can assign a certain uniquely determined matrix J =
J(e,d) of size (e+d)× (e+d), obtained by the above recursive procedure from the sequence{

(e, d), ..., (1, 1)
}

.

Example 6.4. Let (e, d) = (3, 2). Then the corresponding sequence of elements of Σ is{
(3, 2), (1, 2), (1, 1)

}
and the matrix J = J(3,2) is constructed as follows

(
0 1
0 0

)
→

 0 1 0
0 0 1
0 0 0

→


0 1 0 0 0
0 0 1 1 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0

 .

5. Given 0 < d < n mutually prime and λ ∈ k, we take the matrix

(53) Θλ = Θn,d,λ = 1+ ε
(
λ1+ J(e,d)

)
∈ GLn(R), e = n− d.

The matrix Θλ defines a morphism θ̄λ : η∗OZ −→ ν∗OZ̃ . Let P̃ = P̃n,d := O⊕eP1 ⊕OP1(1)⊕d.
Consider the following vector bundle Pλ = Pn,d,λ on E:

(54) 0 −→ Pλ
( ıq )
−→ π∗P̃ ⊕ η∗O⊕nZ

(ζP̃ , −θ̄λ)−−−−−−→ ν∗O⊕n
Z̃
−→ 0.

Then Pλ is simple with rank n and degree d. Moreover, in an appropriate sense,
{
Pλ
}
λ∈k∗

is a universal family of simple vector bundles of rank n and degree d on the curve E, see
[14, Theorem 5.1.40]. The next result follows from Proposition 6.3.

Corollary 6.5. Let 0 < d < n be a pair of coprime integers, e = n − d and J = J(e,d) ∈
Matn×n(k) be the matrix given by the recursion (52). Consider the vector bundle A given
by the following short exact sequence

(55) 0 −→ A
( r )
−→ π∗Ã ⊕ η∗

(
Ad(O⊕nZ )

) (ζAd(P̃), −conj(Θ0)
)

−−−−−−−−−−−−→ η∗
(
Ad(O⊕n

Z̃
)
)
−→ 0,

where Ã = Ad(P̃). Then A ∼= Ad(P0). Moreover, for any trivialization ξ : P̃
∣∣
U∞
−→ O⊕nU∞

we get the following isomorphisms of sheaves of Lie algebras

(56) A
∣∣
Ĕ

−→ π∗
(
Ad(P̃)

)∣∣
Ĕ
−→ π∗Ad

(
O⊕nU∞

) can−→ Ad
(
O⊕n
Ĕ

)
,

where the second morphism is induced by ξ.
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6. In the above notation, for any x ∈ Ĕ ∼= A1 the corresponding line bundle OE
(
[x]
)

is
given by the triple

(
OP1(1),k, 1− x · ε

)
, see [14, Lemma 5.1.27].

6.3. From simple vector bundles on the cuspidal Weierstraß curve to solutions
of the classical Yang–Baxter equation. In this subsection we derive the recipe to
compute the solution of the classical Yang–Baxter equation corresponding to the triple
(E, (n, d)), where E is the cuspidal Weierstraß curve and 0 < d < n is a pair of coprime
integers. Keeping the same notation as in Subsection 6.2, we additionally introduce the
following one.

1. We choose the following regular differential one-form w := dz on E, where z = z1
z0

is a
coordinate on the open chart U0.

2. Let g[z] := g⊗k[z]. Then for any x ∈ k we have the k–linear evaluation map φx :
g[z] → g, where g[z] 3 azp 7→ xp · a ∈ g for a ∈ g. For x 6= y ∈ k consider the following
k–linear maps:

(57) resx := φx and evy :=
1

y − x
φy.

3. Let (e, d) be a pair of coprime positive integers, n = e + d and a := Matn×n(k). For

the block partition of a induced by the decomposition n = e + d, consider the following
subspace of g[z]:

(58) Ve,d =
{
F =

(
W X
Y Z

)
+
(
W ′ 0
Y ′ Z ′

)
z +

(
0 0
Y ′′ 0

)
z2

}
.

For a given F ∈ Ve,d denote

(59) F0 =
(
W ′ X
Y ′′ Z ′

)
and Fε =

(
W 0
Y ′ Z

)
.

4. For x ∈ k consider the following subspace of Ve,d:

(60) Sol
(
(e, d), x

)
:=
{
F ∈ Ve,d

∣∣∣ [F0, J ] + xF0 + Fε = 0
}
.

The following theorem is the main result of this section.

Theorem 6.6. Let A be the sheaf of Lie algebras given by (55) and x, y ∈ Ĕ a pair of
distinct points. Then there exists an isomorphism of Lie algebras A : Γ(Ĕ,A)→ g[z] and
a k–linear isomorphism  : H0

(
A(x))→ Sol

(
(e, d), x

)
such that the following diagram

A
∣∣
x

Ax

��

H0
(
A(x)

)resAx (w)
oo

evAy
//



��

A
∣∣
y

Ay

��
g Sol

(
(e, d), x

)resxoo
evy

// g

is commutative.
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Proof. We first introduce the following (final) portion of notations.

1. For x ∈ k consider the section σ = z1 − xz0 ∈ H0
(
OP1(1)

)
. Using the identification

k
∼=−→ U0, k 3 x 7→ x̃ := (1 : x) ∈ P1, the section σ induces an isomorphism of line bundles

tσ : OP1

(
[x̃]
)
−→ OP1(1).

2. For any c ∈ Z fix the trivialization ξOP1 (c) : OP1(c)
∣∣
U0
−→ OU0 given on the level of

local sections by the rule p 7→ p
zc0
∣∣
U0

. Thus, for any vector bundle F̃ = ⊕OP1(c)⊕nc of

rank n we get the induced trivialization ξF̃ : F̃
∣∣
U0
−→ O⊕nU0

.

3. Let Ẽ =
(
Ẽ1 Ẽ2

Ẽ3 Ẽ4

)
be the sheaf of algebras on P1 with Ẽ1 = Mate×e(OP1), Ẽ4 =

Matd×d(OP1), Ẽ2 = Mate×d(OP1(−1)) and Ẽ3 = Matd×e(OP1(1)). The ring structure
on Ẽ is induced by the canonical isomorphism OP1(−1) ⊗ OP1(1) can−→ OP1 . Let Ã =
ker
(
Ẽ tr−→ OP1

)
, where tr only involves the diagonal entries of Ẽ and is given by the

matrix (1, 1, . . . , 1). Of coarse, Ẽ ∼= End(P̃) and Ã ∼= Ad(P̃) for P̃ = O⊕eP1 ⊕OP1(1)⊕d.

4. Consider the sheaf of algebras E on E given by the short exact sequence

0 −→ E
( r )
−→ π∗Ẽ ⊕ η∗

(
Mn(Z)

) (ζẼ , −conj(Θ0)
)

−−−−−−−−−−→ η∗
(
Mn(Z̃)

)
−→ 0,

where Mn(T ) := EndT (O⊕nT ) for a scheme T . Of coarse E ∼= EndE(P0), where P0 is the
simple vector bundle of rank n and degree d on E given by (54).

5. In the above notation we have:

(61) H0
(
Ẽ(1)

)
=
{
F =

(
z0W + z1W

′ X
z2

0Y + z0z1Y
′ + z2

1Y
′′ z0Z + z1Z

′

)}
,

where W,W ′ ∈ Mate×e(k), Z,Z ′ ∈ Matd×d(k), Y, Y ′, Y ′′ ∈ Matd×e(k) and X ∈ Mate×d(k).

6. For any F ∈ H0
(
Ẽ(1)

)
as in (61) we denote:

(62) resx(F ) = F (1, x) and evy(F ) =
1

y − x
F (1, y).

7. Finally, let E : E
∣∣
Ĕ
−→ Mn(Ĕ) be the trivialization induced by the trivialization

ξẼ : Ẽ
∣∣
U0
−→Mn(U0). This trivialization actually induces an isomorphism of Lie algebras

A : Γ(Ĕ,A) −→ g[z] we are looking for.
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Now observe that the following diagram is commutative:

(63)

A
∣∣
x

π̂∗x
��

Ax

��

H0
(
A(x)

)resAx (w)
oo

evAy
//

π̂∗

��

A
∣∣
y

π̂∗y
��

Ay

��

Ã
∣∣
x̃_�

��

H0
(
Ã(x̃)

) evÃỹ
//

resÃx̃ (w)
oo

� _

��

Ã
∣∣
ỹ� _

��

Ẽ
∣∣
x̃

ξẼx̃
��

H0
(
Ẽ(x̃)

)resẼx̃(w)
oo

evẼỹ
//

(tσ)∗
��

Ẽ
∣∣
ỹ

ξẼỹ
��

g � � // a H0
(
Ẽ(1)

)resxoo
evy

// a g .? _oo

Following the notation of (55), the composition

γA : π∗A π∗(ı)−→ π∗π∗Ã
can−→ Ã

is an isomorphism of vector bundles on P1. The morphisms π̂∗x and and π̂∗y are the maps,
obtained by composing π∗ and γA and then taking the induced map in the corresponding
fibers. Similarly, π̂∗ is the induced map of global sections. The commutativity of both
top squares of (63) follows from the “locality” of the morphisms resAx (w) and evAy , see [14,
Proposition 2.2.8 and Proposition 2.2.12] as well as [14, Section 5.2] for a detailed proof.

The commutativity of both middle squares of (63) is obvious. The commutativity of both
lower squares follows from [14, Corollary 5.2.1] and [14, Corollary 5.2.2] respectively. In
particular, the explicit formulae (62) for the maps resx and evy are given there. Finally,
see [14, Subsection 5.2.2] for the proof of commutativity of both side diagrams.

Now we have to describe the image of the linear map H0
(
A(x)

)
−→ H0

(
Ẽ(1)

)
obtained

by composing of the three middle vertical arrows in (63). It is convenient to describe first
the image of the corresponding linear map H0

(
E(x)

)
−→ H0

(
Ẽ(1)

)
. Recall that

• The sheaf E is given by the triple
(
Ẽ ,Matn(k), conj(Θ0)

)
.

• The line bundle OE
(
[x]
)

is given by the triple
(
OP1(1),k,1− x · ε

)
.

• The tensor product in VB(E) corresponds to the tensor product in Tri(E).

These facts lead to the following consequence. Let F ∈ H0
(
Ẽ(1)

)
be written as in (61).

Then F belongs to the image of the linear map H0
(
E(x)

)
−→ H0

(
Ẽ(1)

)
if any only if

there exists some A ∈ a such that the following equality in a[ε] is true:

(64) F
∣∣
Z̃

= (1− x · ε) ·Θ0 ·A ·Θ−1
0 ,

where F
∣∣
Z̃

:= F0 + εFε and F0, Fε are given by (59). Since Θ−1
0 = 1− εJ(e,d), the equation

(64) is equivalent to the following constraint:[
F0, J(e,d)

]
+ xF0 + Fε = 0.

See also [14, Subsection 5.2.5] for a computation in a similar situation.
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Finally, consider the following commutative diagram:

0 // H0
(
A(x)

)
//

π̂
��

H0
(
E(x)

)
//

π̂
��

H0
(
OE(x)

)
//

π̂
��

0

0 // H0
(
Ã(x̃)

)
//

(tσ)∗
��

H0
(
Ẽ(x̃)

)
//

(tσ)∗
��

H0
(
OP1(x̃)

)
//

(tσ)∗
��

0

0 // H0
(
Ã(1)

)
// H0

(
Ẽ(1)

) T // H0
(
OP1(1)

)
// 0,

where

T
((

A0z0 +A1z1 ∗
∗ B0z0 +B1z1

))
=
(
tr(A0) + tr(B0)

)
z0 +

(
tr(A1) + tr(B1)

)
z1.

Let Sol
(
(e, d), x

)
:= Im

(
H0
(
A(x)

)
−→ H0

(
Ẽ(1)

))
. Note that we have

Sol
(
(e, d), x

)
= Ker(T ) ∩ Im

(
H0
(
E(x)

)
−→ H0

(
Ẽ(1)

))
Let J : H0

(
A(x)

)
−→ g[z] be the composition of H0

(
A(x)

)
−→ H0

(
Ẽ(1)

)
with the

embedding H0
(
Ẽ(1)

)
−→ a[z] (sending z0 to 1 and z1 to z). Identifying Sol

(
(e, d), x

)
with

the corresponding subspace of g[z], we conclude the proof of Theorem 6.6. �

Algorithm 6.7. Let E be the cuspidal Weierstraß curve, 0 < d < n a pair of coprime
integers and e = n − d. The solution r(E,(n,d)) of the classical Yang–Baxter equation (1)
can be obtained along the following lines.

• First compute the matrix J = J(e,d) given by the recursion (52).
• For x ∈ k determine the k–linear subspace Sol

(
(e, d), x

)
⊂ g[z] introduced in (60).

• Choose a basis of g and compute the images of the basis vectors under the linear
map

g
res−1

x−→ Sol
(
(e, d), x

) evy−→ g .

Here, resx(F ) = F (x) and evy(F ) = 1
y − xF (y).

• For fixed x 6= y ∈ k∗, set r(E,(n,d))(x, y) = can−1
(
evy ◦ res−1

x

)
∈ g⊗ g, where can is

the canonical isomorphism of vector spaces

g⊗ g→ End(g), X ⊗ Y 7→
(
Z 7→ tr(XZ)Y

)
.

• Then r(E,(n,d)) is the solution of the classical Yang–Baxter equation (1) correspond-
ing to the triple (E, (n, d)). �

It will be necessary to have a more concrete expression for the coefficients of the tensor
r(E,(n,d)). In what follows, we take the standard basis {ei,j}1≤i 6=j≤n ∪ {hl}1≤l≤n−1 of the
Lie algebra g. Since the linear map resx : Sol

(
(e, d), x

)
→ g given by F 7→ F (x) is an

isomorphism, we have:{
res−1

x (ei,j) = ei,j +Gxi,j(z) 1 ≤ i 6= j ≤ n,
res−1

x (hl) = hl +Gxl (z) 1 ≤ l ≤ n− 1,
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where the elements Gxi,j(z), G
x
l (z) ∈ Ve,d are uniquely determined by the properties

(65) ei,j +Gxi,j(z), hl +Gxl (z) ∈ Sol
(
(e, d), x

)
, Gxi,j(x) = 0 = Gxl (x).

Lemma 6.8. In the notations as above, we have

r(E,(n,d))(x, y) =
1

y − x

c+

 ∑
1≤i 6=j≤n

ej,i ⊗Gxi,j(y)

+

 ∑
1≤l≤n−1

ȟl ⊗Gxl (y)

 ,
where ȟl is the dual of hl with respect to the trace form and c is the Casimir element in
g⊗ g. In particular, r(E,(n,d)) is a rational solution of (1) in the sense of [33, 35].

Proof. It follows directly from the definitions that evy ◦ res−1
x (ei,j) = 1

y − x
(
ei,j +Gxi,j(y)

)
1 ≤ i 6= j ≤ n

evy ◦ res−1
x (hl) = 1

y − x (hl +Gxl (y)) 1 ≤ l ≤ n− 1.

Since ej,i respectively ȟl is the dual of ei,j respectively hl with respect to the trace form
on g, the linear map can−1 acts as follows: End(g) 3

(
ei,j 7→ 1

y − x
(
ei,j +Gxi,j(y)

))
7→ ej,i ⊗ 1

y − x
(
ei,j +Gxi,j(y)

)
∈ g⊗ g

End(g) 3
(
hl 7→ 1

y − x (hl +Gxl (y))
)

7→ ȟl ⊗ 1
y − x (hl +Gxl (y)) ∈ g⊗ g

for 1 ≤ i 6= j ≤ n and 1 ≤ l ≤ n− 1. It remains to recall that the Casimir element in g⊗ g
is given by the formula

(66) c =
∑

1≤i 6=j≤n
ei,j ⊗ ej,i +

∑
1≤l≤n−1

ȟl ⊗ hl.

Lemma is proven. �

7. Frobenius structure on parabolic subalgebras

Definition 7.1 (see [29]). A finite dimensional Lie algebra f over k is Frobenius if there
exists a functional l̂ ∈ f∗ such that the skew-symmetric bilinear form

(67) f× f −→ k (a, b) 7→ l̂([a, b])

is non-degenerate.

Let (e, d) be a pair of coprime positive integers, n = e+d and p = pe be the e-th parabolic
subalgebra of g = sln(k), i.e.

(68) p :=
{(

A B
0 C

) ∣∣∣ A ∈ Mate×e(k), B ∈ Mate×d(k)
C ∈ Matd×d(k) and tr(A) + tr(C) = 0

}
.

The goal of this section is to prove the following result.

Theorem 7.2. Let J = J(e,d) be the matrix from (52). Then the pairing

(69) ωJ : p× p −→ k, (a, b) 7→ tr
(
J t · [a, b]

)
is non-degenerate. In other words, p is a Frobenius Lie algebra and

(70) lJ : p→ k, a 7→ tr(J t · a)
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is a Frobenius functional on p.

In this section, we shall use the following notations and conventions. For a finite dimen-
sional vector space w be denote by w∗ the dual vector space. If w = w1⊕w2 then we
have a canonical isomorphism w∗ ∼= w∗1⊕w∗2. For a functional ŵi ∈ w∗i , i = 1, 2 we denote
by the same symbol its extension by zero on the whole w.

Assume we have the following set-up.

• f is a finite dimensional Lie algebra.
• l ⊂ f is a Lie subalgebra and n ⊂ f is a commutative Lie ideal such that f = lu n,

i.e. f = l + n and l∩ n = 0.
• There exists n̂ ∈ n∗ such that for any n̂′ ∈ n∗ there exists l ∈ l such that n̂′ =
n̂
(
[−, l]) in f∗. Note that n̂

(
[l′, l]) = 0 for any l′ ∈ l, hence it is sufficient to check

that for any m ∈ n we have: n̂′(m) = n̂
(
[m, l]). The relation n̂′ = n̂

(
[−, l]) is

compatible with the above convention on zero extension of functionals from l to f.

First note the following easy fact.

Lemma 7.3. Let m̂ ∈ n∗ be any functional and s = sm̂ :=
{
l ∈ l

∣∣ f∗ 3 m̂([− , l]) = 0
}
.

Then s is a Lie subalgebra of l.

A version of the following result is due to Elashvili [19]. It was explained to us by Stolin.

Proposition 7.4. Let f = lu n and n̂ ∈ n∗ be as above. Assume there exists ŝ ∈ l∗ such
that its restriction on s = sn̂ is Frobenius. Then ŝ+ n̂ is a Frobenius functional on f.

Proof. Assume ŝ+ n̂ is not Frobenius. Then there exist l1 ∈ l and n1 ∈ n such that

f∗ 3 (ŝ+ n̂)
(
[l1 + n1, − ]

)
= 0.

It is equivalent to say that for all l2 ∈ l and n2 ∈ n we have:

(71) n̂
(
[l1, n2] + [n1, l2]

)
+ ŝ
(
[l1, l2]

)
= 0.

At the first step, take l2 = 0. Then the equality (71) implies that for all n2 ∈ n we have:
n̂
(
[l1, n2]

)
= 0. This means that f∗ 3 n̂

(
[− , l1]

)
= 0 and hence, by definition of s, l1 ∈ s.

Assume l1 6= 0. By assumption, ŝ
∣∣
s

is a Frobenius functional. Hence, there exists s1 ∈ s

such that ŝ
(
[l1, s1]

)
6= 0. Since s1 ∈ s, we have: n̂

(
[n1, s1]

)
= 0. Altogether, it implies:

(ŝ+ n̂)
(
[l1 + n1, s1]

)
= ŝ
(
[l1, s1]

)
6= 0.

Contradiction. Hence, l1 = 0 and the equation (71) reads as follows:

n̂
(
[n1, l2]

)
= 0 for all l2 ∈ l .

Assume n1 6= 0. Then there exists a functional n̂1 ∈ n∗ such that n̂1(n1) 6= 0. However,
by our assumptions, n̂1 = n̂

(
[− , l]

)
for some l ∈ l. But this implies that

n̂1(n1) = n̂
(
[n1, l]

)
6= 0.

We again obtain a contradiction. Thus, n1 = 0 as well, what finishes the proof. �
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Consider the following nilpotent subalgebras of g:

(72) n =
{
N =

(
0 A
0 0

) ∣∣∣A ∈ Mate×d(k)
}

n̄ =
{
N̄ =

(
0 0
Ā 0

) ∣∣∣A ∈ Matd×e(k)
}
.

Note the following easy fact.

Lemma 7.5. The linear map n̄ −→ n∗, N̄ 7→ tr
(
N̄ · −

)
is an isomorphism.

Next, consider the following Lie algebra

(73) l =
{
L =

(
L1 0
0 L2

) ∣∣∣ L1 ∈ Mate×e(k)
L2 ∈ Mate×e(k) tr(L1) + tr(L2) = 0

}
.

Obviously, p = lu n, p is a Lie subalgebra of p and n is a commutative Lie ideal in p.

Lemma 7.6. Let N̄ ∈ n̄ and n̂ = tr(N̄ · − ) ∈ n∗ be the corresponding functional. Then
the condition that for any n̂′ ∈ n∗ there exists L ∈ l such that n̂′ = n̂

(
[L,−]) in f∗ reads as

follows: for any N̄ ′ ∈ n̄ there exists L ∈ l such that N̄ ′ = [N̄ , L].

Proof. By Lemma 7.5 there exists N̄ ′ ∈ n̄ such that û = tr(N̄ ′ · − ). Note that

tr
(
N̄ · [L, − ]

)
= tr

(
[N̄ , L] · −

)
.

The equality of functionals tr(N̄ ′ · − ) = tr
(
[N̄ , L] · −

)
implies that N̄ ′ = [N̄ , L]. �

Proof of Theorem 7.2. We prove this result by induction on

(e, d) ∈ Σ =
{

(a, b) ∈ N× N
∣∣ gcd(a, b) = 1

}
.

Basis of induction. Let (e, d) = (1, 1). Then we have: J = J(1,1) =
(

0 1
0 0

)
. Let

a =
(
α1 α2

0 −α1

)
and b =

(
β1 β2

0 −β1

)
be two elements of p. Then we have:

ωJ(a, b) = 2 · (α1β2 − β1α2).

This form is obviously non-degenerate.

Induction step. Assume the result is proven for (e, d) ∈ Σ. Recall that for

J(e,d) =
(
A1 A2

0 A3

)
with A1 ∈ Mate×e(k) and A3 ∈ Matd×d(k) we have:

J(e,d+e) =

 0 1 0
0 A1 A2

0 0 A3

 and J(d+e,d) =

 A1 A2 0
0 A3 1

0 0 0

 .

For simplicity, we shall only treat the implication (e, d) =⇒ (e, d+e). Consider the matrix

N̄ =

 0 0 0
1 0 0
0 0 0

 ∈ n̄.

Then the following facts follows from a direct computation:
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• N̄ satisfies the condition of Lemma 7.6.
• The Lie subalgebra s = sN̄ has the following description:

(74) s =


 A 0 0

0 A B
0 0 C

∣∣∣ A ∈ Mate×e(k), B ∈ Mate×d(k),
C ∈ Matd×d(k) 2tr(A) + tr(C) = 0

 .

The implication (e, d) =⇒ (e, d+ e) follows from Proposition 7.4 and the following result.

Lemma 7.7. Let Ĵ =

 0 0 0
0 A B
0 0 C

. Then there exists an isomorphism of Lie algebras

ν : p −→ s such that for any P ∈ p we have: tr(J t · P ) = tr
(
Ĵ t · ν(P )

)
.

The proof of this lemma is lengthy but completely elementary, therefore we leave it to an
interested reader. Theorem 7.2 is proven. �

Lemma 7.8. For any G ∈ g there exist uniquely determined P ∈ p and N ∈ n such that

G =
[
J t, P

]
+N.

Proof. Consider the functional tr(G · − ) ∈ p∗. Since the functional lJ ∈ p∗ from (70) is
Frobenius, there exists a uniquely determined P ∈ p such that tr(G · − ) = tr

(
[J t, P ] · −

)
viewed as elements of p∗. Note that we have a short exact sequence of vector spaces

0 −→ n
ı−→ g∗

ρ−→ p∗ −→ 0,

where ρ maps a functional on g to its restriction on p and ı(N) = tr(N · − ). Thus,
for some uniquely determined N ∈ n, we get the following equality in g∗: tr(G · − ) =
tr
(
([J t, P ] +N) · − ). Since the trace form is non-degenerate on g, we get the claim. �

8. Review of Stolin’s theory of rational solutions of the classical
Yang–Baxter equation

In this section, we review Stolin’s results on the classification of rational solutions of the
classical Yang–Baxter equation for the Lie algebra g = sln(C), see [33, 34, 35].

Definition 8.1. A solution r : (C2, 0) −→ g⊗ g of (1) is called rational if it is non-
degenerate, unitary and of the form

(75) r(x, y) =
c

y − x
+ s(x, y),

where c ∈ g⊗ g is the Casimir element and s(x, y) ∈ g[x]⊗ g[y].

8.1. Lagrangian orders. Let ĝ = g((z−1)). Consider the following non-degenerate C–
bilinear form on ĝ:

(76) (− , − ) : ĝ× ĝ −→ C, (a, b) 7→ resz=0

(
tr(ab)

)
.

Definition 8.2. A Lie subalgebra w ⊂ ĝ is a Lagrangian order if the following three
conditions are satisfied.

• wu g[z] = ĝ.
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• w = w⊥ with respect to the pairing (76).
• There exists p ≥ 0 such that z−p−2 gJz−1K ⊆ w.

Observe that from this Definition automatically follows that

w = w⊥ ⊆
(
z−p−2 gJz−1K

)⊥ = zp gJz−1K.

Moreover, the restricted pairing

(77) (− , − ) : w× g[z] −→ C

is non-degenerate, too. Let
{
αl
}n2−1

l=1
be a basis of g and αl,k = αlz

k ∈ g[z] for 1 ≤ l ≤
n2 − 1, k ≥ 0. Let βl,k := α∨l,k ∈ w be the dual element of αl,k ∈ g[z] with respect to the
pairing (77). Consider the following formal power series:

(78) rw(x, y) =
∞∑
k=0

xk

n2−1∑
l=1

αl ⊗ βl,k(y)

 .

Theorem 8.3 (see [33, 34]). The following results are true.
• The formal power series (78) converges to a rational function.
• Moreover, rw is a rational solution of (1) satisfying Ansatz (75).
• A different choice of a basis of g leads to a gauge-equivalent solution.
• Other way around, for any solution r of (1) satisfying (75), there exists a La-

grangian order w ⊂ ĝ such that r = rw.
• Let σ be any C[z]–linear automorphism of g[z] and u = σ(w) ⊂ ĝ be the transformed

order. Then the solutions rw and ru are gauge-equivalent:

ru(x, y) =
(
σ(x)⊗ σ(y)

)
rw(x, y).

• The described correspondence w 7→ rw provides a bijection between the gauge
equivalence classes of rational solutions of (1) satisfying (75) and the orbits of
Lagrangian orders in ĝ with respect to the action of of AutC[z]

(
g[z]
)
.

Example 8.4. Let w = z−1 gJz−1K. It is easy to see that w is a Lagrangian order in ĝ.
Let

{
αl
}n2−1

l=1
be any basis of g. Then we have: βl,k :=

(
αlz

k
)∨ = α∨l z

−k−1. This implies:

(79) rw(x, y) =
∞∑
k=0

xk
n2−1∑
l=1

αl ⊗ α∨l y−k−1 =
c

y − x
,

where c ∈ g⊗ g is the Casimir element. The tensor-valued function rw is the celebrated
Yang’s solution of the classical Yang–Baxter equation (1).

Lemma 8.5. For any 1 ≤ l ≤ n2− 1 and k ≥ 0 there exists a unique wl,k ∈ g[z] such that

βl,k = z−k−1α∨l + wl,k.

Proof. It is an easy consequence of the assumption wu g[z] = ĝ and the fact that the
pairing (77) is non-degenerate. �
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8.2. Stolin triples. As we have seen in the previous subsection, the classification of
rational solutions of (1) reduces to a description of Lagrangian orders. This correspondence
is actually valid for arbitrary simple complex Lie algebras [34]. In the special case g =
sln(C), there is an explicit parametrization of Lagrangian orders in the following Lie–
theoretic terms [33, 35].

Definition 8.6. A Stolin triple (l, k, ω) consists of
• a Lie subalgebra l ⊆ g,
• an integer k such that 0 ≤ k ≤ n,
• a skew symmetric bilinear form ω : l× l→ C which is a 2-cocycle, i.e.

ω
(
[a, b] , c

)
+ ω

(
[b, c] , a

)
+ ω

(
[c, a] , b

)
= 0

for all a, b, c ∈ l,
such that for the k-th parabolic Lie subalgebra pk of g (with p0 = pn = g) the following
two conditions are fulfilled:

• l + pk = g,
• ω is non-degenerate on (l ∩ pk)× (l ∩ pk).

According to Stolin [33], up to the action of AutC[z]

(
g[z]
)
, any Lagrangian order in ĝ is

given by some triple (l, k, ω). In this article, we shall only need the case l = g.

Algorithm 8.7. One can pass from a Stolin triple (g, k, ω) to the corresponding La-
grangian order w ⊂ g((z−1)) in the following way.

• Consider the following linear subspace

(80) vω =
{
z−1a+ b

∣∣ tr(a · − ) = ω(b, − ) ∈ l∗
}
⊂ z−1 gu l ⊂ z−1 gu g ⊂ ĝ.

• The subspace vω defines the following linear subspace

(81) w′ = z−2 gJz−1Ku vω ⊂ ĝ.

• Consider the matrix

(82) η =
(
1k×k 0

0 z · 1(n−k)×(n−k)

)
∈ GLn

(
C[z, z−1]

)
.

and put:

(83) w = w(l,k,ω) := η−1 w′ η ⊂ ĝ.

The next theorem is due to Stolin [33, 34], see also [15, Section 3.2] for a more detailed
account of the theory of rational solutions of the classical Yang–Baxter equation (1).

Theorem 8.8. The following results are true.
• The linear subspace w ⊂ ĝ is a Lagrangian order.
• For any Lagrangian order w ⊂ ĝ there exists α ∈ AutC[z]

(
g[z]
)

and a Stolin triple
(l, k, ω) such that w = α

(
w(l,k,ω)

)
.

• Two Stolin triples (l, k, ω) and (l′, k, ω′) define equivalent Lagrangian orders in ĝ
with respect to the AutC[z](g[z])–action if and only if there exists a Lie algebra
automorphism γ of g such that γ(l) = l′ and γ∗

(
[ω]
)

= ω′ ∈ H2(l).
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Remark 8.9. Unfortunately, the described correspondence between Stolin triples and
Lagrangian orders has the following defect: the parameter k is not an invariant of w. This
leads to the fact that two completely different Stolin triples (l, k, ω) and (l′, k′, ω′) can
define the same Lagrangian order w.

Remark 8.10. Consider an arbitrary even-dimensional abelian Lie subalgebra b ⊂ g
equipped with an arbitrary non-degenerate skew-symmetric bilinear form ω : b× b −→ C.
Obviously, ω is a two-cocycle and we get a Stolin triple (b, 0, ω). Two such triples (b, 0, ω)
and (b′, 0, ω′) define equivalent Lagrangian orders if and only if there exists α ∈ Aut(g)
such that α(b) = b′. However, the classification of abelian subalgebras in g is essentially
equivalent to the classification of finite dimensional C[u, v]–modules. By a result of Drozd
[17], the last problem is representation-wild. Thus, as it was already pointed out by Belavin
and Drinfeld in [3, Section 7], one can not hope to achieve a full classification of all rational
solutions of the classical Yang–Baxter equation (1).

Remark 8.11. In this article, we only deal with those Stolin triple (g, e, ω) for which
l = g. It leads to the following significant simplifications. Consider the linear map

(84) χ : g
lω−→ g∗

tr−→ g,

where lω(a) = ω(a, − ) and tr is the isomorphism induced by the trace form. Then

vω =
〈
α+ z−1χ(α)

〉
α∈g

.

Next, by Whitehead’s Theorem, we have the vanishing H2(g) = 0. This means that for
any two-cocycle ω : g× g −→ C there exist a matrix K ∈ Matn×n(C) such that for all
a, b ∈ g we have: ω(a, b) = ωK(a, b) := tr(Kt ·

(
[a, b]

)
. Let 1 ≤ e ≤ n be such that

gcd(n, e) = 1. Then the parabolic subalgebra pe is Frobenius. If (g, e, ω) is a Stolin triple
then ωK has to define a Frobenius pairing on pe. If K ′ ∈ Matn×n(C) is any other matrix
such that ωK′ is non-degenerate on pe× pe then the triples (g, e, ωK) and (g, e, ωK′) define
gauge equivalent solutions of the classical Yang–Baxter equation. This means that the
gauge equivalence class of the solution r(g,e,ω) does not depend on a particular choice of ω!
However, in order to get nice closed formulae for r(g,e,ω), we actually need the canonical
matrix J(e,d) ∈ Matn×n(C) constructed by recursion (52).

9. From vector bundles to the cuspidal Weierstraß curve to Stolin
triples

For reader’s convenience, we recall once again our notation.
• E is the cuspidal Weierstraß curve.
• (e, d) is a pair of positive coprime e integers and n = e+ d.
• g = sln(C), a = gln(C), p = pe ⊂ g is the e-th parabolic subalgebra of g. We have

a decomposition p = lu n, where n (respectively l) is defined by (72) (respectively
(73)), n̄ is the transpose of n.
• J = J(e,d) ∈ a is the matrix constructed by recursion (52) and ω : p× p −→ C is

the corresponding Frobenius pairing (69).
• For 1 ≤ i, j ≤ n, let ei,j ∈ a be the corresponding matrix unit, hl = el,l − el+1,l+1

for 1 ≤ l ≤ n− 1 and ȟl be its dual with respect to the trace form. Let c ∈ g⊗ g
be the Casimir element with respect to the trace form.
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• Finally, the decomposition n = e+ d divides the set
{

(i, j) ∈ Z2 | 1 ≤ i, j ≤ n
}

in

four parts, according to the following convention:
(

IV I
III II

)
.

The main results of this section are the following:

• We derive an explicit formula for the rational solution r(g,e,ω) of the classical Yang–
Baxter equation (1) attached to Stolin triple (g, e, ω).
• We prove that the solutions r(E,(n,d)) and r(g,e,ω) are gauge–equivalent.

9.1. Description of the rational solution r(g,e,ω).

Lemma 9.1. The linear map χ : g −→ g from (84) is given by the rule a 7→
[
J t, a

]
.

Proof. For a, b ∈ g we have: ω(a, b) = tr
(
J t · [a, b]

)
= tr

(
[J t, a] · b

)
. Hence, the linear map

lω : g −→ g∗ is given by the formula a 7→ tr
(
[J t, a] · −

)
. This implies the claim. �

Lemma 9.2. Let w ⊂ ĝ be the Lagrangian order constructed from Stolin triple (g, e, ω)
following Algorithm 8.7. Then we have the following inclusions:

w1 := z−3n̄Jz−1K⊕ z−2 lJz−1K⊕ z−1nJz−1K ⊂ w ⊂ z−1n̄Jz−1K⊕ lJz−1K⊕ z nJz−1K := w2 .

Proof. This result is an immediate consequence of the inclusions z−2 gJz−1K ⊂ w′ ⊂ gJz−1K,
and the fact that w = η−1 w′ η. �

Lemma 9.3. For any 1 ≤ i 6= j ≤ n, 1 ≤ l ≤ n − 1 and k ≥ 0, consider the elements
u(i,j;k), u(l;k) ∈ g[z] such that

(85) (zkei,j)∨ = z−k−1ej,i + u(i,j;k) ∈ w and (zkȟl)∨ = z−k−1hl + u(l;k) ∈ w .

Then the following statements are true.

• For all 1 ≤ i 6= j ≤ n and k ≥ 2 we have: u(i,j;k) = 0.
• For all (i, j) ∈ II ∪ IV, i 6= j, we have: u(i,j;1) = 0.
• Similarly, for all 1 ≤ l ≤ n− 1 and k ≥ 1 we have: u(l;k) = 0.
• For all (i, j) ∈ III and k = 0, 1 we have: u(i,j;k) = 0.
• Finally, all non-zero elements u(i,j;k) and u(l;k) belong to puz n.

Proof. According to Lemma 8.5, the elements u(i,j;k) (respectively u(l;k)) are uniquely
determined by the property that z−k−1ej,i+u(i,j;k) ∈ w (respectively, z−k−1hl+u(l;k) ∈ w).
Hence, the first four statements are immediate corollaries of the inclusion w1 ⊂ w. On
the other hand, the last result follows from the inclusion w ⊂ w2. �

In order to get a more concrete description of non-zero elements u(i,j;k) and u(l;k), note
the following result.

Lemma 9.4. Let K ∈ Matn×n(C) be any matrix defining a non-degenerate pairing ωK on
p× p. The following statements are true.
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• For any (i, j) ∈ II ∪ IV, i 6= j, there exist uniquely determined

(
A

(0)
(i,j) B

(0)
(i,j)

0 D
(0)
(i,j)

)
∈

p and

(
0 B̃

(0)
(i,j)

0 0

)
∈ n such that

(86) ej,i −

[
Kt,

(
A

(0)
(i,j) B̃

(0)
(i,j)

0 D
(0)
(i,j)

)]
+

(
0 B

(0)
(i,j)

0 0

)
= 0.

• Similarly, for any 1 ≤ l ≤ n−1, there exist uniquely determined
(
A(l) B(l)

0 D(l)

)
∈

p and
(

0 B̃(l)

0 0

)
∈ n such that

(87) hl −
[
Kt,

(
A(l) B̃(l)

0 D(l)

)]
+
(

0 B(l)

0 0

)
= 0.

• Finally, for any (i, j) ∈ I and k = 0, 1, there exist uniquely determined matrices(
A

(k)
(i,j) B

(k)
(i,j)

0 D
(k)
(i,j)

)
∈ p and

(
0 B̃

(k)
(i,j)

0 0

)
∈ n such that

(88)

[
Kt, ej,i +

(
A

(0)
(i,j) B̃

(0)
(i,j)

0 D
(0)
(i,j)

)]
=

(
0 B

(0)
(i,j)

0 0

)
and

(89) ej,i −

[
Kt,

(
A

(1)
(i,j) B̃

(1)
(i,j)

0 D
(1)
(i,j)

)]
+

(
0 B

(1)
(i,j)

0 0

)
= 0.

Proof. All these results follow directly from Lemma 7.8. �

Definition 9.5. Consider the following elements in the Lie algebra g[z]:
• For (i, j) ∈ III, we put : w(i,j;0) = 0 = w(i,j;1).
• For (i, j) ∈ II ∪ IV such that i 6= j, we set:

(90) w(i,j;0) =

(
A

(0)
(i,j) B

(0)
(i,j)

0 D
(0)
(i,j)

)
+ z

(
0 B̃

(0)
(i,j)

0 0

)
,

where

(
A

(0)
(i,j) B

(0)
(i,j)

0 D
(0)
(i,j)

)
and

(
0 B̃

(0)
(i,j)

0 0

)
are given by (86). Moreover, we set

w(i,j;1) = 0.
• Similarly, for 1 ≤ l ≤ n− 1, following (87), we put

(91) w(l;0) =
(
A(l) B(l)

0 D(l)

)
+ z

(
0 B̃(l)

0 0

)
,

whereas w(l;1) = 0.
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• Finally, for (i, j) ∈ I and k = 0, 1, following (88) and (89), we write

(92) w(i,j;k) =

(
A

(k)
(i,j) B

(k)
(i,j)

0 D
(k)
(i,j)

)
+ z

(
0 B̃

(k)
(i,j)

0 0

)
.

Now we are ready to prove the main result of this subsection.

Theorem 9.6. Stolin triple (g, e, ωK) defines the following solution of (1):

r(g,e,ωK)(x, y) =
c

y − x
+

∑
1≤i 6=j≤n

ei,j ⊗ w(i,j;0)(y) +
∑

1≤l≤n−1

ȟl ⊗ w(l;0)(y) + x
∑

1≤i 6=j≤n
ei,j ⊗ w(i,j;1)(y).

Proof. It is sufficient to show that for any 1 ≤ i 6= j ≤ n, 1 ≤ l ≤ n − 1 and k = 0, 1, we
have the following equalities:

(93) u(i,j;k) = w(i,j;k) and u(l;k) = w(l;k).

Recall that w = w1uη−1
〈
α+ z−1χ(α)

〉
α∈g

η ⊂ ĝ. It implies that

• For any (i, j) ∈ II ∪ IV, i 6= j, there exists µi,j ∈ g such that

(94) z−1ej,i + u(i,j;0) = η−1
(
µi,j + z−1

[
Kt, µi,j

])
η.

• Similarly, for any 1 ≤ l ≤ n− 1, there exists νl ∈ g such that

(95) z−1hl + u(l;0) = η−1
(
νl + z−1

[
Kt, νl

])
η.

• Finally, for any (i, j) ∈ I and k = 0, 1, there exists κ(k)
i,j ∈ g such that

(96) z−k−1ej,i + u(i,j;k) = η−1
(
κ

(k)
i,j + z−1

[
Kt, κ

(k)
i,j

])
η.

A straightforward case-by-case analysis shows that equation (94) (respectively, (95) and
(96)) is equivalent to equation (86) (respectively, (87) and (88), (89)). Thus, equalities
(93) are true and theorem is proven. �

Example 9.7. Let e = n− 1. We take the matrix

K = J(n−1,1) =


0 1 0 . . . 0
0 0 1 . . . 0
...

...
. . . . . .

...
0 0 . . . 0 1
0 0 . . . 0 0

 .

Solving the equations (86)–(89) yields the following closed formula:

r(g,e,ωK) =
c

y − x
+

+x

e1,2 ⊗ ȟ1 −
n∑
j=3

e1,j ⊗

n−j+1∑
k=1

ej+k−1,k+1

− y
ȟ1 ⊗ e1,2 −

n∑
j=3

n−j+1∑
k=1

ej+k−1,k+1

⊗ e1,j


+

n−1∑
j=2

e1,j ⊗

n−j∑
k=1

ej+k,k+1

+

n−1∑
i=2

ei,i+1 ⊗ ȟi −
n−1∑
j=2

n−j∑
k=1

ej+k,k+1

⊗ e1,j − n−1∑
i=2

ȟi ⊗ ei,i+1

+

n−2∑
i=2

(
n−i∑
k=2

(
n−i−k+1∑

l=1

ei+k+l−1,l+i

)
⊗ ei,i+k

)
−
n−2∑
i=2

(
n−i∑
k=2

ei,i+k ⊗
(
n−i−k+1∑

l=1

ei+k+l−1,l+i

))
.
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In particular, for n = 2, we get the following rational solution

r(x, y) =
1

y − x

(
1
2
h⊗ h+ e12 ⊗ e21 + e21 ⊗ e12

)
+
x

2
e12 ⊗ h−

y

2
h⊗ e21.

This solution was first time discovered by Stolin in [33]. It is gauge equivalent to the
solution (44).

9.2. Comparison Theorem. Now we prove the third main result of this article.

Theorem 9.8. Consider the involutive Lie algebra automorphism ϕ̃ : g → g, A 7→ −At.
Then we have: (ϕ̃⊗ ϕ̃)r(E,(n,d)) = r(g,e,ωK), where K = −J(e,d).

Proof. For x ∈ C, 1 ≤ i 6= j ≤ n and 1 ≤ l ≤ n− 1 consider the following elements of g[z]:

U
(x)
(i,j) = (z − x)

(
w(i,j;0) + xw(i,j;1)

)
and U

(x)
(l) = (z − x)w(l;0),

where w(i,j;k) and w(l;0) are element introduced in Definition 9.5. Then we have:

r(g,e,ωK) =
1

y − x

[
c+

∑
1≤i 6=j≤n

ei,j ⊗ U (x)
(i,j)(y) +

∑
1≤l≤n−1

ȟl ⊗ U
(x)
(l) (y)

]
.

Note that for (i, j) ∈ III we have: U (x)
(i,j) = 0.

In what follows, instead of ϕ̃ we shall use the anti-isomorphism of Lie algebras ϕ = −ϕ̃.
We have: ϕ(ei,j) = ej,i, ϕ(hl) = hl, ϕ(ȟl) = ȟl and ϕ⊗ϕ = ϕ̃⊗ ϕ̃ ∈ End(g⊗ g). Hence, we
need to show that for all 1 ≤ i 6= j ≤ n and 1 ≤ l ≤ n− 1 we have:

ϕ
(
Gx(i,j)

)
= U

(x)
(i,j) and ϕ

(
G

(x)
(l)

)
= U

(x)
l .

From the definition of elements G(x)
(i,j) and G(x)

(l) it follows that these equalities are equivalent
to the following statements.

• U (x)
(i,j)(x) = 0 = U

(x)
(l) and

• ej,i + U
(x)
(i,j), hl + U

(x)
(l) ∈ Sol

(
(e, d), x

)
:= ϕ

(
Sol
(
(e, d), x

))
.

The first equality is obviously fulfilled. To show the second, observe that

Sol
(
(e, d), x

)
:=
{
P ∈ V e,d

∣∣∣ [J t, P0

]
+ xP0 + Pε = 0

}
⊂ V e,d,

where

V e,d =
{
P =

(
W Y
X Z

)
+
(
W ′ Y ′

0 Z ′

)
z +

(
0 Y ′′

0 0

)
z2

}
⊂ g[z]

and for a given P ∈ V e,d we denote:

(97) P0 =
(
W ′ Y ′′

X Z ′

)
and Pε =

(
W Y ′

0 Z

)
.

Observe that in the above notations, there are no constraints on the matrix Y .
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For any 1 ≤ i 6= j ≤ n denote: A(i,j) = A
(0)
(i,j) + xA

(1)
(i,j). Similarly, we set B(i,j) =

B
(0)
(i,j) + xB

(1)
(i,j), B̃(i,j) = B̃

(0)
(i,j) + xB̃

(1)
(i,j) and D(i,j) = D

(0)
(i,j) + xD

(1)
(i,j). Then we have:

U
(x)
(i,j) = −x

(
A(i,j) B(i,j)

0 D(i,j)

)
+ z

(
A(i,j) B(i,j) − xB̃(i,j)

0 D(i,j)

)
+ z2

(
0 B̃(i,j)

0 0

)
.

Similarly,

U
(x)
(i,j) = −x

(
A(l) B(l)

0 D(l)

)
+ z

(
A(l) B(l) − xB̃(l)

0 D(l)

)
+ z2

(
0 B̃(l)

0 0

)
.

First observe that for (i, j) ∈ III we have: U (x)
(i,j) = 0. Since ej,i ∈ Sol

(
(e, d), x

)
, we are

done with this case. Now we assume that (i, j) ∈ II ∪ III ∪ IV and i 6= j. Then in the
notations of (97), for ej,i + U

(x)
(i,j) ∈ V e,d we have:

P
(i,j)
0 =

(
A(i,j) B̃(i,j)

0 D(i,j)

)
+ δI(i, j)ej,i

and

P (i,j)
ε =

(
−xA(i,j) B(i,j) − xB̃(i,j)

0 −xD(i,j)

)
+
(
δII + δIV

)
(i, j)ej,i.

Here, δI(i, j) = 1 if (i, j) ∈ I and zero otherwise, whereas δII and δIV have a similar
meaning. The condition ej,i + U

(x)
(i,j) ∈ Sol

(
(e, d), x

)
is equivalent to the equality[

J t,

(
A(i,j) B̃(i,j)

0 D(i,j)

)
+δI(i, j)ej,i

]
+xδI(i, j)ej,i+

(
δII +δIV

)
(i, j)ej,i+

(
0 B̃(i,j)

0 0

)
= 0.

Considering separately the case (i, j) ∈ I and (i, j) ∈ II ∪ IV, one can verify that this
equation follows from the equations (86), (88) and (89). A similar argument shows that
the condition hl + U

(x)
(l) ∈ Sol

(
(e, d), x

)
is equivalent to (87). Theorem is proven. �

Remark 9.9. Since the solutions r(g,e,ωK) and r(g,e,ωJ ) are gauge equivalent, we obtain a
gauge equivalence of r(g,e,ωJ ) and r(E,(n,d)).

Corollary 9.10. It follows now from Theorem 3.7 that up to a (not explicitly known)
gauge transformation and a change of variables, the rational solution from Example 9.7
is a degeneration of the Belavin’s elliptic r–matrix (48) for ε = exp

(
2πi
n

)
. It seems to be

quite difficult to prove this result using just direct analytic methods.

We conclude this paper by the following result, which has been pointed out to us by
Alexander Stolin.

Proposition 9.11. The solutions r(E,(n,d)) and r(E,(n,e)) are gauge equivalent.

Proof. Consider the Lie algebra automorphism a
ψ
a, ei,j 7→ en+1−i,n+1−j . Obviously, ψ is

an automorphism of g, too. Moreover, it is not difficult to see that ψ(J(e,d)) = J(d,e). The
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automorphism ψ extends to an automorphism of g[z]. Moreover, the following diagram is
commutative:

g

ψ

��

Sol
(
(e, d), x

)
ψ

��

resxoo
evy

// g

ψ

��
g Sol

(
(d, e), x

)resxoo
evy

// g

Hence, (ψ ⊗ ψ)r(E,(n,d)) = r(E,(n,e)). Proposition is proven. �

References

[1] M. Atiyah, Vector bundles over an elliptic curve, Proc. Lond. Math. Soc. (3) 7 (1957) 414–452.
[2] A. Belavin, Discrete groups and integrability of quantum systems, Funct. Anal. Appl. 14, no. 4, 18–26,

95 (1980).
[3] A. Belavin, V. Drinfeld, Solutions of the classical Yang–Baxter equation for simple Lie algebras, Funct.

Anal. Appl. 16, no. 3, 159–180 (1983).
[4] A. Belavin, V. Drinfeld, The classical Yang–Baxter equation for simple Lie algebras, Funct. Anal.

Appl. 17, no. 3, 69–70 (1983).
[5] C. Birkenhake, H. Lange, Complex abelian varieties, Grundlehren der Mathematischen Wissenschaften

302, Springer (2004).
[6] L. Bodnarchuk, I. Burban, Yu. Drozd, G.-M. Greuel, Vector bundles and torsion free sheaves on

degenerations of elliptic curves, Global aspects of complex geometry, 83–128, Springer-Verlag (2006).
[7] L. Bodnarchuk, Yu. Drozd, Stable vector bundles over cuspidal cubics, Cent. Eur. J. Math. 1 (2003),

no. 4, 650–660.
[8] L. Bodnarchuk, Yu. Drozd, G.-M. Greuel, Simple vector bundles on plane degenerations of an elliptic

curve, Trans. Amer. Math. Soc. 364 (2012), no. 1, 137–174.
[9] I. Burban, Stable vector bundles on a rational curve with one node, Ukräın. Mat. Zh., 55 (2003), no.
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