Lineare Algebra I

Übungsblatt 10

Präsenzaufgabe 1. Beweisen Sie mittels der Methoden der euklidischen Vektorräume:

(a) Kosinussatz: In einem Dreieck mit Seitenlängen a, b, c und Winkel γ gegenüber c gilt $c^2 = a^2 + b^2 - 2ab\cos\gamma$. Dies verallgemeinert den Satz des Pythagoras.

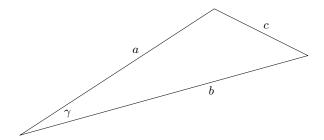


Abbildung 1: Der Kosinussatz

(b) Der Satz von Apollonius: Es sei d die Länge der Verbindungsstrecke von C mit dem Mittelpunkt von AB. Dann gilt $a^2 + b^2 = \frac{1}{2}c^2 + 2d^2$. Überlegen Sie sich weiter, daß auch dies eine Verallgemeinerung des Satzes von Pythagoras ist.

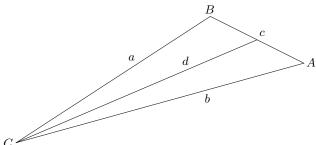


Abbildung 2: Der Satz von Apollonius

Präsenzaufgabe 2. Man bestimme mit dem Schmidtschen Orthonormalisierungsverfahren eine Orthonormalbasis des Unterraumes $U \subset \mathbb{R}^4$, der von den Vektoren

$$(-3, -3, 3, 3)$$
, $(-5, -5, 7, 7)$ und $(4, -2, 0, 6)$

aufgespannt wird. Hierbei ist \mathbb{R}^4 mit dem Standardskalarprodukt versehen.

Hausaufgabe 1. (a) Für $x = (x_1, \dots, x_n) \in \mathbb{R}^n$, $n \ge 2$, definieren wir

$$|x| := \max\{|x_i|: i = 1, \dots, n\}.$$

- (i) Überprüfen Sie, daß dies eine Norm auf dem \mathbb{R}^n definiert.
- (ii) Zeigen Sie, daß es kein Skalarprodukt $\langle ., . \rangle$ auf dem \mathbb{R}^n gibt, für das $\langle x, x \rangle = |x|^2$ für alle $x \in \mathbb{R}^n$ gilt.
- (b) Für p eine reelle Zahl ≥ 1 und $x=(x_1,x_2)\in\mathbb{R}^2$ definieren wir

$$|x| = (|x_1|^p + |x_2|^p)^{1/p}.$$

Die Dreiecksungleichung für diese Norm trägt den Namen *Minkowskische Ungleichung* und kann mittels der Hölderschen Ungleichung aus der Analysis bewiesen werden, was wir hier nicht ausführen wollen.

Zeigen Sie, daß diese Norm nur für p=2 von einem Skalarprodukt herrührt.

Hausaufgabe 2. Beweisen Sie die folgenden Ungleichungen.

(a) Für alle positiven reellen Zahlen a, b, c, d gilt

$$16 \le (a+b+c+d)\left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{d}\right).$$

(b) Für alle natürlichen Zahlen n und alle reellen Zahlen x_1, \ldots, x_n gilt

$$(x_1 + \dots + x_n)^2 \le n(x_1^2 + \dots + x_n^2).$$

(c) Für alle reellen Zahlen a_1, \ldots, a_n und b_1, \ldots, b_n gilt

$$\left(\sum_{j=1}^n a_j b_j\right)^2 \le \left(\sum_{j=1}^n j a_j^2\right) \cdot \left(\sum_{j=1}^n \frac{b_j^2}{j}\right).$$

Bonusaufgabe. Auf einem reellen Vektorraum V sei eine Norm $|\cdot|$ erklärt, die dem Parallelogrammgesetz genügt, d.h. für alle $v, w \in V$ gelte $|v+w|^2 + |v-w|^2 = 2(|v|^2 + |w|^2)$. Wir wollen zeigen, daß durch

$$\langle v, w \rangle := \frac{1}{4} (|v+w|^2 - |v-w|^2)$$

ein Skalarprodukt definiert ist, für das dann $\langle v, v \rangle = |v|^2$ gilt. Überlegen Sie sich dazu insbesondere die folgenden Schritte:

- (i) $\langle v + v', w \rangle = \langle v, w \rangle + \langle v', w \rangle$.
- (ii) $\langle \lambda v, w \rangle = \lambda \langle v, w \rangle$ für $\lambda \in \mathbb{Q}$.
- (iii) Benutzen Sie die Eigenschaften einer Norm, um für $\lambda \in \mathbb{R}$ und eine Folge (q_n) rationaler Zahlen mit $\lim_{n\to\infty}q_n=\lambda$ zu zeigen, daß $\lim_{n\to\infty}\langle q_nv,w\rangle=\langle \lambda v,w\rangle$ gilt.

Abgabe der Hausaufgaben: Mittwoch 20.12. bis spätestens 18 Uhr in den Briefkästen im studentischen Arbeitsraum des MI (3. Stock).