Flächen

Übungsblatt 5

Aufgabe 1. Zeigen Sie, daß der Raum

$$\{(x,y,z) \in \mathbb{R}^3 : z \ge 0\} \setminus \{(x,y,z) \in \mathbb{R}^3 : y = 0, 0 \le z \le 1\}$$

mit der von \mathbb{R}^3 induzierten Topologie einfach zusammenhängend ist.

Aufgabe 2. Man fasse S^1 als den Einheitskreis in $\mathbb C$ auf. Beschreiben Sie den Homomorphismus $f_* \colon \pi_1(S^1, 1) \to \pi_1(S^1, f(1))$, wenn

- (i) $f(e^{i\theta}) = e^{i(\theta + \pi/2)}$,
- (ii) $f(e^{i\theta}) = e^{in\theta}$ für $n \in \mathbb{Z}$,

(iii)
$$f(e^{i\theta}) = \begin{cases} e^{i\theta}, & 0 \le \theta \le \pi, \\ e^{i(2\pi - \theta)}, & \pi \le \theta \le 2\pi. \end{cases}$$

Aufgabe 3. Der komplex projektive Raum $\mathbb{C}P^n$ ist definiert als der Quotientenraum von $\mathbb{C}^{n+1} \setminus \{(0,\ldots,0)\}$ (oder $S^{2n+1} \subset \mathbb{C}^{n+1}$) unter der Äquivalenzrelation

$$(z_0,\ldots,z_n)\sim(w_0,\ldots,w_n)$$
 : \iff $\exists \lambda\in\mathbb{C}\setminus\{0\}: (z_0,\ldots,z_n)=(\lambda w_0,\ldots,\lambda w_n)$.

Die Äquivalenzklasse eines Punktes (x_0, \ldots, x_n) bezeichnet man wie im reellen Fall mit **homogenen Koordinaten** $[z_0:\ldots:z_n]$. Man kann $\mathbb{C}P^n$ auch als den Raum der komplexen Geraden durch den Ursprung in \mathbb{C}^{n+1} auffassen.

Die **Ein-Punkt-Kompaktifizierung** $\widehat{\mathbb{C}}$ von \mathbb{C} ist definiert als die Menge $\widehat{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$ (d.h. die disjunkte Vereinigung aus \mathbb{C} und einer Menge mit genau einem Element, das wir mit ∞ bezeichnen), mit der folgenden Topologie: Die offenen Mengen von $\widehat{\mathbb{C}}$ seien genau die offenen Teilmengen von $\mathbb{C} \subset \widehat{\mathbb{C}}$ und die Mengen der Form $\widehat{\mathbb{C}} \setminus K$ mit kompaktem $K \subset \mathbb{C}$.

Zeigen Sie:

- (a) $\widehat{\mathbb{C}}$ ist tatsächlich ein kompakter topologischer Raum.
- (b) $\widehat{\mathbb{C}}$ ist homö
omorph zur 2-Sphäre S^2 . Überlegen Sie sich dazu zum Beispiel, daß die stereographische Projektion

$$\mathbb{R}^3 \ni S^2 \setminus \{\text{Nordpol}\} \longrightarrow \mathbb{R}^2 \times \{0\} \equiv \mathbb{C}$$

zusammen mit der Vorschrift Nordpol $\mapsto \infty$ einen Homö
omorphismus $S^2 \to \widehat{\mathbb{C}}$ definiert.

(c) Die Abbildung

$$\mathbb{C}P^{1} \longrightarrow \widehat{\mathbb{C}}
[z_{0}:z_{1}] \longmapsto \begin{cases} z_{1}/z_{0}, & \text{falls } z_{0} \neq 0 \\ \infty, & \text{falls } z_{0} = 0 \end{cases}$$

ist ein Homöomorphismus.

Aufgabe 4. Seien u und v Schleifen in einer topologischen Gruppe G mit Basispunkt e, dem Einselement von G. Sei u * v die durch $u * v(s) = \mu(u(s), v(s)), s \in [0, 1]$, definierte Schleife, wobei $\mu \colon G \times G \to G$ die Multiplikation in G bezeichnet. Zeigen Sie, daß

$$uv \simeq u * v \simeq vu \text{ rel } \{0,1\},$$

und folgern Sie daraus, daß $\pi_1(G, e)$ abelsch ist.

Bonusaufgabe. (a) Führen Sie die Details im Beweis des Satzes 5.4 der Vorlesung aus, d.h. zeigen Sie Wohldefiniertheit der Abbildung

$$u_{\#}[w] := [u^{-1}wu],$$

und verifizieren Sie die Punkte (i) und (ii) aus diesem Satz.

(b) Verifizieren Sie die Punkte (i)-(iii) aus Satz 5.6 der Vorlesung.

Knobelaufgabe. In der Vorlesung hatten wir eine Triangulierung der projektiven Ebene $\mathbb{R}P^2$ mit zehn Dreiecken gesehen. Zeigen Sie, daß es keine Triangulierung mit weniger Dreiecken geben kann.

Hinweis: Sei e die Anzahl der Ecken, k die Anzahl der Kanten, und f die Anzahl der Dreiecke ('Flächen') in einer gegebenen Triangulierung von $\mathbb{R}P^2$. Sie dürfen verwenden, daß stets e-k+f=1 gelten muß. (Diese Aussage über die sogenannte Euler-Charakteristik von $\mathbb{R}P^2$ werden wir in der Vorlesung später diskutieren.) Man schreibe e_m für die Anzahl der Ecken, in denen m Kanten zusammentreffen. Beweisen Sie die Identitäten

$$2k = 3f$$
 und $2k = \sum_{m} me_m$,

und benutzen Sie diese, um die Behauptung zu folgern.