Analysis III

Übungsblatt 7

Aufgabe 1. Es sei $A \subset \mathbb{R}^n$ eine Nullmenge, d.h. zu jedem $\varepsilon > 0$ existiere eine abzählbare Familie von Quadern Q_1, Q_2, \ldots mit $A \subset \bigcup_{j=1}^{\infty} Q_j$ und $\sum_{j=1}^{\infty} \lambda(Q_j) < \varepsilon$, wobei λ das n-dimensionale Lebesgue-Maß bezeichnet, also $\lambda(Q_j) = \operatorname{Produkt}$ der Kantenlängen.

- (a) Zeigen Sie, daß die abzählbare Vereinigung $\bigcup_{k=1}^{\infty} A_k$ von Nullmengen $A_k \subset \mathbb{R}^n$ wieder eine Nullmenge ist.
- (b) Sei $f: A \to \mathbb{R}^n$ eine Lipschitz-stetige Abbildung, d.h. es existiere eine Konstante L, so daß $|f(x) f(y)| \le L|x y|$. Zeigen Sie, daß dann auch f(A) eine Nullmenge ist. Bemerkung: Diese Aussage ist i.a. falsch, wenn die Abbildung f nur stetig ist. Zum Beispiel gibt es eine surjektive stetige Abbildung eines Intervalles auf ein Quadrat.
- (c) Sei $U \subset \mathbb{R}^n$ offen und $f \colon U \to \mathbb{R}^n$ stetig differenzierbar. Zeigen Sie, daß f lokal einer Lipschitz-Bedingung genügt, d.h. zu jedem Punkt $p \in U$ gibt es eine Umgebung, auf der f Lipschitz-stetig ist.
- (d) Folgern Sie: Ist $f: U \to \mathbb{R}^n$ eine stetig differenzierbare Abbildung auf einer offenen Umgebung $U \supset A$ der Nullmenge A, so ist auch f(A) eine Nullmenge.
- (e) Es sei $M \subset \mathbb{R}^n$ eine meßbare Menge und $g \colon M \to \mathbb{R}$ meßbar. Zeigen Sie mittels des Cavalierischen Prinzips, daß der Graph $\{(x,g(x))\colon x\in M\}\subset \mathbb{R}^{n+1}$ eine Nullmenge ist. Insbesondere sind damit Untermannigfaltigkeiten positiver Kodimension stets Nullmengen.

Aufgabe 2. Sei Ω der im ersten Quadranten liegende Teil der Einheitskreisscheibe. Berechnen Sie $\int_{\Omega} xy \, dx \, dy$ auf beide der folgenden Weisen:

(i) Direkt, indem Sie Ω parametrisieren als

$$\{(x,y) \in \mathbb{R}^2 \colon 0 \le y \le 1, \ 0 \le x \le \sqrt{1-y^2}\},\$$

und das Integral als iteriertes Integral

$$\int_0^1 \left(\int_0^{\sqrt{1-y^2}} xy \, dx \right) \, dy$$

interpretieren.

(ii) Durch Transformation auf Polarkoordinaten und Verwendung der Transformationsformel.

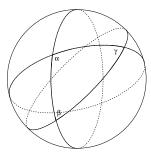
Aufgabe 3. Berechnen Sie den Flächeninhalt des Kegels

$$\{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 = z^2, x^2 + y^2 \le 1, z \ge 0\}$$

mittels jeder der folgenden Methoden:

- (i) Flächeninhaltsformel aus der Vorlesung, mit der Parametrisierung $(x,y)\mapsto (x,y,\sqrt{x^2+y^2})$.
- (ii) Wie (i), aber mit der Parametrisierung $(r, \varphi) \mapsto (r \cos \varphi, r \sin \varphi, r)$.
- (iii) 'Aufschneiden' des Kegels entlang $\{x=z\in[0,1],\,y=0\}$ und 'Ausrollen' in der Ebene; dann elementargeometrische Überlegung.

Aufgabe 4. Zeigen Sie, daß ein von drei Großkreisen auf S^2 berandetes sphärisches Dreieck mit den Winkeln α, β, γ den Flächeninhalt $\alpha + \beta + \gamma - \pi$ hat. Diese Zahl heißt der **sphärische Exzeß** des Dreiecks.



Hinweis: Wie groß ist der Flächeninhalt zwischen zwei Großkreisen? Der Flächeninhalt des Dreiecks ergibt sich dann aus einer elementargeometrischen Überlegung.

Abgabe: Mittwoch, 27.11.19 bis spätestens 18 Uhr in den Briefkästen im studentischen Arbeitsraum des MI (3. Stock).