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1 Introduction

Over the past two decades, contact geometry has undergone a veritable meta-

morphosis: once the ugly duckling known as ‘the odd-dimensional analogue of

symplectic geometry’, it has now evolved into a proud field of study in its own

right. As is typical for a period of rapid development in an area of mathematics,

there are a fair number of folklore results that every mathematician working in

the area knows, but no references that make these results accessible to the novice.

I therefore take the present article as an opportunity to take stock of some of that

folklore.

There are many excellent surveys covering specific aspects of contact geometry

(e.g. classification questions in dimension 3, dynamics of the Reeb vector field,

various notions of symplectic fillability, transverse and Legendrian knots and

links). All these topics deserve to be included in a comprehensive survey, but

an attempt to do so here would have left this article in the ‘to appear’ limbo for

much too long.

Thus, instead of adding yet another survey, my plan here is to cover in detail

some of the more fundamental differential topological aspects of contact geometry.

In doing so, I have not tried to hide my own idiosyncrasies and preoccupations.

Owing to a relatively leisurely pace and constraints of the present format, I

have not been able to cover quite as much material as I should have wished.

Nonetheless, I hope that the reader of the present handbook chapter will be

better prepared to study some of the surveys I alluded to – a guide to these

surveys will be provided – and from there to move on to the original literature.

A book chapter with comparable aims is Chapter 8 in [1]. It seemed opportune

to be brief on topics that are covered extensively there, even if it is done at the

cost of leaving out some essential issues. I hope to return to the material of the

present chapter in a yet to be written more comprehensive monograph.

Acknowledgements. I am grateful to Fan Ding, Jesús Gonzalo and Federica

Pasquotto for their attentive reading of the original manuscript. I also thank

John Etnyre and Stephan Schönenberger for allowing me to use a couple of their

figures (viz., Figures 2 and 1 of the present text, respectively).
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2 Contact manifolds

LetM be a differential manifold and ξ ⊂ TM a field of hyperplanes onM . Locally

such a hyperplane field can always be written as the kernel of a non-vanishing

1–form α. One way to see this is to choose an auxiliary Riemannian metric g on

M and then to define α = g(X, .), where X is a local non-zero section of the line

bundle ξ⊥ (the orthogonal complement of ξ in TM). We see that the existence

of a globally defined 1–form α with ξ = kerα is equivalent to the orientability

(hence triviality) of ξ⊥, i.e. the coorientability of ξ. Except for an example below,

I shall always assume this condition.

If α satisfies the Frobenius integrability condition

α ∧ dα = 0,

then ξ is an integrable hyperplane field (and vice versa), and its integral sub-

manifolds form a codimension 1 foliation of M . Equivalently, this integrability

condition can be written as

X,Y ∈ ξ =⇒ [X,Y ] ∈ ξ.

An integrable hyperplane field is locally of the form dz = 0, where z is a coordi-

nate function on M . Much is known, too, about the global topology of foliations,

cf. [100].

Contact structures are in a certain sense the exact opposite of integrable

hyperplane fields.

Definition 2.1. Let M be a manifold of odd dimension 2n + 1. A contact

structure is a maximally non-integrable hyperplane field ξ = kerα ⊂ TM , that

is, the defining 1–form α is required to satisfy

α ∧ (dα)n 6= 0

(meaning that it vanishes nowhere). Such a 1–form α is called a contact form.

The pair (M, ξ) is called a contact manifold.

Remark 2.2. Observe that in this case α ∧ (dα)n is a volume form on M ; in

particular, M needs to be orientable. The condition α∧(dα)n 6= 0 is independent

of the specific choice of α and thus is indeed a property of ξ = kerα: Any other 1–

form defining the same hyperplane field must be of the form λα for some smooth
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function λ : M → R \ {0}, and we have

(λα) ∧ (d(λα))n = λα ∧ (λ dα+ dλ ∧ α)n = λn+1α ∧ (dα)n 6= 0.

We see that if n is odd, the sign of this volume form depends only on ξ, not

the choice of α. This makes it possible, given an orientation of M , to speak of

positive and negative contact structures.

Remark 2.3. An equivalent formulation of the contact condition is that we

have (dα)n|ξ 6= 0. In particular, for every point p ∈ M , the 2n–dimensional

subspace ξp ⊂ TpM is a vector space on which dα defines a skew-symmetric form

of maximal rank, that is, (ξp, dα|ξp
) is a symplectic vector space. A consequence

of this fact is that there exists a complex bundle structure J : ξ → ξ compatible

with dα (see [92, Prop. 2.63]), i.e. a bundle endomorphism satisfying

• J2 = −idξ,

• dα(JX, JY ) = dα(X,Y ) for all X,Y ∈ ξ,

• dα(X, JX) > 0 for 0 6= X ∈ ξ.

Remark 2.4. The name ‘contact structure’ has its origins in the fact that one of

the first historical sources of contact manifolds are the so-called spaces of contact

elements (which in fact have to do with ‘contact’ in the differential geometric

sense), see [7] and [45].

In the 3–dimensional case the contact condition can also be formulated as

X,Y ∈ ξ linearly independent =⇒ [X,Y ] 6∈ ξ;

this follows immediately from the equation

dα(X,Y ) = X(α(Y )) − Y (α(X)) − α([X,Y ])

and the fact that the contact condition (in dim. 3) may be written as dα|ξ 6= 0.

In the present article I shall take it for granted that contact structures are

worthwhile objects of study. As I hope to illustrate, this is fully justified by

the beautiful mathematics to which they have given rise. For an apology of

contact structures in terms of their origin (with hindsight) in physics and the

multifarious connections with other areas of mathematics I refer the reader to the
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historical surveys [87] and [45]. Contact structures may also be justified on the

grounds that they are generic objects: A generic 1–form α on an odd-dimensional

manifold satisfies the contact condition outside a smooth hypersurface, see [89].

Similarly, a generic 1–form α on a 2n–dimensional manifold satisfies the condition

α ∧ (dα)n−1 6= 0 outside a submanifold of codimension 3; such ‘even-contact

manifolds’ have been studied in [51], for instance, but on the whole their theory

is not as rich or well-motivated as that of contact structures.

Definition 2.5. Associated with a contact form α one has the so-called Reeb

vector field Rα, defined by the equations

(i) dα(Rα, .) ≡ 0,

(ii) α(Rα) ≡ 1.

As a skew-symmetric form of maximal rank 2n, the form dα|TpM has a 1–

dimensional kernel for each p ∈ M2n+1. Hence equation (i) defines a unique

line field 〈Rα〉 on M . The contact condition α ∧ (dα)n 6= 0 implies that α is

non-trivial on that line field, so a global vector field is defined by the additional

normalisation condition (ii).

2.1 Contact manifolds and their submanifolds

We begin with some examples of contact manifolds; the simple verification that

the listed 1–forms are contact forms is left to the reader.

Example 2.6. On R2n+1 with cartesian coordinates (x1, y1, . . . , xn, yn, z), the

1–form

α1 = dz +
n∑

j=1

xj dyj

is a contact form.

Example 2.7. On R2n+1 with polar coordinates (rj , ϕj) for the (xj , yj)–plane,

j = 1, . . . , n, the 1–form

α2 = dz +

n∑

j=1

r2j dϕj = dz +

n∑

j=1

(xj dyj − yj dxj)

is a contact form.
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Figure 1: The contact structure ker(dz + x dy).

Definition 2.8. Two contact manifolds (M1, ξ1) and (M2, ξ2) are called contac-

tomorphic if there is a diffeomorphism f : M1 → M2 with Tf(ξ1) = ξ2, where

Tf : TM1 → TM2 denotes the differential of f . If ξi = kerαi, i = 1, 2, this

is equivalent to the existence of a nowhere zero function λ : M1 → R such that

f∗α2 = λα1.

Example 2.9. The contact manifolds (R2n+1, ξi = kerαi), i = 1, 2, from the

preceding examples are contactomorphic. An explicit contactomorphism f with

f∗α2 = α1 is given by

f(x, y, z) =
(
(x+ y)/2, (y − x)/2, z + xy/2

)
,

where x and y stand for (x1, . . . , xn) and (y1, . . . , yn), respectively, and xy stands

for
∑

j xjyj . Similarly, both these contact structures are contactomorphic to

ker(dz −
∑

j yj dxj). Any of these contact structures is called the standard

contact structure on R2n+1.

Example 2.10. The standard contact structure on the unit sphere S2n+1

in R2n+2 (with cartesian coordinates (x1, y1, . . . , xn+1, yn+1)) is defined by the

contact form

α0 =
n+1∑

j=1

(xj dyj − yj dxj).

With r denoting the radial coordinate on R2n+2 (that is, r2 =
∑

j(x
2
j + y2

j )) one

checks easily that α0 ∧ (dα0)
n ∧ r dr 6= 0 for r 6= 0. Since S2n+1 is a level surface

of r (or r2), this verifies the contact condition.
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Alternatively, one may regard S2n+1 as the unit sphere in Cn+1 with complex

structure J (corresponding to complex coordinates zj = xj +iyj , j = 1, . . . , n+1).

Then ξ0 = kerα0 defines at each point p ∈ S2n+1 the complex (i.e. J–invariant)

subspace of TpS
2n+1, that is,

ξ0 = TS2n+1 ∩ J(TS2n+1).

This follows from the observation that α = −r dr◦J . The hermitian form dα(., J.)

on ξ0 is called the Levi form of the hypersurface S2n+1 ⊂ Cn+1. The contact

condition for ξ corresponds to the positive definiteness of that Levi form, or what

in complex analysis is called the strict pseudoconvexity of the hypersurface. For

more on the question of pseudoconvexity from the contact geometric viewpoint

see [1, Section 8.2]. Beware that the ‘complex structure’ in their Proposition 8.14

is not required to be integrable, i.e. constitutes what is more commonly referred

to as an ‘almost complex structure’.

Definition 2.11. Let (V, ω) be a symplectic manifold of dimension 2n + 2,

that is, ω is a closed (dω = 0) and non-degenerate (ωn+1 6= 0) 2–form on V . A

vector field X is called a Liouville vector field if LXω = ω, where L denotes

the Lie derivative.

With the help of Cartan’s formula LX = d ◦ iX + iX ◦ d this may be rewrit-

ten as d(iXω) = ω. Then the 1–form α = iXω defines a contact form on any

hypersurface M in V transverse to X. Indeed,

α ∧ (dα)n = iXω ∧ (d(iXω))n = iXω ∧ ωn =
1

n+ 1
iX(ωn+1),

which is a volume form on M ⊂ V provided M is transverse to X.

Example 2.12. With V = R2n+2, symplectic form ω =
∑

j dxj ∧ dyj , and

Liouville vector field X =
∑

j(xj∂xj
+ yj∂yj

)/2 = r∂r/2, we recover the standard

contact structure on S2n+1.

For finer issues relating to hypersurfaces in symplectic manifolds transverse

to a Liouville vector field I refer the reader to [1, Section 8.2].

Here is a further useful example of contactomorphic manifolds.

Proposition 2.13. For any point p ∈ S2n+1, the manifold (S2n+1 \ {p}, ξ0) is

contactomorphic to (R2n+1, ξ2).
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Proof. The contact manifold (S2n+1, ξ0) is a homogeneous space under the nat-

ural U(n + 1)–action, so we are free to choose p = (0, . . . , 0,−1). Stereographic

projection from p does almost, but not quite yield the desired contactomorphism.

Instead, we use a map that is well-known in the theory of Siegel domains (cf. [3,

Chapter 8]) and that looks a bit like a complex analogue of stereographic projec-

tion; this was suggested in [92, Exercise 3.64].

Regard S2n+1 as the unit sphere in Cn+1 = Cn×C with cartesian coordinates

(z1, . . . , zn, w) = (z, w). We identify R2n+1 with Cn×R ⊂ Cn×C with coordinates

(ζ1, . . . , ζn, s) = (ζ, s) = (ζ,Reσ), where ζj = xj + iyj . Then

α2 = ds+

n∑

j=1

(xj dyj − yj dxj)

= ds+
i

2
(ζ dζ − ζ dζ).

and

α0 =
i

2
(z dz − z dz + w dw − w dw).

Now define a smooth map f : S2n+1 \ {(0,−1)} → R2n+1 by

(ζ, s) = f(z, w) =

(
z

1 + w
,−

i(w − w)

2|1 + w|2

)
.

Then

f∗ds = −
i dw

2|1 + w|2
+

i dw

2|1 + w|2

+
i(w − w)

2(1 + w)

dw

|1 + w|2
+
i(w − w)

2(1 + w)

dw

|1 + w|2

=
i

2|1 + w|2

(
−dw + dw +

w − w

1 + w
dw +

w − w

1 + w
dw

)

and

f∗(ζ dζ − ζ dζ) =
z

1 + w

(
dz

1 + w
−

z

(1 + w)2
dw

)

−
z

1 + w

(
dz

1 + w
−

z

(1 + w)2
dw

)

=
1

|1 + w|2

(
z dz − zdz + |z|2

(
dw

1 + w
−

dw

1 + w

))
.

Along S2n+1 we have

|z|2 = 1 − |w|2 = (1 − w)(1 + w) + (w − w)

= (1 − w)(1 + w) − (w − w),
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whence

|z|2
(

dw

1 + w
−

dw

1 + w

)
= (1 − w) dw −

w − w

1 + w
dw

− (1 − w) dw −
w − w

1 + w
dw.

From these calculations we conclude f∗α2 = α0/|1 + w|2. So it only remains to

show that f is actually a diffeomorphism of S2n+1 \ {(0,−1)} onto R2n+1. To

that end, consider the map

f̃ : (Cn × C) \ (Cn × {−1}) −→ (Cn × C) \ (Cn × {−i/2})

defined by

(ζ, σ) = f̃(z, w) =

(
z

1 + w
,−

i

2

w − 1

w + 1

)
.

This is a biholomorphic map with inverse map

(ζ, σ) 7−→

(
2ζ

1 − 2iσ
,
1 + 2iσ

1 − 2iσ

)
.

We compute

Imσ = −
w − 1

4(w + 1)
−

w − 1

4(w + 1)

= −
(w − 1)(w + 1) + (w − 1)(w + 1)

4|1 + w|2

=
1 − |w|2

2|1 + w|2
.

Hence for (z, w) ∈ S2n+1 \ {(0,−1)} we have

Imσ =
|z|2

2|1 + w|2
=

1

2
|ζ|2;

conversely, any point (ζ, σ) with Imσ = |ζ|2/2 lies in the image of f̃ |S2n+1\{(0,−1)},

that is, f̃ restricted to S2n+1\{(0,−1)} is a diffeomorphism onto {Imσ = |ζ|2/2}.

Finally, we compute

Reσ = −
i(w − 1)

4(w + 1)
+
i(w − 1)

4(w + 1)

= −i
(w − 1)(w + 1) − (w − 1)(w + 1)

4|1 + w|2

= −
i(w − w)

2|1 + w|2
,
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from which we see that for (z, w) ∈ S2n+1 \ {(0,−1)} and with (ζ, σ) = f̃(z, w)

we have f(z, w) = (ζ,Reσ). This concludes the proof.

At the beginning of this section I mentioned that one may allow contact

structures that are not coorientable, and hence not defined by a global contact

form.

Example 2.14. Let M = Rn+1×RPn with cartesian coordinates (x0, . . . , xn) on

the Rn+1–factor and homogeneous coordinates [y0 : . . . : yn] on the RPn–factor.

Then

ξ = ker
( n∑

j=0

yj dxj

)

is a well-defined hyperplane field onM , because the 1–form on the right-hand side

is well-defined up to scaling by a non-zero real constant. On the open submanifold

Uk = {yk 6= 0} ∼= Rn+1 × Rn of M we have ξ = kerαk with

αk = dxk +
∑

j 6=k

(
yj

yk

)
dxj

an honest 1–form on Uk. This is the standard contact form of Example 2.6, which

proves that ξ is a contact structure on M .

If n is even, then M is not orientable, so there can be no global contact

form defining ξ (cf. Remark 2.2), i.e. ξ is not coorientable. Notice, however, that

a contact structure on a manifold of dimension 2n + 1 with n even is always

orientable: the sign of (dα)n|ξ does not depend on the choice of local 1–form

defining ξ.

If n is odd, then M is orientable, so it would be possible that ξ is the kernel

of a globally defined 1–form. However, since the sign of α ∧ (dα)n, for n odd, is

independent of the choice of local 1–form defining ξ, it is also conceivable that no

global contact form exists. (In fact, this consideration shows that any manifold

of dimension 2n+ 1, with n odd, admitting a contact structure (coorientable or

not) needs to be orientable.) This is indeed what happens, as we shall prove now.

Proposition 2.15. Let (M, ξ) be the contact manifold of the preceding example.

Then TM/ξ can be identified with the canonical line bundle on RPn (pulled back

to M). In particular, TM/ξ is a non-trivial line bundle, so ξ is not coorientable.
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Proof. For given y = [y0 : . . . : yn] ∈ RPn, the vector y0∂x0
+· · ·+yn∂xn ∈ TxRn+1

is well-defined up to a non-zero real factor (and independent of x ∈ Rn+1), and

hence defines a line ℓy in TxRn+1 ∼= Rn+1. The set

E = {(t, x, y) : x ∈ Rn+1, y ∈ RPn, t ∈ ℓy}

⊂ TRn+1 × RPn ⊂ T (Rn+1 × RPn) = TM

with projection (t, x, y) 7→ (x, y) defines a line sub-bundle of TM that restricts

to the canonical line bundle over {x} × RPn ≡ RPn for each x ∈ Rn+1. The

canonical line bundle over RPn is well-known to be non-trivial [95, p. 16], so the

same holds for E.

Moreover, E is clearly complementary to ξ, i.e. TM/ξ ∼= E, since

n∑

j=0

yj dxj(
n∑

k=0

yk∂xk
) =

n∑

j=0

y2
j 6= 0.

This proves that that ξ is not coorientable.

To sum up, in the example above we have one of the following two situations:

• If n is odd, then M is orientable; ξ is neither orientable nor coorientable.

• If n is even, then M is not orientable; ξ is not coorientable, but it is ori-

entable.

We close this section with the definition of the most important types of sub-

manifolds.

Definition 2.16. Let (M, ξ) be a contact manifold.

(i) A submanifold L of (M, ξ) is called an isotropic submanifold if TxL ⊂ ξx

for all x ∈ L.

(ii) A submanifold M ′ of M with contact structure ξ′ is called a contact

submanifold if TM ′ ∩ ξ|M ′ = ξ′.

Observe that if ξ = kerα and i : M ′ →M denotes the inclusion map, then the

condition for (M ′, ξ′) to be a contact submanifold of (M, ξ) is that ξ′ = ker(i∗α).

In particular, ξ′ ⊂ ξ|M ′ is a symplectic sub-bundle with respect to the symplectic

bundle structure on ξ given by dα.

The following is a manifestation of the maximal non-integrability of contact

structures.
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Proposition 2.17. Let (M, ξ) be a contact manifold of dimension 2n+ 1 and L

an isotropic submanifold. Then dimL ≤ n.

Proof. Write i for the inclusion of L in M and let α be an (at least locally

defined) contact form defining ξ. Then the condition for L to be isotropic becomes

i∗α ≡ 0. It follows that i∗dα ≡ 0. In particular, TpL ⊂ ξp is an isotropic

subspace of the symplectic vector space (ξp, dα|ξp
), i.e. a subspace on which the

symplectic form restricts to zero. From Linear Algebra we know that this implies

dimTpL ≤ (dim ξp)/2 = n.

Definition 2.18. An isotropic submanifold L ⊂ (M2n+1, ξ) of maximal possible

dimension n is called a Legendrian submanifold.

In particular, in a 3–dimensional contact manifold there are two distinguished

types of knots: Legendrian knots on the one hand, transverse1 knots on the

other, i.e. knots that are everywhere transverse to the contact structure. If ξ

is cooriented by a contact form α and γ : S1 → (M, ξ = kerα) is oriented, one

can speak of a positively or negatively transverse knot, depending on whether

α(γ̇) > 0 or α(γ̇) < 0.

2.2 Gray stability and the Moser trick

The Gray stability theorem that we are going to prove in this section says that

there are no non-trivial deformations of contact structures on closed manifolds.

In fancy language, this means that contact structures on closed manifolds have

discrete moduli. First a preparatory lemma.

Lemma 2.19. Let ωt, t ∈ [0, 1], be a smooth family of differential k–forms on a

manifold M and (ψt)t∈[0,1] an isotopy of M . Define a time-dependent vector field

Xt on M by Xt ◦ ψt = ψ̇t, where the dot denotes derivative with respect to t (so

that ψt is the flow of Xt). Then

d

dt

(
ψ∗

t ωt

)
= ψ∗

t

(
ω̇t + LXt

ωt

)
.

Proof. For a time-independent k–form ω we have

d

dt

(
ψ∗

t ω
)

= ψ∗
t

(
LXt

ω
)
.

This follows by observing that

1Some people like to call them ‘transversal knots’, but I adhere to J.H.C. Whitehead’s dictum,

as quoted in [64]: “Transversal is a noun; the adjective is transverse.”
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(i) the formula holds for functions,

(ii) if it holds for differential forms ω and ω′, then also for ω ∧ ω′,

(iii) if it holds for ω, then also for dω,

(iv) locally functions and differentials of functions generate the algebra of dif-

ferential forms.

We then compute

d

dt
(ψ∗

t ωt) = lim
h→0

ψ∗
t+hωt+h − ψ∗

t ωt

h

= lim
h→0

ψ∗
t+hωt+h − ψ∗

t+hωt + ψ∗
t+hωt − ψ∗

t ωt

h

= lim
h→0

ψ∗
t+h

(
ωt+h − ωt

h

)
+ lim

h→0

ψ∗
t+hωt − ψ∗

t ωt

h

= ψ∗
t

(
ω̇t + LXt

ωt

)
.

For that last equality observe (regarding the second summand) that ψt+h =

ψt
h ◦ ψt, where ψt

h denotes, for fixed t and time-variable h, the flow of the time-

dependent vector field Xt
h := Xt+h; then apply the result for time-independent

k–forms.

Theorem 2.20 (Gray stability). Let ξt, t ∈ [0, 1], be a smooth family of contact

structures on a closed manifold M . Then there is an isotopy (ψt)t∈[0,1] of M such

that

Tψt(ξ0) = ξt for each t ∈ [0, 1].

Proof. The simplest proof of this result rests on what is known as the Moser

trick, introduced by J. Moser [96] in the context of stability results for (equicoho-

mologous) volume and symplectic forms. J. Gray’s original proof [61] was based

on deformation theory à la Kodaira-Spencer. The idea of the Moser trick is to

assume that ψt is the flow of a time-dependent vector field Xt. The desired equa-

tion for ψt then translates into an equation for Xt. If that equation can be solved,

the isotopy ψt is found by integrating Xt; on a closed manifold the flow of Xt will

be globally defined.

Let αt be a smooth family of 1–forms with kerαt = ξt. The equation in the

theorem then translates into

ψ∗
tαt = λtα0,

14



where λt : M → R+ is a suitable smooth family of smooth functions. Differen-

tiation of this equation with respect to t yields, with the help of the preceding

lemma,

ψ∗
t

(
α̇t + LXt

αt

)
= λ̇tα0 =

λ̇t

λt
ψ∗

tαt,

or, with the help of Cartan’s formula LX = d ◦ iX + iX ◦ d and with µt =
d
dt

(log λt) ◦ ψ
−1
t ,

ψ∗
t

(
α̇t + d(αt(Xt)) + iXt

dαt

)
= ψ∗

t (µtαt).

If we choose Xt ∈ ξt, this equation will be satisfied if

α̇t + iXt
dαt = µtαt. (2.1)

Plugging in the Reeb vector field Rαt gives

α̇t(Rαt) = µt. (2.2)

So we can use (2.2) to define µt, and then the non-degeneracy of dαt|ξt
and

the fact that Rαt ∈ ker(µtαt − α̇t) allow us to find a unique solution Xt ∈ ξt

of (2.1).

Remark 2.21. (1) Contact forms do not satisfy stability, that is, in general

one cannot find an isotopy ψt such that ψ∗
tαt = α0. For instance, consider the

following family of contact forms on S3 ⊂ R4:

αt = (x1 dy1 − y1 dx1) + (1 + t)(x2 dy2 − y2 dx2),

where t ≥ 0 is a real parameter. The Reeb vector field of αt is

Rαt = (x1 ∂y1
− y1 ∂x1

) +
1

1 + t
(x2 ∂y2

− y2 ∂x2
).

The flow of Rα0
defines the Hopf fibration, in particular all orbits of Rα0

are

closed. For t ∈ R+ \ Q, on the other hand, Rαt has only two periodic orbits. So

there can be no isotopy with ψ∗
tαt = α0, because such a ψt would also map Rα0

to Rαt .

(2) Y. Eliashberg [25] has shown that on the open manifold R3 there are

likewise no non-trivial deformations of contact structures, but on S1 × R2 there

does exist a continuum of non-equivalent contact structures.

(3) For further applications of this theorem it is useful to observe that at

points p ∈ M with α̇t,p identically zero in t we have Xt(p) ≡ 0, so such points

remain stationary under the isotopy ψt.
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2.3 Contact Hamiltonians

A vector field X on the contact manifold (M, ξ = kerα) is called an infinitesi-

mal automorphism of the contact structure if the local flow of X preserves ξ

(The study of such automorphisms was initiated by P. Libermann, cf. [80]). By

slight abuse of notation, we denote this flow by ψt; if M is not closed, ψt (for a

fixed t 6= 0) will not in general be defined on all of M . The condition for X to

be an infinitesimal automorphism can be written as Tψt(ξ) = ξ, which is equiv-

alent to LXα = λα for some function λ : M → R (notice that this condition is

independent of the choice of 1–form α defining ξ). The local flow of X preserves

α if and only if LXα = 0.

Theorem 2.22. With a fixed choice of contact form α there is a one-to-one

correspondence between infinitesimal automorphisms X of ξ = kerα and smooth

functions H : M → R. The correspondence is given by

• X 7−→ HX = α(X);

• H 7−→ XH , defined uniqely by α(XH) = H and iXH
dα = dH(Rα)α− dH.

The fact that XH is uniquely defined by the equations in the theorem follows

as in the preceding section from the fact that dα is non-degenerate on ξ and

Rα ∈ ker(dH(Rα)α− dH).

Proof. Let X be an infinitesimal automorphism of ξ. Set HX = α(X) and write

dHX + iXdα = LXα = λα with λ : M → R. Applying this last equation to

Rα yields dHX(Rα) = λ. So X satisfies the equations α(X) = HX and iXdα =

dHX(Rα)α− dHX . This means that XHX
= X.

Conversely, given H : M → R and with XH as defined in the theorem, we

have

LXH
α = iXH

dα+ d(α(XH)) = dH(Rα)α,

so XH is an infinitesimal automorphism of ξ. Moreover, it is immediate from the

definitions that HXH
= α(XH) = H.

Corollary 2.23. Let (M, ξ = kerα) be a closed contact manifold and Ht : M →

R, t ∈ [0, 1], a smooth family of functions. Let Xt = XHt
be the correspond-

ing family of infinitesimal automorphisms of ξ (defined via the correspondence

described in the preceding theorem). Then the globally defined flow ψt of the
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time-dependent vector field Xt is a contact isotopy of (M, ξ), that is, ψ∗
tα = λtα

for some smooth family of functions λt : M → R+.

Proof. With Lemma 2.19 and the preceding proof we have

d

dt

(
ψ∗

tα
)

= ψ∗
t

(
LXt

α
)

= ψ∗
t

(
dHt(Rα)α

)
= µtψ

∗
tα

with µt = dHt(Rα) ◦ ψt. Since ψ0 = idM (whence ψ∗
0α = α) this implies that,

with

λt = exp
(∫ t

0
µs ds

)
,

we have ψ∗
tα = λtα.

This corollary will be used in Section 2.5 to prove various isotopy extension

theorems from isotopies of special submanifolds to isotopies of the ambient con-

tact manifold. In a similar vein, contact Hamiltonians can be used to show that

standard general position arguments from differential topology continue to hold

in the contact geometric setting. Another application of contact Hamiltonians

is a proof of the fact that the contactomorphism group of a connected contact

manifold acts transitively on that manifold [12]. (See [8] for more on the general

structure of contactomorphism groups.)

2.4 Darboux’s theorem and neighbourhood theorems

The flexibility of contact structures inherent in the Gray stability theorem and

the possibility to construct contact isotopies via contact Hamiltonians results in

a variety of theorems that can be summed up as saying that there are no local

invariants in contact geometry. Such theorems form the theme of the present

section.

In contrast with Riemannian geometry, for instance, where the local structure

coming from the curvature gives rise to a rich theory, the interesting questions

in contact geometry thus appear only at the global level. However, it is actually

that local flexibility that allows us to prove strong global theorems, such as the

existence of contact structures on certain closed manifolds.

2.4.1 Darboux’s theorem

Theorem 2.24 (Darboux’s theorem). Let α be a contact form on the (2n +

1)–dimensional manifold M and p a point on M . Then there are coordinates
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x1, . . . , xn, y1, . . . , yn, z on a neighbourhood U ⊂M of p such that

α|U = dz +

n∑

j=1

xj dyj .

Proof. We may assume without loss of generality that M = R2n+1 and p = 0 is

the origin of R2n+1. Choose linear coordinates x1, . . . , xn, y1, . . . yn, z on R2n+1

such that

on T0R
2n+1 :

{
α(∂z) = 1, i∂z

dα = 0,

∂xj
, ∂yj

∈ kerα (j = 1, . . . , n), dα =
∑n

j=1 dxj ∧ dyj .

This is simply a matter of linear algebra (the normal form theorem for skew-

symmetric forms on a vector space).

Now set α0 = dz +
∑

j xj dyj and consider the family of 1–forms

αt = (1 − t)α0 + tα, t ∈ [0, 1],

on R2n+1. Our choice of coordinates ensures that

αt = α, dαt = dα at the origin.

Hence, on a sufficiently small neighbourhood of the origin, αt is a contact form

for all t ∈ [0, 1].

We now want to use the Moser trick to find an isotopy ψt of a neighbourhood

of the origin such that ψ∗
tαt = α0. This aim seems to be in conflict with our

earlier remark that contact forms are not stable, but as we shall see presently,

locally this equation can always be solved.

Indeed, differentiating ψ∗
tαt = α0 (and assuming that ψt is the flow of some

time-dependent vector field Xt) we find

ψ∗
t

(
α̇t + LXt

αt

)
= 0,

so Xt needs to satisfy

α̇t + d(αt(Xt)) + iXt
dαt = 0. (2.3)

Write Xt = HtRαt + Yt with Yt ∈ kerαt. Inserting Rαt in (2.3) gives

α̇t(Rαt) + dHt(Rαt) = 0. (2.4)
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On a neighbourhood of the origin, a smooth family of functions Ht satisfying

(2.4) can always be found by integration, provided only that this neighbourhood

has been chosen so small that none of the Rαt has any closed orbits there. Since

α̇t is zero at the origin, we may require that Ht(0) = 0 and dHt|0 = 0 for all

t ∈ [0, 1]. Once Ht has been chosen, Yt is defined uniquely by (2.3), i.e. by

α̇t + dHt + iYt
dαt = 0.

Notice that with our assumptions on Ht we have Xt(0) = 0 for all t.

Now define ψt to be the local flow of Xt. This local flow fixes the origin, so

there it is defined for all t ∈ [0, 1]. Since the domain of definition in R ×M of a

local flow on a manifold M is always open (cf. [15, 8.11]), we can infer2 that ψt

is actually defined for all t ∈ [0, 1] on a sufficiently small neighbourhood of the

origin in R2n+1. This concludes the proof of the theorem (strictly speaking, the

local coordinates in the statement of the theorem are the coordinates xj ◦ ψ
−1
1

etc.).

Remark 2.25. The proof of this result given in [1] is incomplete: It is not

possible, as is suggested there, to prove the Darboux theorem for contact forms

if one requires Xt ∈ kerαt.

2.4.2 Isotropic submanifolds

Let L ⊂ (M, ξ = kerα) be an isotropic submanifold in a contact manifold with

cooriented contact structure. Write (TL)⊥ ⊂ ξ|L for the sub-bundle of ξ|L that is

symplectically orthogonal to TL with respect to the symplectic bundle structure

dα|ξ. The conformal class of this symplectic bundle structure depends only on

the contact structure ξ, not on the choice of contact form α defining ξ: If α is

replaced by λα for some smooth function λ : M → R+, then d(λα)|ξ = λ dα|ξ.

So the bundle (TL)⊥ is determined by ξ.

The fact that L is isotropic implies TL ⊂ (TL)⊥. Following Weinstein [105],

we call the quotient bundle (TL)⊥/TL with the conformal symplectic structure

induced by dα the conformal symplectic normal bundle of L in M and write

CSN(M,L) = (TL)⊥/TL.

2To be absolutely precise, one ought to work with a family αt, t ∈ R, where αt ≡ α0 for

t ≤ ε and αt ≡ α1 for t ≥ 1 − ε, i.e. a technical homotopy in the sense of [15]. Then Xt will be

defined for all t ∈ R, and the reasoning of [15] can be applied.
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So the normal bundle NL = (TM |L)/TL of L in M can be split as

NL ∼= (TM |L)/(ξ|L) ⊕ (ξ|L)/(TL)⊥ ⊕ CSN(M,L).

Observe that if dimM = 2n + 1 and dimL = k ≤ n, then the ranks of the

three summands in this splitting are 1, k and 2(n − k), respectively. Our aim

in this section is to show that a neighbourhood of L in M is determined, up to

contactomorphism, by the isomorphism type (as a conformal symplectic bundle)

of CSN(M,L).

The bundle (TM |L)/(ξ|L) is a trivial line bundle because ξ is cooriented.

The bundle (ξ|L)/(TL)⊥ can be identified with the cotangent bundle T ∗L via the

well-defined bundle isomorphism

Ψ: (ξ|L)/(TL)⊥ −→ T ∗L

Y 7−→ iY dα|TL.

(Ψ is obviously injective and well-defined by the definition of (TL)⊥, and the

ranks of the two bundles are equal.)

Although Ψ is well-defined on the quotient (ξ|L)/(TL)⊥, to proceed further

we need to choose an isotropic complement of (TL)⊥ in ξ|L. Restricted to each

fibre ξp, p ∈ L, such an isotropic complement of (TpL)⊥ exists. There are two

ways to obtain a smooth bundle of such isotropic complements. The first would

be to carry over Arnold’s corresponding discussion of Lagrangian subbundles

of symplectic bundles [6] to the isotropic case in order to show that the space

of isotropic complements of U⊥ ⊂ V , where U is an isotropic subspace in a

symplectic vector space V , is convex. (This argument uses generating functions

for isotropic subspaces.) Then by a partition of unity argument the desired

complement can be constructed on the bundle level.

A slightly more pedestrian approach is to define this isotropic complement

with the help of a complex bundle structure J on ξ compatible with dα (cf.

Remark 2.3). The condition dα(X, JX) > 0 for 0 6= X ∈ ξ implies that (TpL)⊥∩

J(TpL) = {0} for all p ∈ L, and so a dimension count shows that J(TL) is indeed

a complement of (TL)⊥ in ξ|L. (In a similar vein, CSN(M,L) can be identified

as a sub-bundle of ξ, viz., the orthogonal complement of TL ⊕ J(TL) ⊂ ξ with

respect to the bundle metric dα(., J.) on ξ.)

On the Whitney sum TL ⊕ T ∗L (for any manifold L) there is a canonical

symplectic bundle structure ΩL defined by

ΩL,p(X + η,X ′ + η′) = η(X ′) − η′(X) for X,X ′ ∈ TpL; η, η′ ∈ T ∗
pL.
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Lemma 2.26. The bundle map

idTL ⊕ Ψ: (TL⊕ J(TL), dα) −→ (TL⊕ T ∗L,ΩL)

is an isomorphism of symplectic vector bundles.

Proof. We only need to check that idTL ⊕ Ψ is a symplectic bundle map. Let

X,X ′ ∈ TpL and Y, Y ′ ∈ Jp(TpL). Write Y = JpZ, Y
′ = JpZ

′ with Z,Z ′ ∈ TpL.

It follows that

dα(Y, Y ′) = dα(JZ, JZ ′) = dα(Z,Z ′) = 0,

since L is an isotropic submanifold. For the same reason dα(X,X ′) = 0. Hence

dα(X + Y,X ′ + Y ′) = dα(Y,X ′) − dα(Y ′, X)

= Ψ(Y )(X ′) − Ψ(Y ′)(X)

= ΩL(X + Ψ(Y ), X ′ + Ψ(Y ′)).

Theorem 2.27. Let (Mi, ξi), i = 0, 1, be contact manifolds with closed isotropic

submanifolds Li. Suppose there is an isomorphism of conformal symplectic nor-

mal bundles Φ: CSN(M0, L0) → CSN(M1, L1) that covers a diffeomorphism

φ : L0 → L1. Then φ extends to a contactomorphism ψ : N (L0) → N (L1) of

suitable neighbourhoods N (Li) of Li such that Tψ|CSN(M0,L0) and Φ are bundle

homotopic (as symplectic bundle isomorphisms).

Corollary 2.28. Diffeomorphic (closed) Legendrian submanifolds have contac-

tomorphic neighbourhoods.

Proof. If Li ⊂Mi is Legendrian, then CSN(Mi, Li) has rank 0, so the conditions

in the theorem, apart from the existence of a diffeomorphism φ : L0 → L1, are

void.

Example 2.29. Let S1 ⊂ (M3, ξ) be a Legendrian knot in a contact 3–manifold.

Then with a coordinate θ ∈ [0, 2π] along S1 and coordinates x, y in slices trans-

verse to S1, the contact structure

cos θ dx− sin θ dy = 0

provides a model for a neighbourhood of S1.
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Proof of Theorem 2.27. Choose contact forms αi for ξi, i = 0, 1, scaled in such a

way that Φ is actually an isomorphism of symplectic vector bundles with respect

to the symplectic bundle structures on CSN(Mi, Li) given by dαi. Here we think

of CSN(Mi, Li) as a sub-bundle of TMi|Li
(rather than as a quotient bundle).

We identify (TMi|Li
)/(ξi|Li

) with the trivial line bundle spanned by the Reeb

vector field Rαi
. In total, this identifies

NLi = 〈Rαi
〉 ⊕ Ji(TLi) ⊕ CSN(Mi, Li)

as a sub-bundle of TMi|Li
.

Let ΦR : 〈Rα0
〉 → 〈Rα1

〉 be the obvious bundle isomorphism defined by re-

quiring that Rα0
(p) map to Rα1

(φ(p)).

Let Ψi : Ji(TLi) → T ∗Li be the isomorphism defined by taking the interior

product with dαi. Notice that

Tφ⊕ (φ∗)−1 : (TL0 ⊕ T ∗L0,ΩL0
) → (TL1 ⊕ T ∗L1,ΩL1

)

is an isomorphism of symplectic vector bundles. With Lemma 2.26 it follows that

Tφ⊕ Ψ−1
1 ◦ (φ∗)−1 ◦ Ψ0 : (TL0 ⊕ J0(TL0), dα0) → (TL1 ⊕ J1(TL1), dα1)

is an isomorphism of symplectic vector bundles.

Now let

Φ̃ : NL0 −→ NL1

be the bundle isomorphism (covering φ) defined by

Φ̃ = ΦR ⊕ Ψ−1
1 ◦ (φ∗)−1 ◦ Ψ0 ⊕ Φ.

Let τi : NLi → Mi be tubular maps, that is, the τ (I suppress the index i for

better readability) are embeddings such that τ |L – where L is identified with the

zero section of NL – is the inclusion L ⊂M , and Tτ induces the identity on NL

along L (with respect to the splittings T (NL)|L = TL⊕NL = TM |L).

Then τ1 ◦ Φ̃ ◦ τ−1
0 : N (L0) → N (L1) is a diffeomorphism of suitable neigh-

bourhoods N (Li) of Li that induces the bundle map

Tφ⊕ Φ̃ : TM0|L0
−→ TM1|L1

.

By construction, this bundle map pulls α1 back to α0 and dα1 to dα0. Hence, α0

and (τ1 ◦ Φ̃ ◦ τ−1
0 )∗α1 are contact forms on N (L0) that coincide on TM0|L0

, and

so do their differentials.
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Now consider the family of 1–forms

βt = (1 − t)α0 + t(τ1 ◦ Φ̃ ◦ τ−1
0 )∗α1, t ∈ [0, 1].

On TM0|L0
we have βt ≡ α0 and dβt ≡ dα0. Since the contact condition α ∧

(dα)n 6= 0 is an open condition, we may assume – shrinking N (L0) if necessary

– that βt is a contact form on N (L0) for all t ∈ [0, 1]. By the Gray stability

theorem (Thm. 2.20) and Remark 2.21 (3) following its proof, we find an isotopy

ψt of N (L0), fixing L0, such that ψ∗
t βt = λtα0 for some smooth family of smooth

functions λt : N (L0) → R+.

(Since N (L0) is not a closed manifold, ψt is a priori only a local flow. But

on L0 it is stationary and hence defined for all t. As in the proof of the Darboux

theorem (Thm. 2.24) we conclude that ψt is defined for all t ∈ [0, 1] in a sufficiently

small neighbourhood of L0, so shrinking N (L0) once again, if necessary, will

ensure that ψt is a global flow on N (L0).)

We conclude that ψ = τ1 ◦ Φ̃ ◦ τ−1
0 ◦ ψ1 is the desired contactomorphism.

Remark 2.30. With a little more care one can actually achieve Tψ1 = id on

TM0|L0
, which implies in particular that Tψ|CSN(M0,L0) = Φ, cf. [105]. (Remem-

ber that there is a certain freedom in constructing an isotopy via the Moser trick

if the condition Xt ∈ ξt is dropped.) The key point is the generalised Poincaré

lemma, cf. [80, p. 361], which allows us to write a closed differential form γ given

in a neighbourhood of the zero section of a bundle and vanishing along that zero

section as an exact form γ = dη with η and its partial derivatives with respect

to all coordinates (in any chart) vanishing along the zero section. This lemma is

applied first to γ = d(β1 −β0), in order to find (with the symplectic Moser trick)

a diffeomorphism σ of a neighbourhood of L0 ⊂ M0 with Tσ = id on TM0|L0

and such that dβ0 = d(σ∗β1). It is then applied once again to γ = β0 − σ∗β1.

(The proof of the symplectic neighbourhood theorem in [92] appears to be

incomplete in this respect.)

Example 2.31. Let M0 = M1 = R3 with contact forms α0 = dz + x dy and

α1 = dz + (x+ y) dy and L0 = L1 = 0 the origin in R3. Thus

CSN(M0, L0) = CSN(M1, L1) = span{∂x, ∂y} ⊂ T0R
3.

We take Φ = idCSN.
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Set αt = dz+(x+ ty) dy. The Moser trick with Xt ∈ kerαt yields Xt = −y∂x,

and hence ψt(x, y, z) = (x− ty, y, z). Then

Tψ1 =




1 −1 0

0 1 0

0 0 1


 ,

which does not restrict to Φ on CSN.

However, a different solution for ψ∗
tαt = α0 is ψt(x, y, z) = (x, y, z − ty2/2),

found by integrating Xt = −y2∂z/2 (a multiple of the Reeb vector field of αt).

Here we get

Tψ1 =




1 0 0

0 1 0

0 −y 1


 ,

hence Tψ1|T0R3 = id, so in particular Tψ1|CSN = Φ.

2.4.3 Contact submanifolds

Let (M ′, ξ′ = kerα′) ⊂ (M, ξ = kerα) be a contact submanifold, that is, TM ′ ∩

ξ|M ′ = ξ′. As before we write (ξ′)⊥ ⊂ ξ|M ′ for the symplectically orthogonal

complement of ξ′ in ξ|M ′ . Since M ′ is a contact submanifold (so ξ′ is a symplectic

sub-bundle of (ξ|M ′ , dα)), we have

TM ′ ⊕ (ξ′)⊥ = TM |M ′ ,

i.e. we can identify (ξ′)⊥ with the normal bundle NM ′. Moreover, dα induces a

conformal symplectic structure on (ξ′)⊥, so we call (ξ′)⊥ the conformal sym-

plectic normal bundle of M ′ in M and write

CSN(M,M ′) = (ξ′)⊥.

Theorem 2.32. Let (Mi, ξi), i = 0, 1, be contact manifolds with compact contact

submanifolds (M ′
i , ξ

′
i). Suppose there is an isomorphism of conformal symplectic

normal bundles Φ: CSN(M0,M
′
0) → CSN(M1,M

′
1) that covers a contactomor-

phism φ : (M ′
0, ξ

′
0) → (M ′

1, ξ
′
1). Then φ extends to a contactomorphism ψ of

suitable neighbourhoods N (M ′
i) of M ′

i such that Tψ|CSN(M0,M ′

0
) and Φ are bundle

homotopic (as symplectic bundle isomorphisms) up to a conformality.
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Example 2.33. A particular instance of this theorem is the case of a transverse

knot in a contact manifold (M, ξ), i.e. an embedding S1 →֒ (M, ξ) transverse to ξ.

Since the symplectic group Sp(2n) of linear transformations of R2n preserving the

standard symplectic structure ω0 =
∑n

i=1 dxi∧dyi is connected, there is only one

conformal symplectic R2n–bundle over S1 up to conformal equivalence. A model

for the neighbourhood of a transverse knot is given by

(
S1 × R2n, ξ = ker

(
dθ +

n∑

i=1

(xi dyi − yi dxi)
))
,

where θ denotes the S1–coordinate; the theorem says that in suitable local coor-

dinates the neighbourhood of any transverse knot looks like this model.

Proof of Theorem 2.32. As in the proof of Theorem 2.27 it is sufficient to find

contact forms αi on Mi and a bundle map TM0|M ′

0
→ TM1|M ′

1
, covering φ and

inducing Φ, that pulls back α1 to α0 and dα1 to dα0; the proof then concludes

as there with a stability argument.

For this we need to make a judicious choice of αi. The essential choice is made

separately on each Mi, so I suppress the subscript i for the time being. Choose a

contact form α′ for ξ′ on M ′. Write R′ for the Reeb vector field of α′. Given any

contact form α for ξ on M we may first scale it such that α(R′) ≡ 1 along M ′.

Then α|TM ′ = α′, and hence dα|TM ′ = dα′. We now want to scale α further

such that its Reeb vector field R coincides with R′ along M ′. To this end it is

sufficient to find a smooth function f : M → R+ with f |M ′ ≡ 1 and iR′d(fα) ≡ 0

on TM |M ′ . This last equation becomes

0 = iR′d(fα) = iR′(df ∧ α+ f dα) = −df + iR′dα on TM |M ′ .

Since iR′dα|TM ′ = iR′dα′ ≡ 0, such an f can be found.

The choices of α′
0 and α′

1 cannot be made independently of each other; we may

first choose α′
1, say, and then define α′

0 = φ∗α′
1. Then define α0, α1 as described

and scale Φ such that it is a symplectic bundle isomorphism of

((ξ′0)
⊥, dα0) −→ ((ξ′1)

⊥, dα1).

Then

Tφ⊕ Φ: TM0|M ′

0
−→ TM1|M ′

1

is the desired bundle map that pulls back α1 to α0 and dα1 to dα0.
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Remark 2.34. The condition that Ri ≡ R′
i along M ′ is necessary for ensuring

that (Tφ ⊕ Φ)(R0) = R1, which guarantees (with the other stated conditions)

that (Tφ ⊕ Φ)∗(dα1) = dα0. The condition dαi|TM ′

i
= dα′

i and the described

choice of Φ alone would only give (Tφ⊕ Φ)∗(dα1|ξ1) = dα0|ξ0 .

2.4.4 Hypersurfaces

Let S be an oriented hypersurface in a contact manifold (M, ξ = kerα) of dimen-

sion 2n + 1. In a neighbourhood of S in M , which we can identify with S × R

(and S with S × {0}), the contact form α can be written as

α = βr + ur dr,

where βr, r ∈ R, is a smooth family of 1–forms on S and ur : S → R a smooth

family of functions. The contact condition α ∧ (dα)n 6= 0 then becomes

0 6= α ∧ (dα)n = (βr + ur dr) ∧ (dβr − β̇r ∧ dr + dur ∧ dr)
n

= (−nβr ∧ β̇r + nβr ∧ dur + ur dβr) ∧ (dβr)
n−1 ∧ dr, (2.5)

where the dot denotes derivative with respect to r. The intersection TS ∩ (ξ|S)

determines a distribution (of non-constant rank) of subspaces of TS. If α is

written as above, this distribution is given by the kernel of β0, and hence, at

a given p ∈ S, defines either the full tangent space TpS (if β0,p = 0) or a 1–

codimensional subspace both of TpS and ξp (if β0,p 6= 0). In the former case, the

symplectically orthogonal complement (TpS∩ξp)
⊥ (with respect to the conformal

symplectic structure dα on ξp) is {0}; in the latter case, (TpS ∩ ξp)
⊥ is a 1–

dimensional subspace of ξp contained in TpS ∩ ξp.

From that it is intuitively clear what one should mean by a ‘singular 1–

dimensional foliation’, and we make the following somewhat provisional defini-

tion.

Definition 2.35. The characteristic foliation Sξ of a hypersurface S in (M, ξ)

is the singular 1–dimensional foliation of S defined by (TS ∩ ξ|S)⊥.

Example 2.36. If dimM = 3 and dimS = 2, then (TpS∩ξp)
⊥ = TpS∩ξp at the

points p ∈ S where TpS ∩ ξp is 1–dimensional. Figure 2 shows the characteristic

foliation of the unit 2–sphere in (R3, ξ2), where ξ2 denotes the standard contact
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structure of Example 2.7: The only singular points are (0, 0,±1); away from these

points the characteristic foliation is spanned by

(y − xz)∂x − (x+ yz)∂y + (x2 + y2)∂z.

Figure 2: The characteristic foliation on S2 ⊂ (R3, ξ2).

The following lemma helps to clarify the notion of singular 1–dimensional

foliation.

Lemma 2.37. Let β0 be the 1–form induced on S by a contact form α defining ξ,

and let Ω be a volume form on S. Then Sξ is defined by the vector field X

satisfying

iXΩ = β0 ∧ (dβ0)
n−1.

Proof. First of all, we observe that β0 ∧ (dβ0)
n−1 6= 0 outside the zeros of β0:

Arguing by contradiction, assume β0,p 6= 0 and β0∧(dβ0)
n−1|p = 0 at some p ∈ S.

Then (dβ0)
n|p 6= 0 by (2.5). On the codimension 1 subspace kerβ0,p of TpS the

symplectic form dβ0,p has maximal rank n−1. It follows that β0∧ (dβ0)
n−1|p 6= 0

after all, a contradiction.

Next we want to show that X ∈ kerβ0. We observe

0 = iX(iXΩ) = β0(X)(dβ0)
n−1 − (n− 1)β0 ∧ iXdβ0 ∧ (dβ0)

n−2. (2.6)

Taking the exterior product of this equation with β0 we get

β0(X)β0 ∧ (dβ0)
n−1 = 0.

By our previous consideration this implies β0(X) = 0.

It remains to show that for β0,p 6= 0 we have

dβ0(X(p), v) = 0 for all v ∈ TpS ∩ ξp.
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For n = 1 this is trivially satisfied, because in that case v is a multiple of X(p).

I suppress the point p in the following calculation, where we assume n ≥ 2.

From (2.6) and with β0(X) = 0 we have

β0 ∧ iXdβ0 ∧ (dβ0)
n−2 = 0. (2.7)

Taking the interior product with v ∈ TS ∩ ξ yields

−dβ0(X, v)β0 ∧ (dβ0)
n−2 + (n− 2)β0 ∧ iXdβ0 ∧ ivdβ0 ∧ (dβ0)

n−3 = 0.

(Thanks to the coefficient n − 2 the term (dβ0)
n−3 is not a problem for n = 2.)

Taking the exterior product of that last equation with dβ0, and using (2.7), we

find

dβ0(X, v)β0 ∧ (dβ0)
n−1 = 0,

and thus dβ0(X, v) = 0.

Remark 2.38. (1) We can now give a more formal definition of ‘singular 1–

dimensional foliation’ as an equivalence class of vector fields [X], where X is

allowed to have zeros and [X] = [X ′] if there is a nowhere zero function on all

of S such that X ′ = fX. Notice that the non-integrability of contact structures

and the reasoning at the beginning of the proof of the lemma imply that the zero

set of X does not contain any open subsets of S.

(2) If the contact structure ξ is cooriented rather than just coorientable, so

that α is well-defined up to multiplication with a positive function, then this

lemma allows to give an orientation to the characteristic foliation: Changing α

to λα with λ : M → R+ will change β0 ∧ (dβ0)
n−1 by a factor λn.

We now restrict attention to surfaces in contact 3–manifolds, where the notion

of characteristic foliation has proved to be particularly useful.

The following theorem is due to E. Giroux [52].

Theorem 2.39 (Giroux). Let Si be closed surfaces in contact 3–manifolds (Mi, ξi),

i = 0, 1 (with ξi coorientable), and φ : S0 → S1 a diffeomorphism with φ(S0,ξ0) =

S1,ξ1 as oriented characteristic foliations. Then there is a contactomorphism

ψ : N (S0) → N (S1) of suitable neighbourhoods N (Si) of Si with ψ(S0) = S1

and such that ψ|S0
is isotopic to φ via an isotopy preserving the characteristic

foliation.
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Proof. By passing to a double cover, if necessary, we may assume that the Si

are orientable hypersurfaces. Let αi be contact forms defining ξi. Extend φ to a

diffeomorphism (still denoted φ) of neighbourhoods of Si and consider the contact

forms α0 and φ∗α1 on a neighbourhood of S0, which we may identify with S0×R.

By rescaling α1 we may assume that α0 and φ∗α1 induce the same form β0

on S0 ≡ S0 × {0}, and hence also the same form dβ0.

Observe that the expression on the right-hand side of equation (2.5) is linear in

β̇r and ur. This implies that convex linear combinations of solutions of (2.5) (for

n = 1) with the same β0 (and dβ0) will again be solutions of (2.5) for sufficiently

small r. This reasoning applies to

αt := (1 − t)α0 + tφ∗α1, t ∈ [0, 1].

(I hope the reader will forgive the slight abuse of notation, with α1 denoting both

a form on M1 and its pull-back φ∗α1 to M0.) As is to be expected, we now use

the Moser trick to find an isotopy ψt with ψ∗
tαt = λtα0, just as in the proof of

Gray stability (Theorem 2.20). In particular, we require as there that the vector

field Xt that we want to integrate to the flow ψt lie in the kernel of αt.

On TS0 we have α̇t ≡ 0 (thanks to the assumption that α0 and φ∗α1 induce

the same form β0 on S0). In particular, if v is a vector in S0,ξ0 , then by equa-

tion (2.1) we have dαt(Xt, v) = 0, which implies that Xt is a multiple of v, hence

tangent to S0,ξ0 . This shows that the flow of Xt preserves S0 and its characteristic

foliation. More formally, we have

LXt
αt = d(αt(Xt)) + iXt

dαt = iXt
dαt,

so with v as above we have LXt
αt(v) = 0, which shows that LXt

αt|TS0
is a

multiple of α0|TS0
= β0. This implies that the (local) flow of Xt changes β0 by a

conformal factor.

Since S0 is closed, the local flow of Xt restricted to S0 integrates up to t = 1,

and so the same is true3 in a neighbourhood of S0. Then ψ = φ ◦ ψ1 will be the

desired diffeomorphism N (S0) → N (S1).

As observed previously in the proof of Darboux’s theorem for contact forms,

the Moser trick allows more flexibility if we drop the condition αt(Xt) = 0.

We are now going to exploit this extra freedom to strengthen Giroux’s theorem

3Cf. the proof (and the footnote therein) of Darboux’s theorem (Thm. 2.24).
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slightly. This will be important later on when we want to extend isotopies of

hypersurfaces.

Theorem 2.40. Under the assumptions of the preceding theorem we can find

ψ : N (S0) → N (S1) satisfying the stronger condition that ψ|S0
= φ.

Proof. We want to show that the isotopy ψt of the preceding proof may be as-

sumed to fix S0 pointwise. As there, we may assume α̇t|TS0
≡ 0.

If the condition that Xt be tangent to kerαt is dropped, the condition Xt

needs to satisfy so that its flow will pull back αt to λtα0 is

α̇t + d(αt(Xt)) + iXt
dαt = µtαt, (2.8)

where µt and λt are related by µt = d
dt

(log λt) ◦ ψ
−1
t , cf. the proof of the Gray

stability theorem (Theorem 2.20).

Write Xt = HtRt +Yt with Rt the Reeb vector field of αt and Yt ∈ ξt = kerαt.

Then condition (2.8) translates into

α̇t + dHt + iYt
dαt = µtαt. (2.9)

For given Ht one determines µt from this equation by inserting the Reeb vector

field Rt; the equation then admits a unique solution Yt ∈ kerαt because of the

non-degeneracy of dαt|ξt
.

Our aim now is to ensure that Ht ≡ 0 on S0 and Yt ≡ 0 along S0. The latter

we achieve by imposing the condition

α̇t + dHt = 0 along S0 (2.10)

(which entails with (2.9) that µt|S0
≡ 0). The conditions Ht ≡ 0 on S0 and (2.10)

can be simultaneously satisfied thanks to α̇t|TS0
≡ 0.

We can therefore find a smooth family of smooth functions Ht satisfying these

conditions, and then define Yt by (2.9). The flow of the vector fieldXt = HtRt+Yt

then defines an isotopy ψt that fixes S0 pointwise (and thus is defined for all

t ∈ [0, 1] in a neighbourhood of S0). Then ψ = φ ◦ψ1 will be the diffeomorphism

we wanted to construct.

2.4.5 Applications

Perhaps the most important consequence of the neighbourhood theorems proved

above is that they allow us to perform differential topological constructions such
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as surgery or similar cutting and pasting operations in the presence of a contact

structure, that is, these constructions can be carried out on a contact manifold

in such a way that the resulting manifold again carries a contact structure.

One such construction that I shall explain in detail in Section 3 is the surgery

of contact 3–manifolds along transverse knots, which enables us to construct a

contact structure on every closed, orientable 3–manifold.

The concept of characteristic foliation on surfaces in contact 3–manifolds

has proved seminal for the classification of contact structures on 3–manifolds,

although it has recently been superseded by the notion of dividing curves. It is

clear that Theorem 2.39 can be used to cut and paste contact manifolds along

hypersurfaces with the same characteristic foliation. What actually makes this

useful in dimension 3 is that there are ways to manipulate the characteristic

foliation of a surface by isotoping that surface inside the contact 3–manifold.

The most important result in that direction is the Elimination Lemma proved

by Giroux [52]; an improved version is due to D. Fuchs, see [26]. This lemma

says that under suitable assumptions it is possible to cancel singular points of the

characteristic foliation in pairs by a C0–small isotopy of the surface (specifically:

an elliptic and a hyperbolic point of the same sign – the sign being determined

by the matching or non-matching of the orientation of the surface S and the

contact structure ξ at the singular point of Sξ). For instance, Eliashberg [24] has

shown that if a contact 3–manifold (M, ξ) contains an embedded disc D′ such

that D′
ξ has a limit cycle, then one can actually find a so-called overtwisted disc:

an embedded disc D with boundary ∂D tangent to ξ (but D transverse to ξ

along ∂D, i.e. no singular points of Dξ on ∂D) and with Dξ having exactly one

singular point (of elliptic type); see Section 3.6.

Moreover, in the generic situation it is possible, given surfaces S ⊂ (M, ξ)

and S′ ⊂ (M ′, ξ′) with Sξ homeomorphic to S′
ξ′ , to perturb one of the surfaces so

as to get diffeomorphic characteristic foliations.

Chapter 8 of [1] contains a section on surfaces in contact 3–manifolds, and

in particular a proof of the Elimination Lemma. Further introductory reading

on the matter can be found in the lectures of J. Etnyre [35]; of the sources cited

above I recommend [26] as a starting point.

In [52] Giroux initiated the study of convex surfaces in contact 3–manifolds.

These are surfaces S with an infinitesimal automorphism X of the contact struc-

ture ξ with X transverse to S. For such surfaces, it turns out, much less infor-
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mation than the characteristic foliation Sξ is needed to determine ξ in a neigh-

bourhood of S, viz., only the so-called dividing set of Sξ. This notion lies at the

centre of most of the recent advances in the classification of contact structures

on 3–manifolds [55], [71], [72]. A brief introduction to convex surface theory can

be found in [35].

2.5 Isotopy extension theorems

In this section we show that the isotopy extension theorem of differential topology

– an isotopy of a closed submanifold extends to an isotopy of the ambient manifold

– remains valid for the various distinguished submanifolds of contact manifolds.

The neighbourhood theorems proved above provide the key to the corresponding

isotopy extension theorems. For simplicity, I assume throughout that the ambient

contact manifoldM is closed; all isotopy extension theorems remain valid ifM has

non-empty boundary ∂M , provided the isotopy stays away from the boundary.

In that case, the isotopy of M found by extension keeps a neighbourhood of

∂M fixed. A further convention throughout is that our ambient isotopies ψt are

understood to start at ψ0 = idM .

2.5.1 Isotropic submanifolds

An embedding j : L → (M, ξ = kerα) is called isotropic if j(L) is an isotropic

submanifold of (M, ξ), i.e. everywhere tangent to the contact structure ξ. Equiv-

alently, one needs to require j∗α ≡ 0.

Theorem 2.41. Let jt : L→ (M, ξ = kerα), t ∈ [0, 1], be an isotopy of isotropic

embeddings of a closed manifold L in a contact manifold (M, ξ). Then there is a

compactly supported contact isotopy ψt : M →M with ψt(j0(L)) = jt(L).

Proof. Define a time-dependent vector field Xt along jt(L) by

Xt ◦ jt =
d

dt
jt.

To simplify notation later on, we assume that L is a submanifold of M and j0 the

inclusion L ⊂M . Our aim is to find a (smooth) family of compactly supported,

smooth functions H̃t : M → R whose Hamiltonian vector field X̃t equals Xt along

jt(L). Recall that X̃t is defined in terms of H̃t by

α(X̃t) = H̃t, i eXt
dα = dH̃t(Rα)α− dH̃t,
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where, as usual, Rα denotes the Reeb vector field of α.

Hence, we need

α(Xt) = H̃t, iXt
dα = dH̃t(Rα)α− dH̃t along jt(L). (2.11)

Write Xt = HtRα + Yt with Ht : jt(L) → R and Yt ∈ kerα. To satisfy (2.11) we

need

H̃t = Ht along jt(L). (2.12)

This implies

dH̃t(v) = dHt(v) for v ∈ T (jt(L)).

Since jt is an isotopy of isotropic embeddings, we have T (jt(L)) ⊂ kerα. So a

prerequisite for (2.11) is that

dα(Xt, v) = −dHt(v) for v ∈ T (jt(L)). (2.13)

We have

dα(Xt, v) + dHt(v) = dα(Xt, v) + d(α(Xt))(v)

= iv(iXt
dα+ d(iXt

α))

= iv(LXt
α),

so equation (2.13) is equivalent to

iv(LXt
α) = 0 for v ∈ T (jt(L)).

But this is indeed tautologically satisfied: The fact that jt is an isotopy of isotropic

embeddings can be written as j∗t α ≡ 0; this in turn implies 0 = d
dt

(j∗t α) =

j∗t (LXt
α), as desired.

This means that we can define H̃t by prescribing the value of H̃t along jt(L)

(with (2.12)) and the differential of H̃t along jt(L) (with (2.11)), where we are

free to impose dH̃t(Rα) = 0, for instance. The calculation we just performed

shows that these two requirements are consistent with each other. Any function

satisfying these requirements along jt(L) can be smoothed out to zero outside a

tubular neighbourhood of jt(L), and the Hamiltonian flow of this H̃t will be the

desired contact isotopy extending jt.

One small technical point is to ensure that the resulting family of functions

H̃t will be smooth in t. To achieve this, we proceed as follows. Set M̂ = M× [0, 1]

and

L̂ =
⋃

q∈L,t∈[0,1]

(jt(q), t),
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so that L̂ is a submanifold of M̂ . Let g be an auxiliary Riemannian metric on M

with respect to which Rα is orthogonal to kerα. Identify the normal bundle NL̂

of L̂ in M̂ with a sub-bundle of TM̂ by requiring its fibre at a point (p, t) ∈ L̂

to be the g–orthogonal subspace of Tp(jt(L)) in TpM . Let τ : NL̂ → M̂ be a

tubular map.

Now define a smooth function Ĥ : NL̂ → R as follows, where (p, t) always

denotes a point of L̂ ⊂ NL̂.

• Ĥ(p, t) = α(Xt),

• dĤ(p,t)(Rα) = 0,

• dĤ(p,t)(v) = −dα(Xt, v) for v ∈ kerαp ⊂ TpM ⊂ T(p,t)M̂ ,

• Ĥ is linear on the fibres of NL̂→ L̂.

Let χ : M̂ → [0, 1] be a smooth function with χ ≡ 0 outside a small neighbour-

hood N0 ⊂ τ(NL̂) of L̂ and χ ≡ 1 in a smaller neighbourhood N1 ⊂ N0 of L̂.

For (p, t) ∈ M̂ , set

H̃t(p) =

{
χ(p, t)Ĥ(τ−1(p, t)) for (p, t) ∈ τ(NL̂)

0 for (p, t) 6∈ τ(NL̂).

This is smooth in p and t, and the Hamiltonian flow ψt of H̃t (defined globally

since H̃t is compactly supported) is the desired contact isotopy.

2.5.2 Contact submanifolds

An embedding j : (M ′, ξ′) → (M, ξ) is called a contact embedding if

(j(M ′), T j(ξ′))

is a contact submanifold of (M, ξ), i.e.

T (j(M)) ∩ ξ|j(M) = Tj(ξ′).

If ξ = kerα, this can be reformulated as ker j∗α = ξ′.

Theorem 2.42. Let jt : (M ′, ξ′) → (M, ξ), t ∈ [0, 1], be an isotopy of con-

tact embeddings of the closed contact manifold (M ′, ξ′) in the contact manifold

(M, ξ). Then there is a compactly supported contact isotopy ψt : M → M with

ψt(j0(M
′)) = jt(M

′).
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Proof. In the proof of this theorem we follow a slightly different strategy from

the one in the isotropic case. Instead of directly finding an extension of the

Hamiltonian Ht : jt(M
′) → R, we first use the neighbourhood theorem for con-

tact submanifolds to extend jt to an isotopy of contact embeddings of tubular

neighbourhoods.

Again we assume that M ′ is a submanifold ofM and j0 the inclusionM ′ ⊂M .

As earlier, NM ′ denotes the normal bundle of M ′ in M . We also identify M ′

with the zero section of NM ′, and we use the canonical identification

T (NM ′)|M ′ = TM ′ ⊕NM ′.

By the usual isotopy extension theorem from differential topology we find an

isotopy

φt : NM
′ −→M

with φt|M ′ = jt.

Choose contact forms α, α′ defining ξ and ξ′, respectively. Define αt = φ∗tα.

Then TM ′ ∩ kerαt = ξ′. Let R′ denote the Reeb vector field of α′. Analogous

to the proof of Theorem 2.32, we first find a smooth family of smooth functions

gt : M
′ → R+ such that gtαt|TM ′ = α′, and then a family ft : NM

′ → R+ with

ft|M ′ ≡ 1 and

dft = iR′d(gtαt) on T (NM ′)|M ′ .

Then βt = ftgtαt is a family of contact forms on NM ′ representing the contact

structure ker(φ∗tα) and with the properties

βt|TM ′ = α′,

dβt|TM ′ = dα′,

ker(dβt) = 〈R′〉 along M ′.

The family (NM ′, dβt) of symplectic vector bundles may be thought of as a

symplectic vector bundle over M ′ × [0, 1], which is necessarily isomorphic to a

bundle pulled back from M ′ × {0} (cf. [74, Cor. 3.4.4]). In other words, there is

a smooth family of symplectic bundle isomorphisms

Φt : (NM ′, dβ0) −→ (NM ′, dβt).

Then

idTM ′ ⊕ Φt : T (NM ′)|M ′ −→ T (NM ′)|M ′
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is a bundle map that pulls back βt to β0 and dβt to dβ0.

By the now familiar stability argument we find a smooth family of embeddings

ϕt : N (M ′) −→ NM ′

for some neighbourhood N (M ′) of the zero section M ′ in NM ′ with ϕ0 =

inclusion, ϕt|M ′ = idM ′ and ϕ∗
tβt = λtβ0, where λt : N (M ′) → R+. This means

that

φt ◦ ϕt : N (M ′) −→M

is a smooth family of contact embeddings of (N (M ′), kerβ0) in (M, ξ).

Define a time-dependent vector field Xt along φt ◦ ϕt(N (M ′)) by

Xt ◦ φt ◦ ϕt =
d

dt
(φt ◦ ϕt).

This Xt is clearly an infinitesimal automorphism of ξ: By differentiating the

equation ϕ∗
tφ

∗
tα = µtφ

∗
0α (where µt : N (M ′) → R+) with respect to t we get

ϕ∗
tφ

∗
t (LXt

α) = µ̇tφ
∗
0α =

µ̇t

µt
ϕ∗

tφ
∗
tα,

so LXt
α is a multiple of α (since φt ◦ ϕt is a diffeomorphism onto its image).

By the theory of contact Hamiltonians, Xt is the Hamiltonian vector field of

a Hamiltonian function Ĥt defined on φt ◦ϕt(N (M ′)). Cut off this function with

a bump function so as to obtain Ht : M → R with Ht ≡ Ĥt near φt ◦ ϕt(M
′)

and Ht ≡ 0 outside a slightly larger neighbourhood of φt ◦ ϕt(M
′). Then the

Hamiltonian flow ψt of Ht satisfies our requirements.

2.5.3 Surfaces in 3–manifolds

Theorem 2.43. Let jt : S → (M, ξ = kerα), t ∈ [0, 1], be an isotopy of embed-

dings of a closed surface S in a 3–dimensional contact manifold (M, ξ). If all jt

induce the same characteristic foliation on S, then there is a compactly supported

isotopy ψt : M →M with ψt(j0(S)) = jt(S).

Proof. Extend jt to a smooth family of embeddings φt : S×R →M , and identify

S with S×{0}. The assumptions say that all φ∗tα induce the same characteristic

foliation on S. By the proof of Theorem 2.40 and in analogy with the proof of

Theorem 2.42 we find a smooth family of embeddings

ϕt : S × (−ε, ε) −→ S × R
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for some ε > 0 with ϕ0 = inclusion, ϕt|S×{0} = idS and ϕ∗
tφ

∗
tα = λtφ

∗
0α, where

λt : S × (−ε, ε) → R+. In other words, φt ◦ ϕt is a smooth family of contact

embeddings of (S × (−ε, ε), kerφ∗0α) in (M, ξ).

The proof now concludes exactly as the proof of Theorem 2.42.

2.6 Approximation theorems

A further manifestation of the (local) flexibility of contact structures is the fact

that a given submanifold can, under fairly weak (and usually obvious) topological

conditions, be approximated (typically C0–closely) by a contact submanifold or

an isotropic submanifold, respectively. The most general results in this direction

are best phrased in M. Gromov’s language of h-principles. For a recent text on

h-principles that puts particular emphasis on symplectic and contact geometry

see [30]; a brief and perhaps more gentle introduction to h-principles can be found

in [47].

In the present section I restrict attention to the 3–dimensional situation, where

the relevant approximation theorems can be proved by elementary geometric ad

hoc techniques.

Theorem 2.44. Let γ : S1 → (M, ξ) be a knot, i.e. an embedding of S1, in

a contact 3–manifold. Then γ can be C0–approximated by a Legendrian knot

isotopic to γ. Alternatively, it can be C0–approximated by a positively as well as

a negatively transverse knot.

In order to prove this theorem, we first consider embeddings γ : (a, b) →

(R3, ξ) of an open interval in R3 with its standard contact structure ξ = kerα,

where α = dz + x dy. Write γ(t) = (x(t), y(t), z(t)). Then

α(γ̇) = ż + xẏ,

so the condition for a Legendrian curve reads ż + xẏ ≡ 0; for a positively (resp.

negatively) transverse curve, ż + xẏ > 0 (resp. < 0).

There are two ways to visualise such curves. The first is via its front pro-

jection

γF (t) = (y(t), z(t)),

the second via its Lagrangian projection

γL(t) = (x(t), y(t)).
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2.6.1 Legendrian knots

If γ(t) = (x(t), y(t), z(t)) is a Legendrian curve in R3, then ẏ = 0 implies ż = 0,

so there the front projection has a singular point. Indeed, the curve t 7→ (t, 0, 0)

is an example of a Legendrian curve whose front projection is a single point. We

call a Legendrian curve generic if ẏ = 0 only holds at isolated points (which we

call cusp points), and there ÿ 6= 0.

Lemma 2.45. Let γ : (a, b) → (R3, ξ) be a Legendrian immersion. Then its front

projection γF (t) = (y(t), z(t)) does not have any vertical tangencies. Away from

the cusp points, γ is recovered from its front projection via

x(t) = −
ż(t)

ẏ(t)
= −

dz

dy
,

i.e. x(t) is the negative slope of the front projection. The curve γ is embedded if

and only if γF has only transverse self-intersections.

By a C∞–small perturbation of γ we can obtain a generic Legendrian curve γ̃

isotopic to γ; by a C2–small perturbation we may achieve that the front projection

has only semi-cubical cusp singularities, i.e. around a cusp point at t = 0 the curve

γ̃ looks like

γ̃(t) = (t+ a, λt2 + b,−λ(2t3/3 + at2) + c)

with λ 6= 0, see Figure 3.

Any regular curve in the (y, z)–plane with semi-cubical cusps and no vertical

tangencies can be lifted to a unique Legendrian curve in R3.

Figure 3: The cusp of a front projection.

Proof. The Legendrian condition is ż + xẏ = 0. Hence ẏ = 0 forces ż = 0, so γF

cannot have any vertical tangencies.

Away from the cusp points, the Legendrian condition tells us how to recover

x as the negative slope of the front projection. (By continuity, the equation
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x = dz
dy

also makes sense at generic cusp points.) In particular, a self-intersecting

front projection lifts to a non-intersecting curve if and only if the slopes at the

intersection point are different, i.e. if and only if the intersection is transverse.

That γ can be approximated in the C∞–topology by a generic immersion

γ̃ follows from the usual transversality theorem (in its most simple form, viz.,

applied to the function y(t); the function x(t) may be left unchanged, and the

new z(t) is then found by integrating the new −xẏ).

At a cusp point of γ̃ we have ẏ = ż = 0. Since γ̃ is an immersion, this forces

ẋ 6= 0, so γ̃ can be parametrised around a cusp point by the x–coordinate, i.e. we

may choose the curve parameter t such that the cusp lies at t = 0 and x(t) = t+a.

Since ÿ(0) 6= 0 by the genericity condition, we can write y(t) = t2g(t) + y(0)

with a smooth function g(t) satisfying g(0) 6= 0 (This is proved like the ‘Morse

lemma’ in Appendix 2 of [77]). A C0–approximation of g(t) by a function h(t)

with h(t) ≡ g(0) for t near zero and h(t) ≡ g(t) for |t| greater than some small

ε > 0 yields a C2–approximation of y(t) with the desired form around the cusp

point.

Example 2.46. Figure 4 shows the front projection of a Legendrian trefoil knot.

Figure 4: Front projection of a Legendrian trefoil knot.

Proof of Theorem 2.44 - Legendrian case. First of all, we consider a curve γ in

standard R3. In order to find a C0–close approximation of γ, we simply need

to choose a C0–close approximation of its front projection γF by a regular curve

without vertical tangencies and with isolated cusps (we call such a curve a front)
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in such a way, that the slope of the front at time t is close to −x(t) (see Figure 5).

Then the Legendrian lift of this front is the desired C0–approximation of γ.

y

z

Figure 5: Legendrian C0–approximation via front projection.

If γ is defined on an interval (a, b) and is already Legendrian near its endpoints,

then the approximation of γF may be assumed to coincide with γF near the

endpoints, so that the Legendrian lift coincides with γ near the endpoints.

Hence, given a knot in an arbitrary contact 3–manifold, we can cut it (by the

Lebesgue lemma) into little pieces that lie in Darboux charts. There we can use

the preceding recipe to find a Legendrian approximation. Since, as just observed,

one can find such approximations on intervals with given boundary condition,

this procedure yields a Legendrian approximation of the full knot.

Locally (i.e. in R3) the described procedure does not introduce any self-

intersections in the approximating curve, provided we approximate γF by a front

with only transverse self-intersections. Since the original knot was embedded, the

same will then be true for its Legendrian C0–approximation.

The same result may be derived using the Lagrangian projection:

Lemma 2.47. Let γ : (a, b) → (R3, ξ) be a Legendrian immersion. Then its

Lagrangian projection γL(t) = (x(t), y(t)) is also an immersed curve. The curve

γ is recovered from γL via

z(t1) = z(t0) −

∫ t1

t0

x dy.
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A Legendrian immersion γ : S1 → (R3, ξ) has a Lagrangian projection that en-

closes zero area. Moreover, γ is embedded if and only if every loop in γL (except,

in the closed case, the full loop γL) encloses a non-zero oriented area.

Any immersed curve in the (x, y)–plane is the Lagrangian projection of a

Legendrian curve in R3, unique up to translation in the z–direction.

Proof. The Legendrian condition ż + xẏ implies that if ẏ = 0 then ż = 0, and

hence, since γ is an immersion, ẋ 6= 0. So γL is an immersion.

The formula for z follows by integrating the Legendrian condition. For a

closed curve γL in the (x, y)–plane, the integral
∮
γL
x dy computes the oriented

area enclosed by γL. From that all the other statements follow.

Example 2.48. Figure 6 shows the Lagrangian projection of a Legendrian un-

knot.

AA −2A

Figure 6: Lagrangian projection of a Legendrian unknot.

Alternative proof of Theorem 2.44 – Legendrian case. Again we consider a curve

γ in standard R3 defined on an interval. The generalisation to arbitrary contact

manifolds and closed curves is achieved as in the proof using front projections.

In order to find a C0–approximation of γ by a Legendrian curve, one only has

to approximate its Lagrangian projection γL by an immersed curve whose ‘area

integral’

z(t0) −

∫ t

t0

x dy

lies as close to the original z(t) as one wishes. This can be achieved by using small

loops oriented positively or negatively (see Figure 7). If γL has self-intersections,

this approximating curve can be chosen in such a way that along loops properly

contained in that curve the area integral is non-zero, so that again we do not

introduce any self-intersections in the Legendrian approximation of γ.
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x

y

Figure 7: Legendrian C0–approximation via Lagrangian projection.

2.6.2 Transverse knots

The quickest proof of the transverse case of Theorem 2.44 is via the Legendrian

case. However, it is perfectly feasible to give a direct proof along the lines of the

preceding discussion, i.e. using the front or the Lagrangian projection. Since this

picture is useful elsewhere, I include a brief discussion, restricting attention to

the front projection.

Thus, let γ(t) = (x(t), y(t), z(t)) be a curve in R3. The condition for γ to be

positively transverse to the standard contact structure ξ = ker(dz+ x dy) is that

ż + xẏ > 0. Hence, 



if ẏ = 0, then ż > 0,

if ẏ > 0, then x > −ż/ẏ,

if ẏ < 0, then x < −ż/ẏ.

The first statement says that there are no vertical tangencies oriented down-

wards in the front projection. The second statement says in particular that for

ẏ > 0 and ż < 0 we have x > 0; the third, that for ẏ < 0 and ż < 0 we have

x < 0. This implies that the situations shown in Figure 8 are not possible in the

front projection of a positively transverse curve. I leave it to the reader to check

that all other oriented crossings are possible in the front projection of a positively

transverse curve, and that any curve in the (y, z)–plane without the forbidden

crossing or downward vertical tangencies admits a lift to a positively transverse

curve.
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Figure 8: Impossible front projections of positively transverse curve.

Example 2.49. Figure 9 shows the front projection of a positively transverse

trefoil knot.

Figure 9: Front projection of a positively transverse trefoil knot.

Proof of Theorem 2.44 – transverse case. By the Legendrian case of this theo-

rem, the given knot γ can be C0–approximated by a Legendrian knot γ1. By

Example 2.29, a neighbourhood of γ1 in (M, ξ) looks like a solid torus S1 ×D2

with contact structure cos θ dx − sin θ dy = 0, where γ1 ≡ S1 × {0}. Then the

curve

γ2(t) = (θ = t, x = δ sin t, y = δ cos t), t ∈ [0, 2π],

is a positively (resp. negatively) transverse knot if δ > 0 (resp. < 0). By choosing

|δ| small we obtain as good a C0–approximation of γ1 and hence of γ as we

wish.

3 Contact structures on 3–manifolds

Here is the main theorem proved in this section:
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Theorem 3.1 (Lutz-Martinet). Every closed, orientable 3–manifold admits a

contact structure in each homotopy class of tangent 2–plane fields.

In Section 3.2 I present what is essentially J. Martinet’s [90] proof of the

existence of a contact structure on every 3–manifold. This construction is based

on a surgery description of 3–manifolds due to R. Lickorish and A. Wallace. For

the key step, showing how to extend over a solid torus certain contact forms

defined near the boundary of that torus (which then makes it possible to perform

Dehn surgeries), we use an approach due to W. Thurston and H. Winkelnkemper;

this allows to simplify Martinet’s proof slightly.

In Section 3.3 we show that every orientable 3–manifold is parallelisable and

then build on this to classify (co-)oriented tangent 2–plane fields up to homotopy.

In Section 3.4 we study the so-called Lutz twist, a topologically trivial Dehn

surgery on a contact manifold (M, ξ) which yields a contact structure ξ′ on M

that is not homotopic (as 2–plane field) to ξ. We then complete the proof of the

main theorem stated above. These results are contained in R. Lutz’s thesis [84]

(which, I have to admit, I’ve never seen). Of Lutz’s published work, [83] only deals

with the 3–sphere (and is only an announcement); [85] also deals with a more

restricted problem. I learned the key steps of the construction from an exposition

given in V. Ginzburg’s thesis [50]. I have added proofs of many topological details

that do not seem to have appeared in a readily accessible source before.

In Section 3.5 I indicate two further proofs for the existence of contact struc-

tures on every 3–manifold (and provide references to others). The one by Thur-

ston and Winkelnkemper uses a description of 3–manifolds as open books due to

J. Alexander; the crucial idea in their proof is the one we also use to simplify

Martinet’s argument. Indeed, my discussion of the Lutz twist in the present

section owes more to the paper by Thurston-Winkelnkemper than to any other

reference. The second proof, by J. Gonzalo, is based on a branched cover descrip-

tion of 3–manifolds found by H. Hilden, J. Montesinos and T. Thickstun. This

branched cover description also yields a very simple geometric proof that every

orientable 3–manifold is parallelisable.

In Section 3.6 we discuss the fundamental dichotomy between tight and over-

twisted contact structures, introduced by Eliashberg, as well as the relation of

these types of contact structures with the concept of symplectic fillability. The

chapter concludes in Section 3.7 with a survey of classification results for contact

structures on 3–manifolds.
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But first we discuss, in Section 3.1, an invariant of transverse knots in R3

with its standard contact structure. This invariant will be an ingredient in the

proof of the Lutz-Martinet theorem, but is also of independent interest.

I do not feel embarrassed to use quite a bit of machinery from algebraic and

differential topology in this chapter. However, I believe that nothing that cannot

be found in such standard texts as [14], [77] and [95] is used without proof or an

explicit reference.

Throughout this third section, M denotes a closed, orientable 3-manifold.

3.1 An invariant of transverse knots

Although the invariant in question can be defined for transverse knots in arbitrary

contact manifolds (provided the knot is homologically trivial), for the sake of

clarity I restrict attention to transverse knots in R3 with its standard contact

structure ξ0 = ker(dz + x dy). This will be sufficient for the proof of the Lutz-

Martinet theorem. In Section 3.7 I say a few words about the general situation

and related invariants for Legendrian knots.

Thus, let γ be a transverse knot in (R3, ξ0). Push γ a little in the direction

of ∂x – notice that this is a nowhere zero vector field contained in ξ0, and in

particular transverse to γ – to obtain a knot γ′. An orientation of γ induces an

orientation of γ′. The orientation of R3 is given by dx ∧ dy ∧ dz.

Definition 3.2. The self-linking number l(γ) of the transverse knot γ is the

linking number of γ and γ′.

Notice that this definition is independent of the choice of orientation of γ (but

it changes sign if the orientation of R3 is reversed). Furthermore, in place of ∂x

we could have chosen any nowhere zero vector field X in ξ0 to define l(γ): The

difference between the the self-linking number defined via ∂x and that defined

via X is the degree of the map γ → S1 given by associating to a point on γ

the angle between ∂x and X. This degree is computed with the induced map

Z ∼= H1(γ) → H1(S
1) ∼= Z. But the map γ → S1 factors through R3, so the

induced homomorphism on homology is the zero homomorphism.

Observe that l(γ) is an invariant under isotopies of γ within the class of

transverse knots.

We now want to compute l(γ) from the front projection of γ. Recall that the

writhe of an oriented knot diagram is the signed number of self-crossings of the
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diagram, where the sign of the crossing is given in Figure 10.

+1−1

Figure 10: Signs of crossings in a knot diagram.

Lemma 3.3. The self-linking number l(γ) of a transverse knot is equal to the

writhe w(γ) of its front projection.

Proof. Let γ′ be the push-off of γ as described. Observe that each crossing of the

front projection of γ contributes a crossing of γ′ underneath γ of the corresponding

sign. Since the linking number of γ and γ′ is equal to the signed number of times

that γ′ crosses underneath γ (cf. [98, p. 37]), we find that this linking number is

equal to the signed number of self-crossings of γ, that is, l(γ) = w(γ).

Proposition 3.4. Every self-linking number is realised by a transverse link in

standard R3.

Proof. Figure 11 shows front projections of positively transverse knots (cf. Sec-

tion 2.6.2) with self-linking number ±3. From that the construction principle for

realising any odd integer should be clear. With a two component link any even

integer can be realised.

Remark 3.5. It is no accident that I do not give an example of a transverse

knot with even self-linking number. By a theorem of Eliashberg [26, Prop. 2.3.1]

that relates l(γ) to the Euler characteristic of a Seifert surface S for γ and the

signed number of singular points of the characteristic foliation Sξ, the self-linking

number l(γ) of a knot can only take odd values.

3.2 Martinet’s construction

According to Lickorish [81] and Wallace [103] M can be obtained from S3 by

Dehn surgery along a link of 1–spheres. This means that we have to remove
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+3−3

Figure 11: Transverse knots with self-linking number ±3.

a disjoint set of embedded solid tori S1 × D2 from S3 and glue back solid tori

with suitable identification by a diffeomorphism along the boundaries S1 × S1.

The effect of such a surgery (up to diffeomorphism of the resulting manifold) is

completely determined by the induced map in homology

H1(S
1 × ∂D2) −→ H1(S

1 × ∂D2)

Z ⊕ Z −→ Z ⊕ Z,

which is given by a unimodular matrix

(
n q

m p

)
∈ GL(2,Z). Hence, denoting

coordinates in S1 × S1 by (θ, ϕ), we may always assume the identification maps

to be of the form (
θ

ϕ

)
7−→

(
n q

m p

)(
θ

ϕ

)
.

The curves µ and λ on ∂(S1 × D2) given respectively by θ = 0 and ϕ = 0 are

called meridian and longitude. We keep the same notation µ, λ for the homology

classes these curves represent. It turns out that the diffeomorphism type of the

surgered manifold is completely determined by the class pµ + qλ, which is the

class of the curve that becomes homotopically trivial in the surgered manifold

(cf. [98, p. 28]). In fact, the Dehn surgery is completely determined by the surgery

coefficient p/q, since the diffeomorphism of ∂(S1 ×D2) given by (λ, µ) 7→ (λ,−µ)

extends to a diffeomorphism of the solid torus that we glue back.

Similarly, the diffeomorphism given by (λ, µ) 7→ (λ+ kµ, µ) extends. By such

a change of longitude in S1 × D2 ⊂ M , which amounts to choosing a different
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trivialisation of the normal bundle (i.e. framing) of S1×{0} ⊂M , the gluing map

is changed to

(
n q

m− kn p− kq

)
. By a change of longitude in the solid torus

that we glue back, the gluing map is changed to

(
n+ kq q

m+ kp p

)
. Thus, a Dehn

surgery is a so-called handle surgery (or ‘honest surgery’ or simply ‘surgery’) if

and only if the surgery coefficient is an integer, that is, q = ±1. For in exactly

this case we may assume

(
n q

m p

)
=

(
0 1

1 0

)
, and the surgery is given by

cutting out S1 ×D2 and gluing back S1 ×D2 with the identity map

∂(D2 × S1) −→ ∂(S1 ×D2).

The theorem of Lickorish and Wallace remains true if we only allow handle

surgeries. However, this assumption does not entail any great simplification of

the existence proof for contact structures, so we shall work with general Dehn

surgeries.

Our aim in this section is to use this topological description of 3–manifolds

for a proof of the following theorem, first proved by Martinet [90]. The proof

presented here is in spirit the one given by Martinet, but, as indicated in the

introduction to this third section, amalgamated with ideas of Thurston and

Winkelnkemper [101], whose proof of the same theorem we shall discuss later.

Theorem 3.6 (Martinet). Every closed, orientable 3–manifold M admits a con-

tact structure.

In view of the theorem of Lickorish and Wallace and the fact that S3 admits

a contact structure, Martinet’s theorem is a direct consequence of the following

result.

Theorem 3.7. Let ξ0 be a contact structure on a 3–manifold M0. Let M be the

manifold obtained from M0 by a Dehn surgery along a knot K. Then M admits a

contact structure ξ which coincides with ξ0 outside the neighbourhood of K where

we perform surgery.

Proof. By Theorem 2.44 we may assume that K is positively transverse to ξ0.

Then, by the contact neighbourhood theorem (Example 2.33), we can find a

tubular neighbourhood of K diffeomorphic to S1 ×D2(δ0), where K is identified

with S1 × {0} and D2(δ0) denotes a disc of radius δ0, such that the contact
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structure ξ0 is given as the kernel of dθ+r2dϕ, with θ denoting the S1–coordinate

and (r, ϕ) polar coordinates on D2(δ0).

Now perform a Dehn surgery along K defined by the unimodular matrix(
n q

m p

)
. This corresponds to cutting out S1 ×D2(δ1) ⊂ S1 ×D2(δ0) for some

δ1 < δ0 and gluing it back in the way described above.

Write (θ; r, ϕ) for the coordinates on the copy of S1 × D2(δ1) that we want

to glue back. Then the contact form dθ + r2dϕ given on S1 ×D2(δ0) pulls back

(along S1 × ∂D2(δ1)) to

d(nθ + qϕ) + r2d(mθ + pϕ).

This form is defined on all of S1 × (D2(δ1) − {0}), and to complete the proof it

only remains to find a contact form on S1 ×D2(δ1) that coincides with this form

near S1 × ∂D2(δ1). It is at this point that we use an argument inspired by the

Thurston-Winkelnkemper proof (but which goes back to Lutz).

Lemma 3.8. Given a unimodular matrix

(
n q

m p

)
, there is a contact form on

S1 ×D2(δ) that coincides with (n+mr2) dθ + (q + pr2) dϕ near r = δ and with

±dθ + r2dϕ near r = 0.

Proof. We make the ansatz

α = h1(r) dθ + h2(r) dϕ

with smooth functions h1(r), h2(r). Then

dα = h′1 dr ∧ dθ + h′2 dr ∧ dϕ

and

α ∧ dα =

∣∣∣∣∣
h1 h2

h′1 h′2

∣∣∣∣∣ dθ ∧ dr ∧ dϕ.

So to satisfy the contact condition α ∧ dα 6= 0 all we have to do is to find a

parametrised curve

r 7−→ (h1(r), h2(r)), 0 ≤ r ≤ δ,

in the plane satisfying the following conditions:

1. h1(r) = ±1 and h2(r) = r2 near r = 0,
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2. h1(r) = n+mr2 and h2(r) = q + pr2 near r = δ,

3. (h1(r), h2(r)) is never parallel to (h′1(r), h
′
2(r)).

Since np−mq = ±1, the vector (m, p) is not a multiple of (n, q). Figure 12 shows

possible solution curves for the two cases np−mq = ±1.

h1h1 1−1

h2h2

(n, q) (n+m, q + p)

(n, q)

(n+m, q + p)

Figure 12: Dehn surgery.

This completes the proof of the lemma and hence that of Theorem 3.7.

Remark 3.9. On S3 we have the standard contact forms α± = x dy − y dx ±

(z dt−t dz) defining opposite orientations (cf. Remark 2.2). Performing the above

surgery construction either on (S3, kerα+) or on (S3, kerα−) we obtain both

positive and negative contact structures on any given M . The same is true for

the Lutz construction that we study in the next two sections. Hence: A closed

oriented 3–manifold admits both a positive and a negative contact structure in

each homotopy class of tangent 2–plane fields.

3.3 2–plane fields on 3–manifolds

First we need the following well-known fact.

Theorem 3.10. Every closed, orientable 3–manifold M is parallelisable.

Remark. The most geometric proof of this theorem can be given based on a

structure theorem of Hilden, Montesinos and Thickstun. This will be discussed

in Section 3.5.2. Another proof can be found in [76]. Here we present the classical

algebraic proof.
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Proof. The main point is to show the vanishing of the second Stiefel-Whitney

class w2(M) = w2(TM) ∈ H2(M ; Z2). Recall the following facts, which can

be found in [14]; for the interpretation of Stiefel-Whitney classes as obstruction

classes see also [95].

There are Wu classes vi ∈ H i(M ; Z2) defined by

〈Sqi(u), [M ]〉 = 〈vi ∪ u, [M ]〉

for all u ∈ H3−i(M ; Z2), where Sq denotes the Steenrod squaring operations.

Since Sqi(u) = 0 for i > 3 − i, the only (potentially) non-zero Wu classes are

v0 = 1 and v1. The Wu classes and the Stiefel-Whitney classes are related by

wq =
∑

j Sqq−j(vj). Hence v1 = Sq0(v1) = w1, which equals zero since M is

orientable. We conclude w2 = 0.

Let V2(R
3) = SO(3)/SO(1) = SO(3) be the Stiefel manifold of oriented,

orthonormal 2–frames in R3. This is connected, so there exists a section over

the 1–skeleton of M of the 2–frame bundle V2(TM) associated with TM (with a

choice of Riemannian metric on M understood4). The obstruction to extending

this section over the 2–skeleton is equal to w2, which vanishes as we have just seen.

The obstruction to extending the section over all of M lies in H3(M ;π2(V2(R
3))),

which is the zero group because of π2(SO(3)) = 0.

We conclude that TM has a trivial 2–dimensional sub-bundle ε2. The com-

plementary 1–dimensional bundle λ = TM/ε2 is orientable and hence trivial

since 0 = w1(TM) = w1(ε
2) + w1(λ) = w1(λ). Thus TM = ε2 ⊕ λ is a trivial

bundle.

Fix an arbitrary Riemannian metric on M and a trivialisation of the unit

tangent bundle STM ∼= M × S2. This sets up a one-to-one correspondence

between the following sets, where all maps, homotopies etc. are understood to be

smooth.

• Homotopy classes of unit vector fields X on M ,

• Homotopy classes of (co-)oriented 2–plane distributions ξ in TM ,

• Homotopy classes of maps f : M → S2.

4This is not necessary, of course. One may also work with arbitrary 2–frames without refer-

ence to a metric. This does not affect the homotopical data.
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(I use the term ‘2–plane distribution’ synomymously with ‘2–dimensional sub-

bundle of the tangent bundle’.) Let ξ1, ξ2 be two arbitrary 2–plane distributions

(always understood to be cooriented). By elementary obstruction theory there is

an obstruction

d2(ξ1, ξ2) ∈ H2(M ;π2(S
2)) ∼= H2(M ; Z)

for ξ1 to be homotopic to ξ2 over the 2–skeleton of M and, if d2(ξ1, ξ2) = 0 and

after homotoping ξ1 to ξ2 over the 2–skeleton, an obstruction (which will depend,

in general, on that first homotopy)

d3(ξ1, ξ2) ∈ H3(M ;π3(S
2)) ∼= H3(M ; Z) ∼= Z

for ξ1 to be homotopic to ξ2 over all of M . (The identification of H3(M ; Z) with Z

is determined by the orientation of M .) However, rather than relying on general

obstruction theory, we shall interpret d2 and d3 geometrically, which will later

allow us to give a geometric proof that every homotopy class of 2–plane fields ξ

on M contains a contact structure.

The only fact that I want to quote here is that, by the Pontrjagin-Thom

construction, homotopy classes of maps f : M → S2 are in one-to-one correspon-

dence with framed cobordism classes of framed (and oriented) links of 1–spheres

in M . The general theory can be found in [14] and [77]; a beautiful and elemen-

tary account is given in [94].

For given f , the correspondence is defined by choosing a regular value p ∈ S2

for f and a positively oriented basis b of TpS
2, and associating with it the oriented

framed link (f−1(p), f∗b), where f∗b is the pull-back of b under the fibrewise

bijective map Tf : T (f−1(p))⊥ → TpS
2. The orientation of f−1(p) is the one

which together with the frame f∗b gives the orientation of M .

For a given framed link L the corresponding f is defined by projecting a

(trivial) disc bundle neighbourhood L × D2 of L in M onto the fibre D2 ∼=

S2−p∗, where 0 is identified with p and p∗ denotes the antipode of p, and sending

M − (L×D2) to p∗. Notice that the orientations of M and the components of L

determine that of the fibre D2, and hence determine the map f .

Before proceeding to define the obstruction classes d2 and d3 we make a

short digression and discuss some topological background material which is fairly

standard but not contained in our basic textbook references [14] and [77].
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3.3.1 Hopf’s Umkehrhomomorphismus

If f : Mm → Nn is a continuous map between smooth manifolds, one can define

a homomorphism ϕ : Hn−p(N) → Hm−p(M) on homology classes represented by

submanifolds as follows. Given a homology class [L]N ∈ Hn−p(N) represented by

a codimension p submanifold L, replace f by a smooth approximation transverse

to L and define ϕ([L]N ) = [f−1(L)]M . This is essentially Hopf’s Umkehrhomo-

morphismus [73], except that he worked with combinatorial manifolds of equal

dimension and made no assumptions on the homology class. The following theo-

rem, which in spirit is contained in [41], shows that ϕ is independent of choices (of

submanifold L representing a class and smooth transverse approximation to f)

and actually a homomorphism of intersection rings. This statement is not as well-

known as it should be, and I only know of a proof in the literature for the special

case where L is a point [60]. In [14] this map is called transfer map (more general

transfer maps are discussed in [60]), but is only defined indirectly via Poincaré

duality (though implicitly the statement of the following theorem is contained

in [14], see for instance p. 377).

Theorem 3.11. Let f : Mm → Nn be a smooth map between closed, oriented

manifolds and Ln−p ⊂ Nn a closed, oriented submanifold of codimension p such

that f is transverse to L. Write u ∈ Hp(N) for the Poincaré dual of [L]N , that

is, u∩[N ] = [L]N . Then [f−1(L)]M = f∗u∩[M ]. In other words: If u is Poincaré

dual to [L]N , then f∗u ∈ Hp(M) is Poincaré dual to [f−1(L)]M .

Proof. Since f is transverse to L, the differential Tf induces a fibrewise isomor-

phism between the normal bundles of f−1(L) and L, and we find (closed) tubular

neighbourhoods W → L and V = f−1(W ) → f−1(L) (considered as disc bun-

dles) such that f : V → W is a fibrewise isomorphism. Write [V ]0 and [W ]0 for

the orientation classes in Hm(V, V − f−1(L)) and Hn(W,W − L), respectively.

We can identify these homology groups with Hm(V, ∂V ) and Hn(W,∂W ), respec-

tively. Let τW ∈ Hp(W,∂W ) and τV ∈ Hp(V, ∂V ) be the Thom classes of these

disc bundles defined by

τW ∩ [W ]0 = [L]N ,

τV ∩ [V ]0 = [f−1(L)]M .

Notice that f∗τW = τV since f : W → V is fibrewise isomorphic and the Thom

class of an oriented disc bundle is the unique class whose restriction to each fibre
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is a positive generator of Hp(Dp, ∂Dp). Writing i : M → (M,M − f−1(L)) and

j : N → (N,N − L) for the inclusion maps we have

[f−1(L)]M = τV ∩ [V ]0

= f∗τW ∩ [V ]0

= f∗τW ∩ i∗[M ],

where we identifyHm(M,M−f−1(L)) withHm(V, V −f−1(L)) under the excision

isomorphism. Then we have further

[f−1(L)]M = i∗f∗τW ∩ [M ]

= f∗j∗τW ∩ [M ].

So it remains to identify j∗τW as the Poincaré dual u of [L]N . Indeed,

j∗τW ∩ [N ] = τW ∩ j∗[N ]

= τW ∩ [W ]0

= [L]N ,

where we have used the excision isomorphism between the groups Hn(W,W −L)

and Hn(N,N − L).

3.3.2 Representing homology classes by submanifolds

We now want to relate elements in H1(M ; Z) to cobordism classes of links in M .

Theorem 3.12. Let M be a closed, oriented 3–manifold. Any c ∈ H1(M ; Z)

is represented by an embedded, oriented link (of 1–spheres) Lc in M . Two links

L0, L1 represent the same class [L0] = [L1] if and only if they are cobordant in M ,

that is, there is an embedded, oriented surface S in M × [0, 1] with

∂S = L1 ⊔ (−L0) ⊂M × {1} ⊔M × {0},

where ⊔ denotes disjoint union.

Proof. Given c ∈ H1(M ; Z), set u = PD(c) ∈ H2(M ; Z), where PD denotes

the Poincaré duality map from homology to cohomology. There is a well-known

isomorphism

H2(M ; Z) ∼= [M,K(Z, 2)] = [M,CP∞],
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where brackets denote homotopy classes of maps (cf. [14, VII.12]). So u cor-

responds to a homotopy class of maps [f ] : M → CP∞ such that f∗u0 = u,

where u0 is the positive generator of H2(CP∞) (that is, the one that pulls back

to the Poincaré dual of [CP k−1]CP k under the natural inclusion CP k ⊂ CP∞).

Since dimM = 3, any map f : M → CP∞ is homotopic to a smooth map

f1 : M → CP 1. Let p be a regular value of f1. Then

PD(c) = u = f∗1u0 = f∗1PD[p] = PD[f−1
1 (p)]

by our discussion above, and hence c = [f−1
1 (p)]. So Lc = f−1

1 (p) is the desired

link.

It is important to note that in spite of what we have just said it is not true that

[M,CP∞] = [M,CP 1], since a map F : M × [0, 1] → CP∞ with F (M ×{0, 1}) ⊂

CP 1 is not, in general, homotopic rel (M × {0, 1}) to a map into CP 1. However,

we do have [M,CP∞] = [M,CP 2].

If two links L0, L1 are cobordant in M , then clearly

[L0] = [L1] ∈ H1(M × [0, 1]; Z) ∼= H1(M ; Z).

For the converse, suppose we are given two links L0, L1 ⊂ M with [L0] = [L1].

Choose arbitrary framings for these links and use this, as described at the be-

ginning of this section, to define smooth maps f0, f1 : M → S2 with common

regular value p ∈ S2 such that f−1
i (p) = Li, i = 0, 1. Now identify S2 with the

standardly embedded CP 1 ⊂ CP 2. Let P ⊂ CP 2 be a second copy of CP 1, em-

bedded in such a way that [P ]CP 2 = [CP 1]CP 2 and P intersects CP 1 transversely

in p only. This is possible since CP 1 ⊂ CP 2 has self-intersection one. Then

the maps f0, f1, regarded as maps into CP 2, are transverse to P and we have

f−1
i (P ) = Li, i = 0, 1. Hence

f∗i u0 = f∗i (PD[P ]CP 2) = PD[f−1
i (P )]M

= PD[Li]M

is the same for i = 0 or 1, and from the identification

[M,CP 2]
∼=

−→ H2(M,Z)

[f ] 7−→ f∗u0

we conclude that f0 and f1 are homotopic as maps into CP 2.
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Let F : M × [0, 1] → CP 2 be a homotopy between f0 and f1, which we may

assume to be constant near 0 and 1. This F can be smoothly approximated by a

map F ′ : M × [0, 1] → CP 2 which is transverse to P and coincides with F near

M × 0 and M × 1 (since there the transversality condition was already satisfied).

In particular, F ′ is still a homotopy between f0 and f1, and S = (F ′)−1(P ) is a

surface with the desired property ∂S = L1 ⊔ (−L0).

Notice that in the course of this proof we have observed that cobordism classes

of links in M (equivalently, classes in H1(M ; Z)) correspond to homotopy classes

of maps M → CP 2, whereas framed cobordism classes of framed links correspond

to homotopy classes of maps M → CP 1.

By forming the connected sum of the components of a link representing a

certain class in H1(M ; Z), one may actually always represent such a class by a

link with only one component, that is, a knot.

3.3.3 Framed cobordisms

We have seen that if L1, L2 ⊂ M are links with [L1] = [L2] ∈ H1(M ; Z), then

L1 and L2 are cobordant in M . In general, however, a given framing on L1 and

L2 does not extend over the cobordism. The following observation will be useful

later on.

Write (S1, n) for a contractible loop in M with framing n ∈ Z (by which

we mean that S1 and a second copy of S1 obtained by pushing it away in the

direction of one of the vectors in the frame have linking number n). When writing

L = L′ ⊔ (S1, n) it is understood that (S1, n) is not linked with any component

of L′.

Suppose we have two framed links L0, L1 ⊂ M with [L0] = [L1]. Let S ⊂

M × [0, 1] be an embedded surface with

∂S = L1 ⊔ (−L0) ⊂M × {1} ⊔M × {0}.

With D2 a small disc embedded in S, the framing of L1 and L2 in M extends

to a framing of S −D2 in M × [0, 1] (since S −D2 deformation retracts to a 1–

dimensional complex containing L0 and L1, and over such a complex an orientable

2–plane bundle is trivial). Now we embed a cylinder S1 × [0, 1] in M × [0, 1] such

that

S1 × [0, 1] ∩M × {0} = ∅,
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S1 × [0, 1] ∩M × {1} = S1 × {1},

and

S1 × [0, 1] ∩ (S −D2) = S1 × {0} = ∂D2,

see Figure 13. This shows that L0 is framed cobordant in M to L1 ⊔ (S1, n) for

suitable n ∈ Z.

L1 ⊂M × {1}

L0 ⊂M × {0}

D2

S1 × [0, 1]

S

Figure 13: The framed cobordism between L0 and L1 ⊔ (S1, n).

3.3.4 Definition of the obstruction classes

We are now in a position to define the obstruction classes d2 and d3. With a

choice of Riemannian metric on M and a trivialisation of STM understood, a

2–plane distribution ξ on M defines a map fξ : M → S2 and hence an oriented

framed link Lξ as described above. Let [Lξ] ∈ H1(M ; Z) be the homology class

represented by Lξ. This only depends on the homotopy class of ξ, since under

homotopies of ξ or choice of different regular values of fξ the cobordism class of

Lξ remains invariant. We define

d2(ξ1, ξ2) = PD[Lξ1 ] − PD[Lξ2 ].

With this definition d2 is clearly additive, that is,

d2(ξ1, ξ2) + d2(ξ2, ξ3) = d2(ξ1, ξ3).

The following lemma shows that d2 is indeed the desired obstruction class.
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Lemma 3.13. The 2–plane distributions ξ1 and ξ2 are homotopic over the 2–

skeleton M (2) of M if and only if d2(ξ1, ξ2) = 0.

Proof. Suppose d2(ξ1, ξ2) = 0, that is, [Lξ1 ] = [Lξ2 ]. By Theorem 3.12 we find a

surface S in M × [0, 1] with

∂S = Lξ2 ⊔ (−Lξ1) ⊂M × {1} ⊔M × {0}.

From the discussion on framed cobordism above we know that for suitable n ∈ Z

we find a framed surface S′ in M × [0, 1] such that

∂S′ =
(
Lξ2 ⊔ (S1, n)

)
⊔ (−Lξ1) ⊂M × {1} ⊔M × {0}

as framed manifolds.

Hence ξ1 is homotopic to a 2–plane distribution ξ′1 such that Lξ′
1

and Lξ2 differ

only by one contractible framed loop (not linked with any other component).

Then the corresponding maps f ′1, f2 differ only in a neighbourhood of this loop,

which is contained in a 3–ball, so f ′1 and f2 (and hence ξ′1 and ξ2) agree over the

2–skeleton.

Conversely, if ξ1 and ξ2 are homotopic over M (2), we may assume ξ1 = ξ2 on

M − D3 for some embedded 3–disc D3 ⊂ M without changing [Lξ1 ] and [Lξ2 ].

Now [Lξ1 ] = [Lξ2 ] follows from H1(D
3, S2) = 0.

Remark 3.14. By [99, § 37] the obstruction to homotopy between ξ and ξ0

(corresponding to the constant map fξ0 : M → S2) over the 2–skeleton of M is

given by f∗ξ u0, where u0 is the positive generator of H2(S2; Z). So u0 = PD[p]

for any p ∈ S2, and taking p to be a regular value of fξ we have

f∗ξ u0 = f∗ξ PD[p] = PD[f−1
ξ (p)]

= PD[Lξ] = d2(ξ, ξ0).

This gives an alternative way to see that our geometric definition of d2 does

indeed coincide with the class defined by classical obstruction theory.

Now suppose d2(ξ1, ξ2) = 0. We may then assume that ξ1 = ξ2 onM−int(D3),

and we define d3(ξ1, ξ2) to be the Hopf invariant H(f) of the map f : S3 → S2

defined as f1 ◦ π+ on the upper hemisphere and f2 ◦ π− on the lower hemisphere,

where π+, π− are the orthogonal projections of the upper resp. lower hemisphere
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onto the equatorial disc, which we identify with D3 ⊂ M . Here, given an orien-

tation of M , we orient S3 in such a way that π+ is orientation-preserving and

π− orientation-reversing; the orientation of S2 is inessential for the computation

of H(f). Recall that H(f) is defined as the linking number of the preimages of

two distinct regular values of a smooth map homotopic to f . Since the Hopf in-

variant classifies homotopy classes of maps S3 → S2 (it is in fact an isomorphism

π3(S
2) → Z), this is a suitable definition for the obstruction class d3. Moreover,

the homomorphism property of H(f) and the way addition in π3(S
2) is defined

entail the additivity of d3 analogous to that of d2.

For M = S3 there is another way to interpret d3. Oriented 2–plane distrib-

utions on M correspond to sections of the bundle associated to TM with fibre

SO(3)/U(1), hence to maps M → SO(3)/U(1) ∼= S2 since TM is trivial. Simi-

larly, almost complex structures on D4 correspond to maps D4 → SO(4)/U(2) ∼=

SO(3)/U(1) (cf. [61] for this isomorphism). A cooriented 2–plane distribution on

M can be interpreted as a triple (X, ξ, J), where X is a vector field transverse

to ξ defining the coorientation, and J a complex structure on ξ defining the ori-

entation. Such a triple is called an almost contact structure. (This notion

generalises to higher (odd) dimensions, and by Remark 2.3 every cooriented con-

tact structure induces an almost contact structure, and in fact a unique one up

to homotopy as follows from the result cited in that remark.) Given an almost

contact structure (X, ξ, J) on S3, one defines an almost complex structure J̃ on

TD4|S3 by J̃ |ξ = J and J̃N = X, where N denotes the outward normal vector

field. So there is a canonical way to identify homotopy classes of almost con-

tact structures on S3 with elements of π3(SO(3)/U(1)) ∼= Z such that the value

zero corresponds to the almost contact structure that extends as almost complex

structure over D4.

3.4 Let’s Twist Again

Consider a 3–manifold M with cooriented contact structure ξ and an oriented 1–

sphere K ⊂M embedded transversely to ξ such that the positive orientation of K

coincides with the positive coorientation of ξ. Then in suitable local coordinates

we can identify K with S1 × {0} ⊂ S1 × D2 such that ξ = ker(dθ + r2dϕ) and

∂θ corresponds to the positive orientation of K (see Example 2.33). Strictly

speaking, if, as we shall always assume, S1 is parametrised by 0 ≤ θ ≤ 2π, then

this formula for ξ holds on S1 ×D2(δ) for some, possibly small, δ > 0. However,
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to simplify notation we usually work with S1 ×D2 as local model.

We say that ξ′ is obtained from ξ by a Lutz twist along K and write ξ′ = ξK

if on S1 ×D2 the new contact structure ξ′ is defined by

ξ′ = ker(h1(r) dθ + h2(r) dϕ)

with (h1(r), h2(r)) as in Figure 14, and ξ′ coincides with ξ outside S1 ×D2.

h1−1 1

h2

r = r0

Figure 14: Lutz twist.

More precisely, (h1(r), h2(r)) is required to satisfy the conditions

1. h1(r) = −1 and h2(r) = −r2 near r = 0,

2. h1(r) = 1 and h2(r) = r2 near r = 1,

3. (h1(r), h2(r)) is never parallel to (h′1(r), h
′
2(r)).

This is the same as applying the construction of Section 3.2 to the topologically

trivial Dehn surgery given by the matrix

(
−1 0

0 −1

)
.

It will be useful later on to understand more precisely the behaviour of the

map fξ′ : S
3 → S2. For the definition of this map we assume – this assump-

tion will be justified below – that on S1 ×D2 the map fξ was defined in terms
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of the standard metric dθ2 + du2 + dv2 (with u, v cartesian coordinates on D2

corresponding to the polar coordinates r, ϕ) and the trivialisation ∂θ, ∂u, ∂v of

T (S1 × D2). Since ξ′ is spanned by ∂r and h2(r)∂θ − h1(r)∂ϕ (resp. ∂u, ∂v for

r = 0), a vector positively orthogonal to ξ′ is given by

h1(r)∂θ + h2(r)∂ϕ,

which makes sense even for r = 0. Observe that the ratio h1(r)/h2(r) (for

h2(r) 6= 0) is a strictly monotone decreasing function since by the third condition

above we have

(h1/h2)
′ = (h′1h2 − h1h

′
2)/h

2
2 < 0.

This implies that any value on S2 other than (1, 0, 0) (corresponding to ∂θ) is

regular for the map fξ′ ; the value (1, 0, 0) is attained along the torus {r = r0},

with r0 > 0 determined by h2(r0) = 0, and hence not regular.

If S1 ×D2 is endowed with the orientation defined by the volume form dθ ∧

r dr ∧ dϕ = dθ ∧ du ∧ dv (so that ξ and ξ′ are positive contact structures) and

S2 ⊂ R3 is given its ‘usual’ orientation defined by the volume form x dy ∧ dz +

y dz ∧ dx+ z dx ∧ dy, then

f−1
ξ′ (−1, 0, 0) = S1 × {0}

with orientation given by −∂θ, since fξ′ maps the slices {θ}×D2(r0) orientation-

reversingly onto S2.

More generally, for any p ∈ S2 − {(1, 0, 0)} the preimage f−1
ξ′ (p) (inside the

domain {(θ, r, ϕ) : h2(r) < 0} = {r = r0}) is a circle S1 × {u}, u ∈ D2, with

orientation given by −∂θ.

We are now ready to show how to construct a contact structure on M in

any given homotopy class of 2–plane distributions by starting with an arbitrary

contact structure and performing suitable Lutz twists. First we deal with homo-

topy over the 2–skeleton. One way to proceed would be to prove directly, with

notation as above, that d2(ξK , ξ) = −PD[K]. However, it is somewhat easier

to compute d2(ξK , ξ) in the case where ξ is a trivial 2–plane bundle and the

trivialisation of STM is adapted to ξ. Since I would anyway like to present an

alternative argument for computing the effect of a Lutz twist on the Euler class

of the contact structure, and thus relate d2(ξ1, ξ2) with the Euler classes of ξ1

and ξ2, it seems opportune to do this first and use it to show the existence of
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a contact structure with Euler class zero. In the next section we shall actually

discuss a direct geometric proof, due to Gonzalo, of the existence of a contact

structure with Euler class zero.

Recall that the Euler class e(ξ) ∈ H2(B; Z) of a 2–plane bundle over a complex

B (of arbitrary dimension) is the obstruction to finding a nowhere zero section

of ξ over the 2–skeleton of B. Since πi(S
1) = 0 for i ≥ 2, all higher obstruction

groups H i+1(B;πi(S
1)) are trivial, so a 2–dimensional orientable bundle ξ is

trivial if and only if e(ξ) = 0, no matter what the dimension of B.

Now let ξ be an arbitrary cooriented 2–plane distribution on an oriented 3–

manifold M . Then TM ∼= ξ ⊕ ε1, where ε1 denotes a trivial line bundle. Hence

w2(ξ) = w2(ξ ⊕ ε1) = w2(TM) = 0, and since w2(ξ) is the mod 2 reduction of

e(ξ) we infer that e(ξ) has to be even.

Proposition 3.15. For any even element e ∈ H2(M ; Z) there is a contact struc-

ture ξ on M with e(ξ) = e.

Proof. Start with an arbitrary contact structure ξ0 on M with e(ξ0) = e0 (which

we know to be even). Given any even e1 ∈ H2(M ; Z), represent the Poincaré dual

of (e0 − e1)/2 by a collection of embedded oriented circles positively transverse

to ξ0. (Here by (e0 − e1)/2 I mean some class whose double equals e0 − e1; in

the presence of 2–torsion there is of course a choice of such classes.) Choose

a section of ξ0 transverse to the zero section of ξ0, that is, a vector field in

ξ0 with generic zeros. We may assume that there are no zeros on the curves

representing PD−1(e0 − e1)/2. Now perform a Lutz twist as described above

along these curves and call ξ1 the resulting contact structure. It is easy to see

that in the local model for the Lutz twist a constant vector field tangent to ξ0

along ∂(S1×D2(r0)) extends to a vector field tangent to ξ1 over S1×D2(r0) with

zeros of index +2 along S1 × {0} (Figure 15). So the vector field in ξ0 extends

to a vector field in ξ1 with new zeros of index +2 along the curves representing

PD−1(e1 − e0)/2 (notice that a Lutz twist along a positively transverse knot K

turns K into a negatively transverse knot). Since the self-intersection class of M

in the total space of a vector bundle is Poincaré dual to the Euler class of that

bundle, this proves e(ξ1) = e(ξ0) + e1 − e0 = e1.

We now fix a contact structure ξ0 on M with e(ξ0) = 0 and give M the ori-

entation induced by ξ0 (i.e. the one for which ξ0 is a positive contact structure).

Moreover, we fix a Riemannian metric on M and define X0 as the vector field
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Figure 15: Effect of Lutz twist on Euler class.

positively orthonormal to ξ0. Since ξ0 is a trivial plane bundle, X0 extends to an

orthonormal frame X0, X1, X2, hence a trivialisation of STM , with X1, X2 tan-

gent to ξ0 and defining the orientation of ξ0. With these choices, ξ0 corresponds

to the constant map fξ0 : M → (1, 0, 0) ∈ S2.

Proposition 3.16. Let K ⊂M be an embedded, oriented circle positively trans-

verse to ξ0. Then d2(ξK
0 , ξ0) = −PD[K].

Proof. Identify a tubular neighbourhood of K ⊂ M with S1 ×D2 with framing

defined by X1, and ξ0 given in this neighbourhood as the kernel of dθ + r2dϕ =

dθ+u dv−v du. We may then change the trivialisationX0, X1, X2 by a homotopy,

fixed outside S1 × D2, such that X0 = ∂θ, X1 = ∂u and X2 = ∂v near K; this

does not change the homotopical data of 2–plane distributions computed via the

Pontrjagin-Thom construction. Then fξ0 is no longer constant, but its image still

does not contain the point (−1, 0, 0).

Now perform a Lutz twist along K × {0}. Our discussion at the beginning

of this section shows that (−1, 0, 0) is a regular value of the map fξ : M → S2

associated with ξ = ξK
0 and f−1

ξ (−1, 0, 0) = −K. Hence, by definition of the

obstruction class d2 we have d2(ξK
0 , ξ0) = −PD[K].

Proof of Theorem 3.1. Let η be a 2–plane distribution on M and ξ0 the contact

structure on M with e(ξ0) = 0 that we fixed earlier on. According to our discus-

sion in Section 3.3.2 and Theorem 2.44, we can find an oriented knot K positively

transverse to ξ0 with −PD[K] = d2(η, ξ0). Then d2(η, ξ0) = d2(ξK
0 , ξ0) by the

preceding proposition, and therefore d2(ξK
0 , η) = 0.
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We may then assume that η = ξK
0 on M − D3, where we choose D3 so

small that ξK
0 is in Darboux normal form there (and identical with ξ0). By

Proposition 3.4 we can find a link K ′ in D3 transverse to ξK
0 with self-linking

number l(K ′) equal to d3(η, ξK
0 ).

Now perform a Lutz twist of ξK
0 along each component of K ′ and let ξ be the

resulting contact structure. Since this does not change ξK
0 over the 2–skeleton

of M , we still have d2(ξ, η) = 0.

Observe that fξK
0
|D3 does not contain the point (−1, 0, 0) ∈ S2, and – since

fξK
0

(D3) is compact – there is a whole neighbourhood U ⊂ S2 of (−1, 0, 0) not

contained in fξK
0

(D3). Let f : S3 → S2 be the map used to compute d3(ξ, ξK
0 ),

that is, f coincides on the upper hemisphere with fξ|D3 and on the lower hemi-

sphere with fξK
0
|D3 . By the discussion in Section 3.3, the preimage f−1(u) of any

u ∈ U −{(−1, 0, 0)} will be a push-off of −K ′ determined by the trivialisation of

ξK
0 |D3 = ξ0|D3 . So the linking number of f−1(u) with f−1(−1, 0, 0), which is by

definition the Hopf invariant H(f) = d3(ξ, ξK
0 ), will be equal to l(K ′). By our

choice of K ′ and the additivity of d3 this implies d3(ξ, η) = 0. So ξ is a contact

structure that is homotopic to η as a 2–plane distribution.

3.5 Other existence proofs

Here I briefly summarise the other known existence proofs for contact structures

on 3–manifolds, mostly by pointing to the relevant literature. In spirit, most of

these proofs are similar to the one by Lutz-Martinet: start with a structure theo-

rem for 3–manifolds and show that the topological construction can be performed

compatibly with a contact structure.

3.5.1 Open books

According to a theorem of Alexander [5], cf. [97], every closed, orientable 3–

manifold M admits an open book decomposition. This means that there is

a link L ⊂M , called the binding, and a fibration f : M −L→ S1, whose fibres

are called the pages, see Figure 16. It may be assumed that L has a tubular

neighbourhood L × D2 such that f restricted to L × (D2 − {0}) is given by

f(θ, r, ϕ) = ϕ, where θ is the coordinate along L and (r, ϕ) are polar coordinates

on D2.

At the cost of raising the genus of the pages, one may decrease the number

of components of L, and in particular one may always assume L to be a knot.
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L

S1

f−1(ϕ)

Figure 16: An open book near the binding.

Another way to think of such an open book is as follows. Start with a surface

Σ with boundary ∂Σ = K ∼= S1 and a self-diffeomorphism h of Σ with h = id

near K. Form the mapping torus Th = Σh = Σ × [0, 2π]/∼, where ‘∼’ denotes

the identification (p, 2π) ∼ (h(p), 0). Define a 3–manifold M by

M = Th ∪K×S1 (K ×D2).

This M carries by construction the structure of an open book with binding K

and pages diffeomorphic to Σ.

Here is a slight variation on a simple argument of Thurston and Winkelnkem-

per [101] for producing a contact structure on such an open book (and hence on

any closed, orientable 3–manifold):

Start with a 1–form β0 on Σ with β0 = etdθ near ∂Σ = K, where θ denotes

the coordinate along K and t is a collar parameter with K = {t = 0} and t < 0 in

the interior of Σ. Then dβ0 integrates to 2π over Σ by Stokes’s theorem. Given

any area form ω on Σ (with total area equal to 2π) satisfying ω = etdt ∧ dθ

near K, the 2–form ω− dβ0 is, by de Rham’s theorem, an exact 1–form, say dβ1,

where we may assume β1 ≡ 0 near K.

Set β = β0 + β1. Then dβ = ω is an area form (of total area 2π) on Σ and

β = etdθ near K. The set of 1–forms satisfying these two properties is a convex

set, so we can find a 1–form (still denoted β) on Th which has these properties

when restricted to the fibre over any ϕ ∈ S1 = [0, 2π]/0∼2π. We may (and shall)
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require that β = etdθ near ∂Th.

Now a contact form α on Th is found by setting α = β+C dϕ for a sufficiently

large constant C ∈ R+, so that in

α ∧ dα = (β + C dϕ) ∧ dβ

the non-zero term dϕ ∧ dβ = dϕ ∧ ω dominates. This contact form can be

extended to all of M by making the ansatz α = h1(r)dθ + h2(r)dϕ on K ×D2,

as described in our discussion of the Lutz twist. The boundary conditions in the

present situation are, say,

1. h1(r) = 2 and h2(r) = r2 near r = 0,

2. h1(r) = e1−r and h2(r) = C near r = 1.

Observe that subject to these boundary conditions a curve (h1(r), h2(r)) can

be found that does not pass the h2–axis (i.e. with h1(r) never being equal to

zero). In the 3–dimensional setting this is not essential (and the Thurston-

Winkelnkemper ansatz lacked that feature), but it is crucial when one tries to

generalise this construction to higher dimensions. This has recently been worked

out by Giroux and J.-P. Mohsen [57]. This, however, is only the easy part of

their work. Rather strikingly, they have shown that a converse of this result

holds: Given a compact contact manifold of arbitrary dimension, it admits an

open book decomposition that is adapted to the contact structure in the way

described above. Full details have not been published at the time of writing, but

see Giroux’s talk [56] at the ICM 2002.

3.5.2 Branched covers

A theorem of Hilden, Montesinos and Thickstun [63] states that every closed,

orientable 3–manifold M admits a branched covering π : M → S3 such that

the upstairs branch set is a simple closed curve that bounds an embedded disc.

(Moreover, the cover can be chosen 3–fold and simple, i.e. the monodromy repre-

sentation of π1(S
3 −K), where K is the branching set downstairs (a knot in S3),

represents the meridian of K by a transposition in the symmetric group S3. This,

however, is not relevant for our discussion.)

It follows immediately, as announced in Section 3.3, that every closed, ori-

entable 3–manifold is parallelisable: First of all, S3 is parallelisable since it car-

ries a Lie group structure (as the unit quaternions, for instance). Given M and
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a branched covering π : M → S3 as above, there is a 3–ball D3 ⊂ M containing

the upstairs branch set. Outside of D3, the covering π is unbranched, so the

3–frame on S3 can be lifted to a frame on M −D3. The bundle TM |D3 is trivial,

so the frame defined along ∂D3 defines an element of SO(3) (cf. the footnote in

the proof of Theorem 3.10). Since π2(SO(3)) = 0, this frame extends over D3.

In [59], Gonzalo uses this theorem to construct a contact structure on every

closed, orientable 3–manifold M , in fact one with zero Euler class: Away from

the branching set one can lift the standard contact structure from S3 (which

has Euler class zero: a trivialisation is given by two of the three (quaternionic)

Hopf vector fields). A careful analysis of the branched covering map near the

branching set then shows how to extend this contact structure over M (while

keeping it trivial as 2–plane bundle).

A branched covering construction for higher-dimensional contact manifolds is

discussed in [43].

3.5.3 . . . and more

The work of Giroux [52], in which he initiated the study of convex surfaces in

contact 3–manifolds, also contains a proof of Martinet’s theorem.

An entirely different proof, due to S. Altschuler [4], finds contact structures

from solutions to a certain parabolic differential equation for 1–forms on 3–

manifolds. Some of these ideas have entered into the more far-reaching work

of Eliashberg and Thurston on so-called ‘confoliations’ [32], that is, 1–forms sat-

isfying α ∧ dα ≥ 0.

3.6 Tight and overtwisted

The title of this section describes the fundamental dichotomy of contact structures

in dimension 3 that has proved seminal for the development of the field.

In order to motivate the notion of an overtwisted contact structure, as intro-

duced by Eliashberg [21], we consider a ‘full’ Lutz twist as follows. Let (M, ξ) be

a contact 3–manifold and K ⊂ M a knot transverse to ξ. As before, identify K

with S1 × {0} ⊂ S1 ×D2 ⊂ M such that ξ = ker(dθ + r2dϕ) on S1 ×D2. Now

define a new contact structure ξ′ as in Section 3.4, with (h1(r), h2(r)) now as in

Figure 17, that is, the boundary conditions are now

h1(r) = 1 and h2(r) = r2 for r ∈ [0, ε] ∪ [1 − ε, 1]

67



for some small ε > 0.

h11

h2

Figure 17: A full Lutz twist.

Lemma 3.17. A full Lutz twist does not change the homotopy class of ξ as a

2–plane field.

Proof. Let (ht
1(r), h

t
2(r)), r, t ∈ [0, 1], be a homotopy of paths such that

1. h0
1 ≡ 1, h0

2(r) = r2,

2. h1
i ≡ hi, i = 1, 2,

3. ht
i(r) = hi(r) for r ∈ [0, ε] ∪ [1 − ε, 1].

Let χ : [0, 1] → R be a smooth function which is identically zero near r = 0 and

r = 1 and χ(r) > 0 for r ∈ [ε, 1 − ε]. Then

αt = t(1 − t)χ(r) dr + ht
1(r) dθ + ht

2(r) dϕ

is a homotopy from α0 = dθ+ r2dϕ to α1 = h1(r) dθ+h2(r) dϕ through non-zero

1–forms. This homotopy stays fixed near r = 1, and so it defines a homotopy

between ξ and ξ′ as 2–plane fields.
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Let r0 be the smaller of the two positive radii with h2(r0) = 0 and consider

the embedding

φ : D2(r0) −→ S1 ×D2

(r, ϕ) 7−→ (θ(r), r, ϕ),

where θ(r) is a smooth function with θ(r0) = 0, θ(r) > 0 for 0 ≤ r < r0, and

θ′(r) = 0 only for r = 0. We may require in addition that θ(r) = θ(0) − r2 near

r = 0. Then

φ∗(h1(r) dθ + h2(r) dϕ) = h1(r)θ
′(r) dr + h2(r) dϕ

is a differential 1–form on D2(r0) which vanishes only for r = 0, and along

∂D2(r0) the vector field ∂ϕ tangent to the boundary lies in the kernel of this 1–

form, see Figure 18. In other words, the contact planes ker(h1(r) dθ + h2(r) dϕ)

intersected with the tangent planes to the embedded disc φ(D2(r0)) induce a

singular 1–dimensional foliation on this disc with the boundary of this disc as

closed leaf and precisely one singular point in the interior of the disc (Figure 19;

notice that the leaves of this foliation are the integral curves of the vector field

h1(r)θ
′(r) ∂ϕ − h2(r) ∂r). Such a disc is called an overtwisted disc.

ξ

φ(D2(r0))

S1

r0

Figure 18: An overtwisted disc.

A contact structure ξ on a 3–manifold M is called overtwisted if (M, ξ)

contains an embedded overtwisted disc. In order to justify this terminology,
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Figure 19: Characteristic foliation on an overtwisted disc.

observe that in the radially symmetric standard contact structure of Example 2.7,

the angle by which the contact planes turn approaches π/2 asymptotically as r

goes to infinity. By contrast, any contact manifold which has been constructed

using at least one (simple) Lutz twist contains a similar cylindrical region where

the contact planes twist by more than π in radial direction (at the smallest

positive radius r0 with h2(r0) = 0 the twisting angle has reached π).

We have shown the following:

Proposition 3.18. Let ξ be a contact structure on M . By a full Lutz twist along

any transversely embedded circle one obtains an overtwisted contact structure ξ′

that is homotopic to ξ as a 2–plane distribution. �

Together with the theorem of Lutz and Martinet we find that M contains an

overtwisted contact structure in every homotopy class of 2–plane distributions.

In fact, Eliashberg [21] has proved the following much stronger theorem.

Theorem 3.19 (Eliashberg). On a closed, orientable 3–manifold there is a one-

to-one correspondence between homotopy classes of overtwisted contact structures

and homotopy classes of 2–plane distributions.

This means that two overtwisted contact structures which are homotopic as

2–plane fields are actually homotopic as contact structures and hence isotopic by

Gray’s stability theorem.

Thus, it ‘only’ remains to classify contact structures that are not overtwisted.

In [24] Eliashberg defined tight contact structures on a 3–manifold M as contact

structures ξ for which there is no embedded disc D ⊂ M such that Dξ contains
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a limit cycle. So, by definition, overtwisted contact structures are not tight. In

that same paper, as mentioned above in Section 2.4.5, Eliashberg goes on to show

the converse with the help of the Elimination Lemma: non-overtwisted contact

structures are tight.

There are various ways to detect whether a contact structure is tight. His-

torically the first proof that a certain contact structure is tight is due to D. Ben-

nequin [9, Cor. 2, p. 150]:

Theorem 3.20 (Bennequin). The standard contact structure ξ0 on S3 is tight.

The steps of the proof are as follows: (i) First, Bennequin shows that if γ0 is

a transverse knot in (S3, ξ0) with Seifert surface Σ, then the self-linking number

of γ satisfies the inequality

l(γ0) ≤ −χ(Σ).

(ii) Second, he introduces an invariant for Legendrian knots; nowadays this

is called the Thurston-Bennequin invariant: Let γ be a Legendrian knot in

(S3, ξ0). Take a vector field X along γ transverse to ξ0, and let γ′ be the push-

off of γ in the direction of X. Then the Thurston-Bennequin invariant tb(γ) is

defined to be the linking number of γ and γ′. (This invariant has an extension

to homologically trivial Legendrian knots in arbitrary contact 3–manifolds.)

(iii) By pushing γ in the direction of ±X, one obtains transverse curves γ±

(either of which is a candidate for γ′ in (ii)). One of these curves is positively

transverse, the other negatively transverse to ξ0. The self-linking number of γ± is

related to the Thurston-Bennequin invariant and a further invariant (the rotation

number) of γ. The equation relating these three invariants implies tb(γ) ≤ −χ(Σ),

where Σ again denotes a Seifert surface for γ. In particular, a Legendrian unknot

γ satisfies tb(γ) < 0. This inequality would be violated by the vanishing cycle of

an overtwisted disc (which has tb = 0), which proves that (S3, ξ0) is tight.

Remark 3.21. (1) Eliashberg [25] generalised the Bennequin inequality l(γ0) ≤

−χ(Σ) for transverse knots (and the corresponding inequality for the Thurston-

Bennequin invariant of Legendrian knots) to arbitrary tight contact 3–manifolds.

Thus, whereas Bennequin established the tightness (without that name) of the

standard contact structure on S3 by proving the inequality that bears his name,

that inequality is now seen, conversely, as a consequence of tightness.

(2) In [9] Bennequin denotes the positively (resp. negatively) transverse push-

off of the Legendrian knot γ by γ− (resp. γ+). This has led to some sign errors in
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the literature. Notably, the ± in Proposition 2.2.1 of [25], relating the described

invariants of γ and γ±, needs to be reversed.

Corollary 3.22. The standard contact structure on R3 is tight.

Proof. This is immediate from Proposition 2.13.

Here are further tests for tightness:

1. A closed contact 3–manifold (M, ξ) is called symplectically fillable if

there exists a compact symplectic manifold (W,ω) bounded by M such that

• the restriction of ω to ξ does not vanish anywhere,

• the orientation of M defined by ξ (i.e. the one for which ξ is positive)

coincides with the orientation of M as boundary of the symplectic manifold

(W,ω) (which is oriented by ω2).

We then have the following result of Eliashberg [20, Thm. 3.2.1], [22] and

Gromov [62, 2.4.D′
2(b)], cf. [10]:

Theorem 3.23 (Eliashberg-Gromov). A symplectically fillable contact structure

is tight.

Example 3.24. The 4–ball D4 ⊂ R4 with symplectic form ω = dx1∧dy1 +dx2∧

dy2 is a symplectic filling of S3 with its standard contact structure ξ0. This gives

an alternative proof of Bennequin’s theorem.

2. Let (M̃, ξ̃) → (M, ξ) be a covering map and contactomorphism. If (M̃, ξ̃)

is tight, then so is (M, ξ), for any overtwisted disc in (M, ξ) would lift to an

overtwisted disc in (M̃, ξ̃).

Example 3.25. The contact structures ξn, n ∈ N, on the 3–torus T 3 defined by

αn = cos(nθ1) dθ2 + sin(nθ1) dθ3 = 0

are tight: Lift the contact structure ξn to the universal cover R3 of T 3; there the

contact structure is defined by the same equation αn = 0, but now θi ∈ R instead

of θi ∈ R/2πZ ∼= S1. Define a diffeomorphism f of R3 by

f(x, y, z) = (y/n, z cos y + x sin y, z sin y − x cos y) =: (θ1, θ2, θ3).

Then f∗αn = dz + x dy, so the lift of ξn to R3 is contactomorphic to the tight

standard contact structure on R3.
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Notice that it is possible for a tight contact structure to be finitely covered by

an overtwisted contact structure. The first such examples were due to S. Makar-

Limanov [88]. Other examples of this kind have been found by V. Colin [18] and

R. Gompf [58].

3. The following theorem of H. Hofer [65] relates the dynamics of the Reeb

vector field to overtwistedness.

Theorem 3.26 (Hofer). Let α be a contact form on a closed 3–manifold such

that the contact structure kerα is overtwisted. Then the Reeb vector field of α

has at least one contractible periodic orbit.

Example 3.27. The Reeb vector field Rn of the contact form αn of the preceding

example is

Rn = cos(nθ1) ∂θ2
+ sin(nθ1) ∂θ3

.

Thus, the orbits of Rn define constant slope foliations of the 2–tori {θ1 = const.};

in particular, the periodic orbits of Rn are even homologically non-trivial. It

follows, again, that the ξn are tight contact structures on T 3. (This, admittedly,

amounts to attacking starlings with rice puddings fired from catapults5.)

3.7 Classification results

In this section I summarise some of the known classification results for contact

structures on 3–manifolds. By Eliashberg’s Theorem 3.19 it suffices to list the

tight contact structures, up to isotopy or diffeomorphism, on a given closed 3–

manifold.

Theorem 3.28 (Eliashberg [24]). Any tight contact structure on S3 is isotopic

to the standard contact structure ξ0.

This theorem has a remarkable application in differential topology, viz., it

leads to a new proof of Cerf’s theorem [16] that any diffeomorphism of S3 ex-

tends to a diffeomorphism of the 4–ball D4. The idea is that the above theorem

implies that any diffeomorphism of S3 is isotopic to a contactomorphism of ξ0.

Eliashberg’s technique [22] of filling by holomorphic discs can then be used to

show that such a contactomorphism extends to a diffeomorphism of D4.

5This turn of phrase originates from [93].
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As remarked earlier (Remark 2.21), Eliashberg has also classified contact

structures on R3. Recall that homotopy classes of 2–plane distributions on S3

are classified by π3(S
2) ∼= Z. By Theorem 3.19, each of these classes contains

a unique (up to isotopy) overtwisted contact structure. When a point of S3 is

removed, each of these contact structures induces one on R3, and Eliashberg [25]

shows that they remain non-diffeomorphic there. Eliashberg shows further that,

apart from this integer family of overtwisted contact structures, there is a unique

tight contact structure on R3 (the standard one), and a single overtwisted one

that is ‘overtwisted at infinity’ and cannot be compactified to a contact structure

on S3.

In general, the classification of contact structures up to diffeomorphism will

differ from the classification up to isotopy. For instance, on the 3–torus T 3 we

have the following diffeomorphism classification due to Y. Kanda [75]:

Theorem 3.29 (Kanda). Every (positive) tight contact structure on T 3 is con-

tactomorphic to one of the ξn, n ∈ N, described above. For n 6= m, the contact

structures ξn and ξm are not contactomorphic.

Giroux [54] had proved earlier that ξn for n ≥ 2 is not contactomorphic to ξ1.

On the other hand, all the ξn are homotopic as 2–plane fields to {dθ1 = 0}.

This shows one way how Eliashberg’s classification Theorem 3.19 for overtwisted

contact structures can fail for tight contact structures:

• There are tight contact structures on T 3 that are homotopic as plane fields

but not contactomorphic.

P. Lisca and G. Matić [82] have found examples of the same kind on homology

spheres by applying Seiberg-Witten theory to Stein fillings of contact manifolds,

cf. also [78].

Eliashberg and L. Polterovich [31] have determined the isotopy classes of

diffeomorphisms of T 3 that contain a contactomorphism of ξ1: they correspond

to exactly those elements of SL(3,Z) = π0(Diff(T 3)) that stabilise the subspace

0 ⊕ Z2 corresponding to the coordinates (θ2, θ3). In combination with Kanda’s

result, this allows to give an isotopy classification of tight contact structures

on T 3. One particular consequence of the result of Eliashberg and Polterovich is

the following:
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• There are tight contact structures on T 3 that are contactomorphic and

homotopic as plane fields, but not isotopic (i.e. not homotopic through

contact structures).

Again, such examples also exist on homology spheres, as S. Akbulut and

R. Matveyev [2] have shown.

Another aspect of Eliashberg’s classification of overtwisted contact structures

that fails to hold for tight structures is of course the existence of such a structure

in every homotopy class of 2–plane fields, as is already demonstrated by the

classification of contact structures on S3. Etnyre and K. Honda [37] have recently

even found an example of a manifold – the connected some of two copies of the

Poincaré sphere with opposite orientations – that does not admit any tight contact

structure at all.

For the classification of tight contact structures on lens spaces and T 2–bundles

over S1 see [55], [71] and [72]. A partial classification of tight contact structures

on lens spaces had been obtained earlier in [34].

As further reading on 3–dimensional contact geometry I can recommend the

lucid Bourbaki talk by Giroux [53]. This covers the ground up to Eliashberg’s

classification of overtwisted contact structures and the uniqueness of the tight

contact structure on S3.

4 A guide to the literature

In this concluding section I give some recommendations for further reading, con-

centrating on those aspects of contact geometry that have not (or only briefly)

been touched upon in earlier sections.

Two general surveys that emphasise historical matters and describe the de-

velopment of contact geometry from some of its earliest origins are the one by

Lutz [87] and one by the present author [45].

One aspect of contact geometry that I have neglected in these notes is the

Riemannian geometry of contact manifolds (leading, for instance, to Sasakian

geometry). The survey by Lutz has some material on that; D. Blair [11] has

recently published a monograph on the topic.

There have also been various ideas for defining interesting families of contact

structures. Again, the survey by Lutz has something to say on that; one such
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concept that has exhibited very intriguing ramifications – if this commercial break

be permitted – was introduced in [48].

4.1 Dimension 3

As mentioned earlier, Chapter 8 in [1] is in parts complementary to the present

notes and has some material on surfaces in contact 3–manifolds. Other surveys

and introductory texts on 3–dimensional contact geometry are the introductory

lectures by Etnyre [35] and the Bourbaki talk by Giroux [52]. Good places to

start further reading are two papers by Eliashberg: [24] for the classification of

tight contact structures and [26] for knots in contact 3–manifolds. Concerning

the latter, there is also a chapter by Etnyre [36] in a companion Handbook and an

article by Etnyre and Honda [38] with an extensive introduction to that subject.

The surveys [20] and [27] by Eliashberg are more general in scope, but also

contain material about contact 3–manifolds.

3–dimensional contact topology has now become a fairly wide arena; apart

from the work of Eliashberg, Giroux, Etnyre-Honda and others described earlier,

I should also mention the results of Colin, who has, for instance, shown that

surgery of index one (in particular: taking the connected sum) on a tight contact

3–manifold leads again to a tight contact structure [17].

Finally, Etnyre and L. Ng [40] have compiled a useful list of problems in

3–dimensional contact topology.

4.2 Higher dimensions

The article [46] by the present author contains a survey of what was known at the

time of writing about the existence of contact structures on higher-dimensional

manifolds. One of the most important techniques for constructing contact mani-

folds in higher dimensions is the so-called contact surgery along isotropic spheres

developed by Eliashberg [23] and A. Weinstein [105]. The latter is a very readable

paper. For a recent application of this technique see [49]. Other constructions

of contact manifolds (branched covers, gluing along codimension 2 contact sub-

manifolds) are described in my paper [43].

Odd-dimensional tori are of course amongst the manifolds with the simplest

global description, but they do not easily lend themselves to the construction of

contact structures. In [86] Lutz found a contact structure on T 5; since then it has

been one of the prize questions in contact geometry to find a contact structure on
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higher-dimensional tori. That prize, as it were, recently went to F. Bourgeois [13],

who showed that indeed all odd-dimensional tori do admit a contact structure.

His construction uses the result of Giroux and Mohsen [56], [57] about open book

decompositions adapted to contact structures in conjunction with the original

proof of Lutz. With the help of the branched cover theorem described in [43] one

can conclude further that every manifold of the form M × Σ with M a contact

manifold and Σ a surface of genus at least 1 admits a contact structure.

Concerning the classification of contact structures in higher dimensions, the

first steps have been taken by Eliashberg [28] with the development of con-

tact homology, which has been taken further in [29]. This has been used by

I. Ustilovsky [102] to show that on S4n+1 there exist infinitely many non-isomor-

phic contact structures that are homotopically equivalent (in the sense that they

induce the same almost contact structure, i.e. reduction of the structure group

of TS4n+1 to 1 × U(2n)). Earlier results in this direction can be found in [44] in

the context of various applications of contact surgery.

4.3 Symplectic fillings

A survey on the various types of symplectic fillings of contact manifolds is given

by Etnyre [33], cf. also the survey by Bennequin [10]. Etnyre and Honda [39]

have recently shown that certain Seifert fibred 3–manifolds M admit tight con-

tact structures ξ that are not symplectically semi-fillable, i.e. there is no sym-

plectic filling W of (M, ξ) even if W is allowed to have other contact boundary

components. That paper also contains a good update on the general question of

symplectic fillability.

A related question is whether symplectic manifolds can have disconnected

boundary of contact type (this corresponds to a stronger notion of symplectic

filling defined via a Liouville vector field transverse to the boundary and pointing

outwards). For (boundary) dimension 3 this is discussed by D. McDuff [91];

higher-dimensional symplectic manifolds with disconnected boundary of contact

type have been constructed in [42].

4.4 Dynamics of the Reeb vector field

In a seminal paper, Hofer [65] applied the method of pseudo-holomorphic curves,

which had been introduced to symplectic geometry by Gromov [62], to solve

(for large classes of contact 3–manifolds) the so-called Weinstein conjecture [104]
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concerning the existence of periodic orbits of the Reeb vector field of a given

contact form. (In fact, one of the remarkable aspects of Hofer’s work is that in

many instances it shows the existence of a periodic orbit of the Reeb vector field

of any contact form defining a given contact structure.) A Bourbaki talk on the

state of the art around the time when Weinstein formulated the conjecture that

bears his name was given by N. Desolneux-Moulis [19]; another Bourbaki talk by

F. Laudenbach describes Hofer’s contribution to the problem.

The textbook by Hofer and E. Zehnder [70] addresses these issues, although its

main emphasis, as is clear from the title, lies more in the direction of symplectic

geometry and Hamiltonian dynamics. Two surveys by Hofer [66], [67], and one

by Hofer and M. Kriener [68], are more directly concerned with contact geometry.

Of the three, [66] may be the best place to start, since it derives from a course of

five lectures. In collaboration with K. Wysocki and Zehnder, Hofer has expanded

his initial ideas into a far-reaching project on the characterisation of contact

manifolds via the dynamics of the Reeb vector field, see e.g. [69].
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