Topologie

Übungsblatt 5

Aufgabe 1. Betrachten Sie folgende Beispiele eines Kreises C in einer Fläche Σ :

- (i) Σ sei das Möbiusband und C seine Randkurve,
- (ii) $\Sigma = S^1 \times S^1$ sei der Torus und $C = \{(x,y) \in S^1 \times S^1 : x = y\}$ der Diagonalkreis,
- (iii) Σ sei der Zylinder und C eine seiner Randkurven.

Wählen Sie in jedem dieser Fälle einen Basispunkt in C, beschreiben Sie Erzeuger für die Fundamentalgruppe von C und Σ , sowie den durch die Inklusion $C \to \Sigma$ induzierten Homomorphismus von Fundamentalgruppen.

Aufgabe 2. Sei X ein zusammenziehbarer und Y ein wegzusammenhängender Raum. Zeigen Sie:

- (a) $X \times Y \simeq Y$,
- (b) je zwei Abbildungen von Y nach X sind homotop zueinander, und
- (c) je zwei Abbildungen von X nach Y sind homotop zueinander.

Aufgabe 3. Sei $f: (X, x_0) \to (X, x_0)$ eine stetige Abbildung, die homotop zur Identität ist (nicht notwendig rel $\{x_0\}$). Zeigen Sie, daß $f_*: \pi_1(X, x_0) \to \pi_1(X, x_0)$ ein innerer Automorphismus ist, d.h. von der Form

$$f_*[u] = [v]^{-1}[u][v]$$

für eine geeignete Schleife v am Punkt x_0 .

Aufgabe 4. Zeigen Sie, daß die Narrenkappe (Übungsblatt 4, Aufgabe 3) triangulierbar ist, nicht aber der "Kamm mit unendlich vielen Zinken" aus Abschnitt 3.4 der Vorlesung.

Bonusaufgabe. Es seien f und g homotope Abbildungen $X \to Y$ vermittels einer Homotopie F. Sei x_0 ein Basispunkt in X und u der Weg $u(t) = F(x_0, t), t \in [0, 1],$ von $f(x_0)$ nach $g(x_0)$. Dann gilt

$$f_* = u_\#^{-1} g_* \colon \pi_1(X, x_0) \longrightarrow \pi_1(Y, f(x_0)).$$

Knobelaufgabe. Das Haus mit zwei Zimmern (siehe Abbildung 1) ist zusammenziehbar. Hinweis: Überlegen Sie sich, daß man durch Verdicken der Wände einen Raum erhält, der homöomorph zum 3-Ball ist.

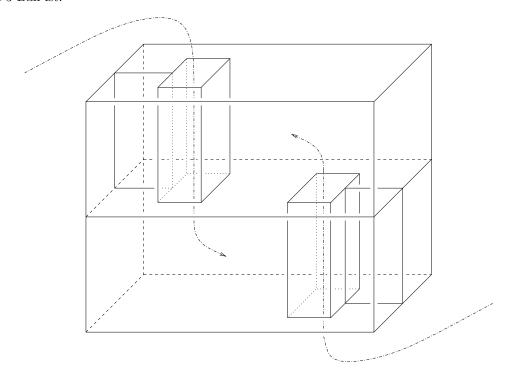


Abbildung 1: Das Haus mit zwei Zimmern.