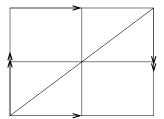
Differentialtopologie II

Übungsblatt 9

Aufgabe 1. Beweisen Sie, daß $T^2 \# \mathbb{R}P^2$ diffeomorph zu $\mathbb{R}P^2 \# \mathbb{R}P^2 \# \mathbb{R}P^2$ ist. **Hinweis:** Stellen Sie die Flächen mittels Anklebung von Henkeln dar.

Aufgabe 2. Das folgende Bild zeigt drei einfach geschlossene Kurven auf der Kleinschen Flasche.



- (a) Bestimmen Sie, ob die Tubenumgebung jeweils einer der drei eingezeichneten Kurven diffeomorph zu einem Zylinder oder einem Möbiusband ist.
- (b) Welche Mannigfaltigkeit erhält man, wenn man eine Tubenumgebung jeweils einer der eingezeichneten Kurven herausschneidet und die entstehenden Randkomponenten mit Scheiben abschließt?
- **Aufgabe 3.** (a) Sei F eine orientierte Fläche vom Geschlecht g, und seien $S_1, S_2 \subset F$ eingebettete Kopien von S^1 , wobei jede für sich die Fläche nicht trennt. Zeigen Sie, daß es dann einen Diffeomorphismus $f \colon (M, S_1) \longrightarrow (M, S_2)$ gibt.

Hinweis: Man kann F als Sphäre mit angehefteten Henkeln darstellen, so daß die S_i Meridiane von Henkeln sind.

(b) Falls sowohl S_1 als auch S_2 trennend sind, unter welchen Voraussetzungen bleibt die Folgerung aus (a) gültig?

Aufgabe 4. Als Kobordismengruppen Ω^q bzw. \mathcal{N}^q bezeichnet man die Menge der q-dimensionalen orientierten bzw. nicht-orientierten geschlossenen Mannigfaltigkeiten modulo (orientierte bzw. nicht-orientierte) Kobordanz, mit Verknüpfung + gegeben durch die topologische Summe von Mannigfaltigkeiten. Zeigen Sie, daß dies in der Tat abelsche Gruppen sind, und weiter:

- (a) $\Omega^0 = \mathbb{Z}$, $\mathcal{N}^0 = \mathbb{Z}_2$.
- (b) $\Omega^1 = 0, \, \mathcal{N}^1 = 0.$
- (c) $\Omega^2 = 0$, $\mathcal{N}^2 = \mathbb{Z}_2$ (mit Erzeuger $\mathbb{R}P^2$).

Hinweis: Um zu zeigen, daß $\mathbb{R}P^2$ nicht Rand einer 3-Mannigfaltigkeit sein kann, kann man beispielsweise die Eulercharakteristik benutzen. Beachten Sie, daß diese ebenfalls für kompakte Mannigfaltigkeiten mit Rand definiert ist. Sie dürfen folgende Aussage benutzen: Kann man eine kompakte n-dimensionale Mannigfaltigkeit M (mit oder ohne Rand) als Vereinigung $A \cup B$ zweier kompakter Untermannigfaltigkeiten A und B darstellen, so daß $A \cap B$ eine (n-1)-dimensionale Untermannigfaltigkeit ist, so gilt:

$$\chi(M) = \chi(A) + \chi(B) - \chi(A \cap B).$$

Wenden Sie dies auf die Verdoppelung einer potentiell von $\mathbb{R}P^2$ berandeten 3-Mannigfaltigkeit an, um einen Widerspruch zu produzieren.

Abgabe: Mittwoch 18.06.14 in der Vorlesung.