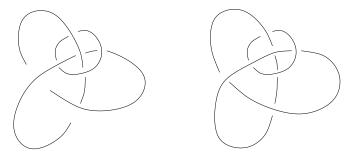
Geometrische Topologie

Übungsblatt 6

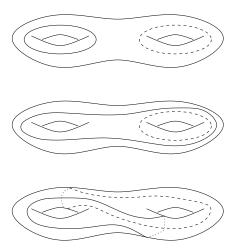
Aufgabe 1. Zeigen Sie, daß die folgenden beiden Verschlingungen (in \mathbb{R}^3 oder S^3) nicht isotop zueinender sind, aber homöomorphe Komplemente besitzen.



Bemerkung: Nach einem tiefen Satz von Gordon und Luecke sind Knoten mit homöomorphen Komplementen isotop zueinander.

Aufgabe 2. Auf dem Rand des Henkelkörpers vom Geschlecht 2 seien die Kurven u_1, u_2 wie folgt gewählt.

Zeigen Sie, daß die drei folgenden Heegaard Diagramme (gezeigt sind jeweils $f(u_1), f(u_2)$) alle die 3-Sphäre liefern.



- **Aufgabe 3.** Der Meridian μ des Volltorus $S^1 \times D^2$ ist die Kurve $* \times \partial D^2$, der Längengrad λ die Kurve $S^1 \times *$. Hier steht * für einen beliebigen Punkt in S^1 bzw. ∂D^2 . Geben Sie (für $k \in \mathbb{Z}$) eine explizite Formel für einen Homöomorphismus von $S^1 \times D^2$ auf sich selbst an, der μ auf μ und λ auf eine Kurve der Form $k\mu + \lambda$ abbildet (d.h. auf eine Kurve in der Homotopieklasse letzterer Kurve in der Fundamentalgruppe von $S^1 \times \partial D^2$).
- **Aufgabe 4.** (a) Ein Dehn-Twist von $S^1 \times S^1 = \partial(S^1 \times D^2)$ entlang μ (wie in Aufgabe 3) ist nicht isotop zur Identität, erweitert aber zu einem Homöomorphismus von $S^1 \times D^2$.
- (b) Ein Dehn-Twist von $S^1 \times S^1 = \partial (S^1 \times D^2)$ entlang λ ist nicht isotop zur Identität und erweitert nicht zu einem Homöomorphismus von $S^1 \times D^2$.
- **Aufgabe 5.** (a) Jeder orientierungserhaltende Homöomorphismus von S^1 ist isotop zur Identität. (b) Jeder Homöomorphismus von $S^1 \times S^1$, der einen vorgegebenen Meridian μ und einen Längenkreis λ jeweils orientierungstreu auf sich abbildet (aber nicht notwenigerweise punktweise festläßt), ist isotop zur Identität.