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Abstract

Consider a second or higher order elliptic partial differential equation Au = Au + f
on an open bounded domain 2 of R"™ with homogeneous boundary conditions Bu = 0.
If there exists a simple eigenvalue for which the corresponding eigenfunction is positive and
satisfies appropriate boundary estimates, then an anti-maximum principle holds. For positive
f € L? (Q) with p large enough there exists 6 > 0 such that for A € (A1, A1 + &) the solution
is negative and for A € (A; — 65, A1) the solution is positive. We give conditions such that
this sign reversing property is uniform: there is 6 > 0 such that for all positive f the solution
u is negative for A € (A1, A1 +6) and positive for A € (A — 6, A1). Two classes of higher
order boundary value problems that satisfy these conditions will be given.

1 Introduction

The aim of this paper is to establish some uniform anti-mazimum principles for classes of higher
order elliptic boundary value problems.

Let us briefly recall the situation in the second order case with Dirichlet boundary conditions.
Consider for 2 C R™ a bounded domain with smooth boundary 92 and f € L? (Q2), p > 1, the
boundary value problem

—Au = M+ f inQ,
{ u = 0 on 052, (1.1)

and let A\; denote the first eigenvalue. Assume that the function f is nonnegative and positive
on a set of positive measure. As is well-known, the maximum principle implies that if A < Aq,
then the solution u is positive. It was observed in [8] that if p > n then there exists Ay > A;
such that if A € (A1, Af), then the solution u of (1.1) is negative in . Such a restriction on p
might look surprising for a sign result. However, in [27] it is shown that the condition p > n is
sharp and that one cannot have Ay to be bounded away from A; uniformly for all positive f. On
the other hand it was shown in [8] that, if n = 1 and the boundary conditions are of Neumann
or Robin type, then a uniform result does hold, that is, the corresponding Green function is
negative for A\ € (A1, A1 + 6) with § > 0.

In this paper we obtain uniform results for higher order elliptic boundary value problems
also in dimensions higher than 1. Let us start with some examples.

Consider the fourth-order problem with Navier boundary conditions

{A2u:)\u—|—f in Q,

u=Au=0 on 99, (1.2)
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2 Uniform anti-maximum principles

and let A\; x be the first eigenvalue (notice that A\; x = /\% with A\; as above). It is known that
for 0 < A < Ay N the solution u is positive whenever f is positive. It appears that if f is positive
and f € LP (), with p > max (1, %n) , then there exists 6y > 0 such that u is negative for
A€ (AN, AN +6¢). As in the second order Neumann case one can show that the result is
uniform when n = 1.

If we replace the boundary conditions in (1.2) by Robin type boundary conditions:

Au=Mu+f inQ,

(1+91£)u
(1 n 92%73 Au on 0f),

(1.3)

with 01,02 > ¢ > 0, then again there exists a first eigenvalue A; g > 0 and for 0 < A < Ay g the
solution u is positive whenever f is positive. Similarly there is 6y > 0 such that u is negative

when A € (AR, AR + ) f) . However, in contrast to the case with Navier boundary conditions
(1.2), we are able to show that this result is uniform for n € {1,2,3}. See the example following
Corollary 6.

We will consider general elliptic boundary value problems. The results with respect to those
systems are twofold.

o We will show that if there exists a positive eigenfunction with appropriate boundary be-
haviour, and a relation between the dimension and the boundary condition holds, then a
uniform anti-maximum principle holds for A in a right neighbourhood of the eigenvalue
AL

e Since higher order elliptic boundary value problems in general do not satisfy a maximum
principle it is not obvious that the conditions just mentioned can be satisfied. However,
we will give some examples of such boundary value problems for which these conditions
are met.

The basic idea for anti-maximum type results is to split f in f; + fo where

Ji="Py fand fo=(—PFy)f, (1.4)

Py, being an appropriate projection on the first eigenfunction ¢1, which has to have a fixed sign.
From f > 0 it follows that f; = ¢¢1 > 0. Solving (1.1) one finds

Cc

=5 SO+ (-A- Ao fo, (1.5)

u

and using that A\ — (—A — Aot (I = Py,) is in C ((—o0, X2); L (LP (Q);Cy, (€2))) for p > n,
where Cy, (Q) is the subspace of C (Q) equipped with the norm defined by

Jull, = p{‘;‘(ﬂ re n}

one finds that for |\ — A1| small enough the sign of u in (1.5) equals the sign of A — A;. Since the
sign of f in general does not imply a relation between Py, f and the L? (2)-norm of (I — Py,) f
one does not obtain a uniform result for positive f in LP (Q2).

We need a positive first eigenfunction. In general one cannot expect a maximum principle
or even a positive first eigenfunction for higher order elliptic equations except in two cases. The
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first type of examples appears when the higher order equation can be written as a system of
second order elliptic equations with appropriate boundary conditions. The second family of
examples occurs when operator and domain are close to a polyharmonic equation on a ball.
Positivity results for polyharmonic equations on a ball are established by Boggio [7]. We will
restrict ourselves in the second case to 2 = B, a ball in R™. Using recent results of Grunau
and coauthor ([16],[17]) one expects a similar situation for small perturbations of domain and
operator.

Anti-maximum principles from an abstract point of view are considered in a paper by Takac
[28]. Extensions of the anti-maximum principle for second order operators, respectively includ-
ing more general domains and nonlinear elliptic operators, are established independently by
Birindelli in [6] and by Fleckinger, Gossez, Taka¢ en de Thélin in [13].

The paper is organized as follows:

- Section 2 contains our main results for general elliptic boundary value problems assuming
that appropriate positive eigenfunctions both for the system and its adjoint exist, that is
1 (x) > e d(z,00)™8 and ¢f (z) > ¢ d(x,00)"8". The numbers mp and mp+« will be
defined in section 2. Secondly we give examples for which indeed such eigenfunctions exist.
The combination leads us to a uniform anti-maximum principle (Corollary 6).

- In Section 3 we consider the functional analytic framework of the system and its adjoint
in order to prepare the elliptic estimates in a weak setting.

- In Section 4 these regularity results are used for the contribution of fo. We obtain a
Agmon-Douglis-Nirenberg type estimate for A near A; of the form

luaall xspr < c2 [If2ll xs—2m »

for s € (0,2m), where X%P is a Sobolev-type space. An imbedding Theorem implies for
s>mp+ % that
lugx (@)] < ez d (2, 00)™F [ugall o -

- The crucial theorem which makes our result uniform is established in Section 5. Namely,
for 2m — s > mp~ + % with % + % = 1, it follows that if f > 0 then

1 follxs-2mp < ca [[Pgy fll »

where Py, f is the appropriate projection on ¢1. We may choose s € (0, 2m) satisfying both
restrictions whenever mg- +mpg+n < 2m. Combining the previous estimates we then find

1 > ()\11—)\ o C2E1C4> P¢1f(l‘),

u(x) = —=Py, f(x) +uz ) (x) (1.6)
’ ” (5ix + 229) Py, f (2),

AL —A

IN

implying the sign of u for |A\; — A| sufficiently small.

- In the last section we will prove that indeed the conditions are satisfied for some classes
of boundary value problems.

- We conclude the paper with several appendices.
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2 The results

2.1 General systems

In what follows we will assume that 2 C R™ is bounded and the boundary satisfies 02 € C'*°.
We consider

Au = du+f  in Q,
{ Bu = 0 on 052, (2.1)
with A an elliptic operator of order 2m and B = {By,...,B,,} a system of boundary operators

and A € R. The operators A and B are defined by

Au = " aq(z) (a%)au, (2.2)

| <2m

Biu = Y bja(z) (%)auforje{l,...,m}, (2.3)

|a|<my;

where aq, bj o are real-valued functions satisfying a, € C* (Q) , bj.a € C®(09), m; < 2m; for
a;
o a multi-index in N” one defines (8%)& =11, (%) .

Notation We shall denote by

i. Mg the largest order of the derivatives that appears in B;

1. mp the largest integer such that Bu = 0 implies (a%)k u=0 forallk €{0,...,mp—1}.

Clearly Mp > mp — 1 holds, with equality for the Dirichlet problem. In a regular elliptic
boundary value problem one finds that Mg € {m — 1,2m — 1} and mp € {0,m}.

Our general assumption on the pair (A, B) is:
Assumption 1 System (2.1) is a regular elliptic problem.

For the definition see [22], [29, Definition 5.2.1.4] or Appendix B.
Before we are able to state our second general assumption we need to introduce the adjoint
problem. The operators A* and B* in the adjoint boundary value problem

{A*u = M+f inQ,

Bvw = 0 on 0f}, (2.4)

are defined as follows. If A is as in (2.2) then the differential operator A* is given by the formal
adjoint operator of A, that is,

Av(@)= Y (-D)° (aa (z)v (3:)) . (2.5)

|a|<2m

The adjoint boundary operators are found in the following way. Since B is normal one may
extend B by m additional operators B, such that {B, .} is a normal system of 2m boundary
operators, see [22, Chapter 2, Theorem 2.1] or [29, Theorem 5.4.2]. For u,v € C* (Q) an
integration by parts yields in a unique way two sets of m operators B*, B such that the Green
formula

/ Auvdr — / v A*vdr = / (Bu - Biv — Bou - B*v) dx, (2.6)
Q Q o9
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holds, where - denotes the inner product in R™. Although depending on the choice of B, the
boundary operators B* uniquely determine the adjoint system in the following sense. If B.; is
another extension of B and B and B ; are the corresponding operators, then for all v € C'° Q)

Biv=0o0n 0 < B*v=0ondN. (2.7)

We recall that, see [29, Theorem 5.4.2] or [22, Chapter 2, Thms 2.1 and 2.2], the adjoint
system (2.4) is a regular elliptic problem, if and only if system (2.1) is a regular elliptic problem.
Moreover, the following relation between mg, mp~, Mg and Mg« holds.

Lemma 1 Let (2.1) be regqular. Then it holds that
mp+ + Mp = mp + Mp~ = 2m — 1. (2.8)

Proof. By using the formula in (2.6) one finds as in [22, Chapter 2, Theorem 2.1] that
corresponding terms of B; and By ; respectively B ; and B} have orders that add up to 2m — 1,
that is, B having orders {m; };n:l implies that B} has orders {2m —m; — 1};.”:1 and hence does
not contain all orders strictly less then 2m — Mg — 1. Since {B},B*} is a normal system all
boundary operators with these orders appear in B* implying that mp« = 2m — Mg — 1. |

Examples Let m € NT and set A = (—=A)™. Then (2.1) will be reqular with each of the fol-
lowing sets of boundary conditions. We assume that 61, ...,0, € C*® (0Q) with each 01,...,0mn
either identical zero or strictly positive. Here 8_8n denotes the outward normal derivative.

. ) »
b B = g () ()" o)
7. Bm,NavierU = {u, Au, A2u’ e Am—lu} : (29)
iii. Bumpopnt = {(1+6012)u, (14+022)Au, ..., (1+0,2) A™ tu};
. BmDmo,pU = {Bmg, DirichietWs Bm—mo, Dirichiet A0} .

Notice that By, Navier s a subcase of By, Robin-
We find that A* = (—=A)™ and for appropriate choices of B :

2 B;kn,Dirichlet = Bm,Dirichlet;

it. B:n,N(wier = Bm,Nam’er;
111. B;kn,Rabm is of the same type as By, robin, With 07 = 01— for alli=1,...,m;
iv. B:jn,D,mo,D = Bm,D,m—mo,D-

The second assumption is concerned with the existence of an algebraically simple (in an
appropriate sense) eigenvalue A; for system (2.1) with a corresponding positive eigenfunction
¥1-

A function ¢y € C™ () is called an eigenfunction with eigenvalue Ay for the pair (A, B) if

it satisfies
Ap = Xy inQ,
{ By = 0 ondq. (2.10)
The eigenvalue \; is called geometrically simple if every solution ¢ of (2.10) is a multiple of ¢7.
Our second general assumption reads as follows.

Assumption 2 There exists A\; € R which is a geometrically simple eigenvalue both for (A, B)
and (A*,B*), with corresponding eigenfunctions @1, respectively o3, satisfying ¢1 (x) > 0 and
i (x) >0 for all x € Q.
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Remark 2.1 Since both eigenfunctions are strictly positive we may and will assume that ¢
and ¢] are normalized such that

/Q o1 () ¢ () dy = 1 and 1]z = 1932y (2.11)

Remark 2.2 According to Lemma C.2 of Appendix C Assumption 2 implies that A; is an
algebraically simple eigenvalue for the realization of the boundary value problem in L? (£2),
1<p<oo.

In the theorems the distance function of x to the boundary 02 will appear. This distance
function is defined by:

d(z,00) = inf |o—y|. (2.12)

Before stating the main result we will mention a non-uniform result which can be obtained
under much weaker assumptions.

Proposition 2 Let (2.1) be such that Assumptions 1 and 2 are satisfied. Let mp be as above.
Suppose that:
a. for the eigenfunction @1 in Assumptions 2 there exists c1 > 0 such that

o1 (z) > 1 d(z,00)™8  for all x € (2.13)

b. mp+ % < 2m.
Then for each f € LP () with

/Q £ () &t () dy > 0 (2.14)

there exists 6§ > 0 such that the following holds for the solution u of (2.18).
i. If X € (A —06f, A1), then there exists ¢ > 0 such that

u(z) > cd(z,00)" >0  for all z € Q.
it. If X € (A, \1 +6¢), then there exists ¢ > 0 such that
u(x) < —cd(z,00)™8 <0 for all x € Q.
(The proof is postponed to section 5.2.)
Remark 2.3 The condition n < p that appears in [8], [27] for the anti-maximum principle in
the case of a second order Dirichlet problem coincides with b. Indeed for mp = m =1

condition b becomes % < 1.

Remark 2.4 Observe that (2.14) may hold even if f changes sign. In the second order case
Hopf’s maximum principle implies that if f is positive conclusion 7. holds for all A < Aj.

Next we consider the uniform case:
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Theorem 3 Let (2.1) be such that Assumptions 1 and 2 are satisfied. Let mp and mp+ be as
above. Suppose that:
aa. for the eigenfunction @1 there exists c; > 0 such that

o1 () > c1d(x,00)™8  for all x € (2.15)
the corresponding eigenfunction for the adjoint system is such that for some c] >0
o] (z) > d(x,00)"8"  for all x € (2.16)

bb. mp +mp- +n < 2m.
Then there exists 6 > 0 such that for all f € C (Q) with 0 # f > 0 the following holds for the
solution u of (2.18).

i. If X € (M —6,\1), then there exists ¢ > 0 such that

u(z) >cd(z,00)" >0  forall z € Q.
it. If X € (A, A1 + 0), then there exists ¢ > 0 such that

u(x) < —cd(z,00)™8 <0 for all x € Q.
(The proof is postponed to section 5.2.)

Remark 2.5 A necessary condition for a uniform anti-maximum principle to hold is that the
Green function for some A be bounded. For the Green function to be bounded n < 2m is
a necessary condition. Notice that this is guaranteed by condition bb. It will be necessary
that the Green function G (z,y) is bounded by a multiple of (4 ) () 01 (a*.5) (y) with
©1, 7 respectively the first eigenfunction of (2.1) and its adjoint (2.4). For known explicit
Green functions ([17]) one may show that such a bound is equivalent with mp+mp« +n <
2m. Note that this is exactly condition bb. If bb is not satisfied then we expect that
a counterexample for the uniform anti-maximum principle can be constructed by using
similar arguments as in [27]. Tak4¢ in [28] studied anti-maximum principles proceeding by
the Green function. He uses that the resolvent is positive for all A < 0 and satisfies the

estimate H(A -\ )_1H < %P\I which is the notion of positivity also used by Triebel (see
[29, Definition 1.14.1]). Such bounds on the resolvent are implied by Assumption 1. The
‘pointwise’ notion of positivity for the resolvent operator for all A < 0 is satisfied only for

second order equations or cooperative systems of second order equations.

Remark 2.6 For the examples above we have

mp Mp bb

By Dirichlet m m—1 false

By Navier 1 2m — 2 n<2m—2

B, Robin /1 =0and b,,=0| 1 2m — 2 n<2m—2 (2.17)
#p>0and 0,,=0| O 2m — 2 n<2m-—1 ’
#p=0and b,, >0 | 1 2m — 1 n<2m-—1
#p>0and f,, >0 O 2m — 1 n < 2m

By, D,mo,D mo | m+mg—1 n<m
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2.2 Systems that have an appropriate first eigenfunction

We will show that condition aa is satisfied for a large class of boundary value problems. We

consider A = (—A)™:
{ (=A)"u = du+f inQ, (2.18)

Bu = 0 on 0f).

The first type of boundary conditions are those for which the system can be written as a system
of second order equations. B, Robin (and hence By, Navier) is of this type. We shall refer to these
by Case 1.

Proposition 4 Let A = (—A)™ and assume that B is as in (2.9, iii) with 6; € C* (09Q)
and each 0; either identical zero or strictly positive. Then Assumptions 1 and 2 hold and the
eigenfunction @1 satisfies:

1. if 81 = 0 then there exists some constants ci,co > 0 such that

cad(xz,00) < ¢ (z) < cad(x,00) for all x € Q; (2.19)
it. if 01 (x) > ¢ > 0 then there exists some constants c1,ca > 0 such that

a1 <1 (x) <eo for all x € Q. (2.20)

(The proof is postponed to section 6.3.)

The second type of boundary conditions that we can handle can be described as poly-
Dirichlet:

Bu = { By, Dirichlet U, B Dirichiet AU, - . ., By, Divichlet AT 72T FMe—1y 1 (2.21)

Systems of this type will be referred to by Case II.

In order to have an appropriate eigenfunction the domain should be equal or close to a ball.
Indeed, for general domains the system in (2.18) with B = By, p men does not have a first
eigenfunction which is positive. See the results for Ba pirichlet of Coffman and Duffin in [10], [9]
and [11]. For Q a ball a result of Boggio in [7] implies that the first eigenfunction does satisfy
the estimate in (2.22). Recently Grunau and coauthor ([18]) obtained results that showed that
the first eigenfunction remained positive under some small perturbations of the domain. It does
not state the estimate (2.22), but a careful observation of the proof will yield this estimate.

Proposition 5 Suppose that Q = B, a ball in R™, and that Bis as in (2.21) withmi+...+my =
m. Then Assumptions 1 and 2 hold and the corresponding eigenfunction p1 satisfies for some
C1,Co > 0

c1d(z,00)™ < 1 (v) < c1d(z,00)™ for all z € Q. (2.22)

(The proof is postponed to section 6.3.)

In the examples which are considered in Propositions 4 and 5 inverse positivity results hold
for 0 < A\ < Aq, that is, if f is positive then u is positive. Such results are often referred to as
‘maximum principle’ type results.
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2.3 Uniform anti-maximum principle

The combination of the theorem and the propositions above leads to the following corollary.

Corollary 6 (uniform anti-maximum principle) Suppose that the conditions of either Pro-
position 4 or 5 are satisfied and that condition bb of Theorem 3 holds.

Then there exists 6 > 0 such that for all f € C (Q) with 0 < f#0 and \y < A < Ay + 6 the
solution u of (2.18) satisfies for some ¢, > 0 the estimate u(x) < —c, d (x,00)"® holds for all
x e Q.

Remark 2.7 It follows that the corresponding Green’s function for A € (A1, A1 + §) is nonposi-
tive. In particular for any nonnegative f (say in L? (2) for some p > 0) the corresponding
solution u is nonpositive.

Examples Recalling the results from the table in (2.17) we find a uniform anti-mazimum
principle for A= (—A)" and

i. B = By, Naviers 8 C R™ bounded and smooth, if n < 2m — 2;
ii. B = By, Robin, with 61 >0 and 0, > 0, Q C R" bounded and smooth, if n < 2m;

ili. B = B, Dmg,n, =B CR" a ball, if n <m.

3 Solving the system in strong and weak sense

The aim of this section is to recall and establish some regularity results concerning the strong
and the weak formulations of the regular elliptic problem (2.1). By using extrapolation and
interpolation techniques, (see [22, Chapter 2] for general elliptic operators in the Hilbert space
case; see [3] for the second order case in LP-setting; the general case in LP-setting is announced
for [4, Vol. 2]) we obtain an intermediate result which is needed to establish a uniform anti-
maximum principle. In particular we shall use a formulation where the boundary conditions
are satisfied in a strong sense although the right hand side of the differential equation will be a
distribution (Theorem 13).

We start be recalling a solvability result in the C°°-framework which will be used later on.

3.1 Solvability in C* (Q) .

Let (A, B) satisfy Assumption 1, let (A*, B*) be the adjoint system and let f € C'* (Q) We
are interested in the solvability of problem (2.1). The following holds (see [22, Chapter 2,
Proposition 5.3)).

Theorem 7 Let f € C* (Q) . Problem (2.1) has at least one solution u € C'*® (Q) if and only
if the condition

/ fvde=0
holds for all v € C* () such that (A* — X)v =0, B*v = 0.

Before considering the solvability of (2.1) in appropriate LP-type spaces, the so-called Bessel
potential spaces, we recall some definitions and properties.
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3.2 Bessel potential spaces

For convenience we recall the definitions of standard Bessel potential spaces and corresponding
spaces associated with boundary conditions.

We assume that p, ¢ € (1,00) with % + % = 1. The Bessel potential spaces on R™ are defined
by

HS? (RY) = {ueS’(R”);H}'l (1—|—\§]2>%}"u

. < oo} , (3.1)

where S” (R™) is the set of tempered distributions and F the Fourier transform, see [29].
Let Q2 be a bounded domain in R™ with 92 € C*°. For s € R the Bessel-potential spaces on
) are defined by (see [29, Definition 4.2.1])

H*P (Q) = {u =0,q;9 € H*SP (R")} , with

] (3.2)

Hsp(Q) = inngHSvP(R") HgHHs,P(]R")‘

For k € N we have H*P (Q) = W*P (Q), where W*P (Q) is the usual Sobolev space equipped

with [|ullpyr, = Z\odgk 1D%ullyysp -
Two types of subspaces of functions that vanish on 90 in an appropriate sense are

HP(Q) = T @) 177 @ (closure in H? () (3.3)

and
H*P?(Q) = {ue HP (R™);suppu C Q}. (3.4)

For sake of completeness let us recall the definition of support. For continuous functions, say
f € C(R™), the support is defined by

supp (f) = {z € R f (z) # 0}. (3.5)

The support of a generalized function is defined as follows (see e.g. [31, page 62]). A distribution
§ € C3° (R™) is said to vanish on an open set O C R™ if § (f) = 0 for all f € C$° (R") with
supp (f) C O. The support of ¢ is defined by

supp (6) = the smallest closed set 7 C R" such that ¢ vanishes on R"\F. (3.6)

If 6 can be represented by a continuous function f one has supp (6) = supp (f).
In Triebel [29, Theorem 4.8.1] the following duality results are stated:

o (@) = (A% (Q))'.

Moreover in [29, Theorem 4.3.2] one finds:

if s — % <0 then H*P (Q) H>P(Q),
if —1<s— % ¢ N then H*P(Q) = HP(Q).

Related spaces corresponding to other boundary conditions B are defined in [29, Definition
4.3.3.2]. The space

Hg? (Q) = {ue H* (Q);Bu=0on 00} (3.7)
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is well defined if Mp, the largest order derivative that appears in B, is strictly less then s — %.

Indeed, if s > Mp +% then B; : H*P (Q) — LP (092), i =1,...,m are bounded linear operators,
see [29, Theorem 4.7.1]. Moreover, Hg” () is a Banach-space as a closed subspace of H*P (Q).

Finally we mention that for p € (1,00) and s € (m -1+ %,m + %)

Hlsgi,Dirichlet () = Hy” (), (3.8)

where By, Dirichlet 15 defined in (2.9). Again we refer to [29, Theorem 4.7.1].

3.3 Some notations

In the sequel clarity will greatly benefit from an accurate notation:

pairing (-,-): LP x L1 - R  defined by (u,v) = [ u(x)v(z)dr forue LP,ve L
imbedding jj, : Hém’p — LP v e (pu) (2) = ugzx) for u € legm’p, x €
isometry i, : LP — (L9)’ v (ipu) (v) = (u,v) foru e LP, v € LY;
imbedding ! : (L9) — (HgT’q)' v (V) (0) = U (jgv)  for U e (L), ve HE™.

Here we used % + % =1and H;” = Hg" () . The operator i, is an isometric isomorphism. For

a linear operator T : X — Y we denote by T” the dual operator 77 : Y’ — X’ which is defined
by
(T'U) (v) =U (Tw) for U €Y', veX.

An element u of H ém,p is a function and if there is no ambivalence we will denote the function
Jpu € LP also by wu.

3.4 Realization in L? (Q)

In this subsection we shall consider the realization A of the operator (A, B) in LP (2) and of its
adjoint in L7 (), where % + % =1and p,q > 1.
We define the unbounded operator A : D (A) C LP — LP by

D(A) = HZ™" and Au = Au for u € D (A). (3.9)

It appears that under Assumption 1 the realization of the operator (A*,B*) in L9 (Q) is the
adjoint of A. In the following we summarize the properties of the operator A which will be used
later on. We will also use the bounded operator Ag = Ao j, : H ém’p — LP.

Theorem 8 Let the pair (A, B) satisfy Assumption 1 and let A be as above. We have:
i. For allr > 0 there exists ¢ > 0 such that for all u € Hém’p the following holds
[ull gomsrp < c(|Aull grp + ull grp) - (3.10)

ii. Ifu € D(A) and Au € H"P for some £ € Nt then u € H?>™+6P,
iii. The operator A is densely defined, closed, and has closed range R (A).

iv. The null space N (A) is finite dimensional, contained in C'*° (Q) and independent of p.
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v. The adjoint operator A* in L9(Q) satisfies D (A*) = Héin’p and A*v = A*v for v €
D (A*%).

If moreover Assumption 2 is satisfied, then

vi. dim N (A — A1) = dim N (A* — A;) = 1.

vii. There exists 6 > 0 such that for 0 < |\ — Ai| < § we have A € p(A).
Proof. Parts i.-v. can be found in [22] for p = 2 or e.g. in [29] for other values of p. For a
sketch of the proof see Appendix C.
Part vi.: Since N (4 — X;) C C*(Q) and the only C* (Q)-solutions are multiples of ¢q we
have dim N (A — A1) = 1. Since A* is also the realization of (A", B*) in L? it follows from iv.-v.
that dim N (A* — A1) C C* (©2) and hence by Assumption 2 that dim N (A* — \) = 1.
Part vii.: Let Ay = Ao j,. We have (Ag — M\ijp) 1 = 0, dim N (Ag — A1jp) = 1 and since
R(A =X =N (A* — \p) it follows that

codim R (Ap — A\ijp) = codim R (A — A1) = 1.

Since (p1,¢}) # 0 we have ¢1 ¢ R(Ag — A1jp) . Hence, see Definition A.1, ¢1 is a j,-simple
eigenvalue of Ay. The result follows from Theorem A.3. O

3.5 Extrapolation

For the extrapolation procedure we will use the adjoint operator A*. Let Aj denote the bounded

operator
Af = (A")y = A" 0 jg - H;T’q — L.

/!
The weak formulation of the differential equation becomes: let F' € (H é’f’q> and find U € (L9)’

such that
U (A5 — Ajg) () = F (v) for all v € Ha™ (3.11)

which we may rewrite as ((AE‘))' — )\jc’l) U = F. The extension of Ay = A o jj, is defined by
/
Ay = () (1) — ()

!
For u € LP, the image A_j o iy (u) lies in <H2,T’q> and for all v € Ha"%we have

(A1 0y () (v) = (ipu) (A5 (v)) = /Q w A da. (3.12)
Hence (3.11) can be rewritten as
/ u (A* — N vde = F (v) for all v € H2. (3.13)
Q

We have:

Theorem 9 Assume that (A, B) are such that (2.1) forms a regular system and let A be defined
as in (3.9). Assume that A € p(A).

/
Then for every F € (Héin’q) one and only one U € (L9)" ewists for which (3.11) holds.

Moreover, there exists ¢y > 0, independent of F, such that

i U], < exsup {F(v);v € H2 [[v]| yamg < 1.} (3.14)
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Proof. 1If (A, B) is regular elliptic then also the formal adjoint (A*, B*) is regular elliptic.
Since the realization A* of (A*, B*) is indeed the adjoint of A (see Theorem 8) we find that A
and A* have the same spectrum. We may use Theorem 8 for (A*, B*) and solve

{Av = M+g inQ, (3.15)

B*v = 0 on 0f),

for any g € L9 to find v € Har"? with |[v]| jyam.a < & ||gll e - The estimate in (3.14) follows from
duahty 0
In remains to show that A_; is indeed an extension of Ag,that is A_; o iy

It is sufficient to show that for some A € p(A) and every f € LP the functions

L extends ipo Ap.

u=(Ag—MN)""f and a=iyto(A1—A) "ojloiyf

coincide. Note that % is the unique function in LP (£2) such that
/ i (A* = N vde = (iyf) (jyv) for all v € H2™9 ().
Q
Since u = (Ag — AI) " f € Hg™" (Q) an integration by part shows

/u(A*—/\)vd;c:/(A—)\)uvdm:/fvdx:(ipf)(qu) for all v € HZ™ (Q)
Q Q Q

and hence u = «.

4 The system near the first eigenvalue

4.1 Projection on the first eigenfunction

The eigenfunctions ¢ of A and ¢] of A* are assumed to be normalized such that

lotllp = letl e and /Q o1 (@) o (z) do = 1. (4.16)

By Assumption 2 A; is a j,-simple eigenvalue of Ay and a j,-simple eigenvalue of Af. See
Appendix A. By duality we have that A; is a j;—simple eigenvalue of A_;. The j,-, j4- and

Jq-eigenfunctions are respectively ¢ € legm’p, or € H2™ and @) = ip o jpp1 € (L)' . The

corresponding projections for Ay as in Theorem A.3 are Py: LP — LP and P, : H ém’p — H ém’p
defined by

Pf = (f,¢1) jppr  forall feLP, (4.17)
Piu = (pu,p}) ¢1 for all u € H™. (4.18)
. ' ' .
In a similar way we may define projections P : (H;T’q) — (Héin’q> and P : (L9)" — (L9)

by

~ /
PoF = F(¢]) jyo®; forall Fe (Héin’q> , (4.19)
PU = U(jgp}) @1 forall U e (L) . (4.20)
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!/
Notice that for F' € (Héin’q) and v € H2™1
~ !/
(po F) () = F(g}) (p1,jqu) for F e (H@TH) and v € HZ™M,
(151U> (9) = U(Jgpi) (¥1,9) for U € (LY and g € LY.
The projections Fy and ]51 are related through i, 0 Py = ]51 Olp:

(151 o z'pf) (9) = (f,¢7) (p1,9) = (ipo Pof) (g) for f € LP and g € L.

Let us summarize the results in the following scheme.

Ao — Njp ip A1 —)j,
Y — I ~ (L) —>  (HZ™)
1 I 1 I

isomorphism isomorphism

N(P) —> R(Ao—\ijp)=N(P) ~ NP R(A-1—\j}) = N(B)
® ® <) ® )
R(P1) —> span{pi} =R(P) ~ R(P\) —> span{jjoip(¢1)} = R(P)

As a consequence of Theorem A.3 we find:

Corollary 10 There exist ¢ > 0 and § > 0 such that for |\ — \o| < 6 the following holds.

i. For all f € LP with (f,¢}) = 0 there exists a unique uy € Hy™ with (uy,¢}) = 0 such
that (Ag — Ajp) ux = f and moreover

luxllzrzma < ¢l fllzo -

!
ii. For all F € (Héin’q) with F (p%) = 0 there exists a unique Uy € (L) with Uy (¢}) =0
such that (A_1 — )\j:]) Uy = F' and moreover

VA zoy < 1Pl gz -

Remark 4.1 In a formulation closer to the differential equation the second statement means:

!
for every bounded linear form F' € (H 2T’q> with F' () = 0 there exists a unique uy € LP
with (uy, ¢]) = 0 such that

/ up () (A* — A) v (2) dz = F (v) for all v € HZT.
Q

Moreover,
lurll» < csup {F(U) v e Hy and [|v]| game < 1} )

4.2 Interpolation

We will use interpolation results for Bessel-potential space with boundary conditions. These
kind of results are due to Grisvard, [15], for real interpolation and Seeley, [26], for the complex
interpolation.
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Lemma 11 Let s € (0,2m) with s — % ¢ N. For 0 = 5 it follows that

[LP, Hgm’p} — P . (4.21)

. 1
ﬁ {BjEB,mj<37;}

For s € (MB+ %,2m) with s —% ¢ N we find [Lp,Hém’p]g = Hp" and [(Héin’q)’, (L) ]p =
Hsf2m,p.

Proof. By results of Seeley (see [25], [26] or [29, Theorem 4.3.3]) one finds if s — % ¢ N that
(4.21) holds. Hence by our definition of Mp and mp we have for 0 < o < 1 that

if 2mo > Mpg + %, then [Lp, Hg’m,p:| _ Héma,p,
g

if 2mo <mp+ %, then [Lp’ H;m,p} _ Hgma,p,
oz

where we refer to (3.8) for the second identity.
The first identity implies with = 0 = 5>~ and s — % ¢ N that

1
if s > Mg + = then [Lp, Hgm’p} =" (4.22)
p

For the last claim we proceed as follows. Since [X',Y"], = [X,Y]j (see [29, Lemma 1.11.3])
it is sufficient to identify [HéT’q,Lq]g for 0 = 5. By (4.21) we find, assuming 2m@ + % ¢ N,
that (1-8)
2m, _ 2m(1-0),
[HBT‘I,LQL =1 .

{B;-‘EB*;mj<2m(l—9)—%}'
We have 2m6 = s and since s > Mzg-i-% it follows that 2m (1 — ) —% <2m—Mpg— % _% = mp-
and moreover that 2m (1 — 0) — % —om—1— (s _ %) ¢ N, implying

2m(1-6),q

2m(1_0)aq
{B;EB*;mj<2m(1—0)—%} )

:HO

Since Hgm(l_e)’q = H?2(=94 for 2m (1 — 0) — % ¢ N (see [29, Theorem 4.3.2.1]) the proof of
Lemma 11 is complete. O

Proposition 12 Let X, X1 and X5 be Banach spaces such that X1, Xo are continuously imbed-
ded in X. Let P : X — X be a bounded linear operator satisfying P = P?. Moreover, assume
P(X;) C X;and P, : X; — X; is continuous (i =1,2). Let 0 € (0,1). Then

[XlﬁP(X),XzﬂP(X)]a = [Xl,Xg]eﬁP(X).

Remark 4.2 The Banach space X; N P (X) is considered as a subspace of X;, that is, equipped
with the Xj;-norm. Similarly, [X;, X2], N P (X) is considered to be equipped with the
(X1, Xo],-norm.

Proof. For general interpolation functors the result is due to [5] and can also be found in [29,
Theorem 1.17.1.1]. Indeed, following the notation of [29],

X1+ Xy = {l‘EX;HxiEXi s. t. ;r;:xl—i-mg},

I2llx,+x, = nf{lle1llx, +llz2llx, ;2 = 21 + 22,25 € Xi},
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is a Banach space. Take B = P (X;+ Xs), equipped with the |||y, x,-norm. Since

P(X;+ X2) C X1+ X2 we have X; N P(X) = X; N P(X; + X2) and may apply [29, The-

orem 1.17.1.1] using complex interpolation. O
We conclude this section by interpolating the two results in Corollary 10.

Theorem 13 Let s € (0,2m) and s — ]13 ¢ N, then there exists ¢ > 0 and 6 > 0 such that for all

A€ER with [N —=X\| <6 and F € (H?K%;Zg;mjﬁmfs,%})/ with F (¢}) = 0 the following holds.

i. There exists a unique uy € H> )

(B;eBm;<s—1) with (uy, ¢3) = 0 for which (3.13) holds.

14. Moreover,

[uxllgrsw < €l[F] prs-2m if s>2m—mp,

. 4.23
laxllzes < CIFl granoaarygmsery i 5 < 2m = mpe, (429

Remark 4.3 For s < 2m — mp~ the norm of F' is defined by

Tl e ay = sup {F (v) 10 € HP7 59 0BG with o] oo < 1}

HZm—s,quO

/
Proof. The operator T_1  := (A_1 — )\jé) oy LP — <H§T’q> is an extension of T ) :=
ipo(Ag — Njp) : Hém’p — (L9)" in the sense that JgoTox = T-1,x 0 jp. By interpolation we define
for 0 € (0,1) the intermediate operator

Togx: [LP,Hém’p]e . [(H;T’qy, (LQ)’L.

Let Py, P1, Py and Py be as in the previous section and we interpolate between

S_ia = ((A_l—/\j(’i)oip)‘mpo): N (Py) — N(Ii’o),
Sox = (Gpo (Ao = Ajp)) ) N(P) — N(P),
and define the intermediate operator
S-on [N (Po) N(PL)]y = [N(Po), N(Py)] . (4.24)
Since
N(R) = IL’NPy(L,) and N(B) = (HZ)' NP ((Héi”’q)’),
N(P) = HZ"™0PR(L) and N(P) = (290 R ((H"),
we may use Proposition 12 to find that
N (Ro),N(P)], = [Lp,Hém’pLﬂPo(Lp) and (4.25)
[N, NP = gy @y ok (R (4.26)

Using Lemma 11 we have for § = 52 that

/
|:Lp, Hl%j’m’p:|0 — HS,p and [(HéT,Q)/’ (Lq)/i| , — <H2m—s,q > ‘

{BjEB;mj<$_%} {B;EB*;mj<2m—s—%}
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For all |A — A\g| < 6 Corollary 10 implies that A — S_g 5 is analytic and hence shows

U =||lu . < c||F||, y2m—s, .
| /\HHs,p I A||Hsz:jes;mj<s—% <c| H(H{”Bn;fesl‘;;mj<2m—s—%})/
Since for 2m — s > mpg+ one has H>" %4 C H?m=s9n Hy""? it follows that

{B;eB*;m; <2m—s— %}

171 o <IE

2m—s,q mpgk,q .
{B;EB*;mj<2m—s—E} (H ﬁHO )

. 2m—s,q 2m—s,q
For 2m — s < mp~ the claim results from H{B;GB*;mj<2m—s—%} H; .

5 Proof of the main results

5.1 The link between positivity and a Sobolev type estimate

In this section we will show that for positive f we may estimate a norm, in a negative Bessel-
potential space, of (f — Py f) by the projection of f on the first eigenvalue.

Theorem 14 Let p,q € (1,00) with % + % =1, f € LP and suppose that s € R™ satisfies
s— 2 > mps. (5.1)
q

Also assume that (2.16) holds: ¢} (x) > ¢1 d (2, 0Q)™E" .
Then there exists ca > 0 such that for all f € LP (Q) with f > 0:

1f = Pofllgg—sn < c2 (f, 1) (5:2)

Proof. Writing f = Pyf — fe, it follows from f > 0 that f. < FPyf. By a Sobolev imbedding,
see [1], we find using (5.1) that H*9 (Q) — C™s5* () . Moreover, by Lemma D.1 one finds that
there exists a uniform constant ¢* such that for all z € Q and all ¢ € H*>4 (Q)N HJ"#™7 (Q) with
|¥]| fs.a = 1 one has

¥ (2)| < ¢ d(2,00)™" < i (2).

In the last inequality we used (2.16) and denoted ¢* = ¢* ¢;. Consequently we find for such ¢
that

<fe,¢>=<fe,w+c*soi>=/9fe (W + ¢ ot de <

(since 1 + ¢* ¢} > 0 we are able to use f. < Fyf)

S/Pof W+ o) dx:(f,w’ﬂ/sol (W + ¢ p}) da <
Q Q

(since 1 > 0 we may use ¢ < c* ¢7)

< (f,oh) /Q o1 (26 @} dx = 2 (f, 03)

Collecting the above it follows that

erH(Hs,quS”B**q)’ = sup {/Qfe¢d33§ Y e HYN H(;nB*’q, 191l grea = 1} <2¢* (f,¥7),

which completes the proof of the theorem. O
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5.2 Conclusion for Proposition 2 and Theorem 3

Proof of Proposition 2. For f € LP () we have f = (f, ¢]) ¢¥1 — fe and the corresponding
solution is, as stated in (1.5):

u= E\fl’—fi?\gol —(A4g =N e

By the previously stated result u, = (Ag — N lf.eH fgm’p for [\ — X\o| < 6. Condition b states

that 2m — mg — % > (. Since 2m — % > mp we have u, \ = %ue)\ =...= (a—i)mB_l Uey =0
on 9N in LP (09). Moreover, Lemma D.1 and Corollary 10 yields with ¢y, = ¢ |[ue || gomy <

¢ |l £l that B
((A0=N7" 1) @) < epd (. 00)™

implying (1.6) and hence the result stated in Theorem 2. O
Proof of Theorem 3. By Theorem 14 we find that if

O — s — = > mp- (5.3)
q

holds, then || fel| grs—2mp < 12 (p5, f) -

Denote again ue y = ((—A)™ — )\)El fe- Assume s < 2m — mp+ and s — % ¢ N. By Theorem
13 we have if for all Awith |A — A\;| small enough that

||ue,>\ |Hsap S C3 ||f€||(H2mfs,qu(;nB* ,Q)/ .

By Lemma D.1 we have for
s— 2> ma (5.4)
p

that there exists ¢ > 0 independent of u, ) such that

e (2)] < ¢ lluell e, d (@, 00)™.
Collecting the above we find that if
mlg+ﬁ<s<2m—mlg*—ﬁ (5.5)
p q

then
’ue,)\ (x)‘ S CC3 erH(HZm—s,qﬂHgnB* ,q)/ d ('CU7 aQ)mB °

Hence a necessary and sufficient condition for the existence of s € [0, 2m] satisfying (5.5) is
mg+mp- +n < 2m. This condition is satisfied by assumption. Note that we may choose s such
that both (5.5) and s — % ¢ N holds. O

6 Proof of the existence of an appropriate eigenfunction.

In this section we will prove the Propositions 4 and 5. First we verify Assumption 1 for Case I
and II.
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6.1 Regular boundary value problem

Lemma 15 (Case I)The system in (2.18) with B as in (2.9, iii) and 0; € C* (0Q) such that
each 0; is either identical zero or strictly positive, is a reqular elliptic problem.

Proof. The first two conditions of Definition B.1 (properly elliptic and normal) are immediate.
It remains to show that ((—A)™,B) satisfies the complementary condition. The symbol of
A= (—A)" used with £ + 71, with £,7 € R” and 7 € R, is decomposed as follows:

&+ =a (v:€,m,7) a” (2:6,1,7)

where

m

o* (ws6mr) = | Inl 7+

06 _ VPP~ .82
ul il

The top-order symbol for the boundary condition Bju = 0 used with &, +7v,, where &, tangential
and v, the outside normal direction at x € 052, is

o & T if 0; = 0,

p] (IE,Ew,Vw,T) - { 93 ($)‘£x+TVx|2J_2T‘I/m| if 03 > 0.
Since |, + TP 2 = (140 |& ) T (7 — i) and a7 (2 &4, v, T) = (T — i |E])™ it follows
by m > j —1 that the set {p; (z; &z, Vs, )};nzl is independent modulo a™ (z; &, vz, T) . Hence the
complementary condition is satisfied. O

Lemma 16 (Case II) The system in (2.18) with B as in (2.21) is a regular elliptic problem.

Proof. Again the first two conditions of Definition B.1 are immediate. The (top-order) symbol
for the boundary conditions By, Dirichiet = 0 applied to &; + Tv, with £, tangential and v, the
outside normal direction, are

9 2 m1+..,+mj,1
Pmatotmy 141 (T3 8y Vg, T) = (T + 1€ )
9 9 mi+...tm;_1
pm1+...+mj_1+2 ([E 5.737 Ve, T) = T (T + |€$‘ ) )
' o mi+...+m;_1
pm1+...+mj_1+mj (xa gma VZL‘) T) = ij ! (7.2 + |£-’E‘2) 9

and 72 + |&,)? = (1 4+ i|&|) (7 —i|€4]) . The highest order symbol is
P (T €y Ve, T) = 7Rl (141 |§x‘)m1+"'+mk_l (1 —1 |§$’)m1+"'+mk_1 .

Since a® (z; &, v, T) = (T — i |&[)™ T it follows that the set {p; (2; &, v, )}, is inde-

pendent modulo a™ (x; &y, v, T) - O

6.2 Reformulation of the problem

Let p,q € (1,00) with %—i— % = 1. In order to verify Assumption 2 it will be convenient to rewrite
the operator A as a product of (unbounded) operators A;, i = 1,...,k, which are realizations
in LP of lower order operators (A;,B;),i=1,...,k.
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Case I. Let A be the realization in LP of ((—=A)™, By, Robin) defined in 2.9. Set A; the
realization in LP of (A;,B;), where A; = —A and B; = (1 + 91-8—‘21), i =1,...,k = m. Notice
that m; =1 and mp, = 0 if 6; > 0. If §; = 0 we have mp, = 1.

Case II. Let A be the realization in LP of ((—A)™,B) with B defined in 2.21. Set A; the
realization in LP of (A;, B;), where A; = (—=A)™ and B; = By, Dirichlet, ¢ = 1,...,k = k. Here
mp, = my.

Notice that in both cases the pairs (A;,B;), i = 1,...,k, satisfy Assumption 1. Moreover
we have A; = Af and we may choose B} = B;, i =1,...,k.

We have:

Lemma 17 Let p and A;, i = 1,...,K, be as above. Then 0 € p(A;) and A;' is compact.
Moreover, if p > n then for all f € LP with 0 # f > 0 there exist by,cy > 0 such that

bpd(z,00)™5 < (A4;7'f) () < cpd(z,00)™% in Q. (6.1)

Proof. In view of Theorem 8 iv., v. and (A;, B;) = (A}, BY) we have N (4;) = N (4}) C
C* (). An integration by parts shows that u € N (4;) implies v = 0. From Theorem 8 iii.
and v. it follows that 0 € p(A;). The compactness of A; ! follows from Theorem 8 i. and the
compact imbedding of H?™P in LP.

Let p >nand f € LP with 0 # f > 0. Set u () = (Ai_lf) (z) . By standard regularity results

we find that v € H?*™P and hence by Sobolev imbedding u € C?™i~1 (Q) . We distinguish three
cases.
i A;=—-Aand Biu= (1+ 91-6%) u, then m; = 1, mp, = 0. We claim that u (x) = (A;lf) (x) >
0 in © and proceed by contradiction. Indeed suppose that u(xg) < 0 for some zp € ). Since
p > n we have that u € C' (Q2) . Lemma E.1 implies that inf,co u (#) = mingepo u (#) and hence
we may assume that zo € 0Q and u (x¢) = mingecyo u (x) . From a%“ (z9) < 0 it follows that

(1 + eia%) u () < 0. (6.2)

If u (x0) < 0 then (6.2) is strict and we have a contradiction. If u (x¢) = 0 the version of Hopf’s

boundary point lemma in Lemma E.1 implies a%u (z9) > 0 and hence again a contradiction.
The bound from above follows form u € C (Q) .

ii. A; = —A and Bju = u, then m; = 1, mg, = 1. By Lemma E.1 one finds that since u € C! (Q)

it satisfies %u (x) > 0 for all z € 092. Hence there is ¢ > 0 such that u (z) > cd(x,00). The

estimate from above follows from u|,, =0 and u € ct (Q) .

iii. A4; = (—=A)™ and Bju = {u, a%u, ((%)2 Uy ..., (E)%)W_1 u} , then mp, = m,;. By the explicit
integral formula of Boggio (see [7] or [17]) for 2 = B one finds that there are ¢, , such that
the Green function satisfies G (x,y) > 0 for x,y € Q and even

|z — y|*™ " min (1, (ﬁdﬁ‘j‘”)mi) if 2m; <n,
d)d(y) "™ —_—
G (.%‘, y) > Cm;,n IOg (1 + (W) ) if 2m; = n,
2
(@) d )™ min (1. (4222)") it 2>

where d (z) = d (z,00) . Hence there exists ¢ = ¢ (diam 2, m;,n) such that

G(x,y) > cd(x,00)™ d(y,0Q)™ for all z,y € Q,
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and u (z) = [5G (z,y) f (y)dy with 0 # f > 0 implies u (x) > ¢y d (x,002)™ for some c; > 0.
The estimate from above follows from Bju = 0 and u € C™ (Q2) . O

Proposition 18 Let p € (1,00) and let A be as in Case I or Case IL. Then 0 € p(A) and A™1
is compact. Moreover, if p > n then for all f € LP with 0 # f > 0 there exists by, cy > 0 such
that

byd(z,00)™8 < (A7 f) (2) < cpd(z, 0™ in QL (6.3)

Proof. Let A;,71=1,...,k be as above. Let f € LP and set
i=ATtoA o A o0 ALY,

which is well defined by the previous lemma. By a repeated use of Theorem 8 we find that
u € H?™P. Since A1u = A2_1 o Agl o...0 A lf it follows that Bii = 0. Similarly A o
Ayu = Agl o...0A-lf implies BoAjii = 0 etc. and it follows that A% = f and Ba =
{Byu, B2 A1, ..., BuAk—1--- A1a} = 0. We have u € H;m’p and At = f, meaning f € R(A).
Since R (A) = LP we find N (A*) = {0}.

Since (A*, B*) is of similar type we also find R (A*) = L9 implying N (A) = {0}. Together
R(A) = LP and N (A) = {0} imply that 0 € p(A). Similarly 0 € p (A*).

Since 0 € p(A) and A@ = f it follows that @ = A~Lf, that is

A_1=A1_10A2_10A3_10...0A;1.

The compactness of A~! follows from the compactness of A7 L

Let p > n and f € LP with 0 # f > 0. Since mp = mp, the estimate in (6.3) follows from
the strong positivity of Az-_l, i =2,...,k and the estimate in (6.5) for Al_l. O

Remark 6.1 It follows from the proof that
— *\— * -1 * -1 *\ —
Al = (Ao (Ary) o (ALy) o...o(AD) T . (6.4)

6.3 Conclusion

Proof of Proposition 4 respectively 5: By Lemma 15 and 16 Assumption 1 is satisfied.
By Proposition 18 we have 0 € p(A) and A~! compact. Now let p > n. Then the operator
A~is d(-,00)™5-bounded and hence Theorem F.2 implies that its spectral radius v (A7) is
a geometrically simple eigenvalue and that the corresponding eigenfunction satisfies for some
c1,c2 >0
c1d(z,00)"8 < pap(r) <cpd(x,00)"". (6.5)

We assumed that p > n. However, due to Theorem 8 iv., N (A — \) does not depend on p and
we find that v (A_l) is a geometrically simple eigenvalue for any p € (1, 00) . Since by Theorem
8 v. A* is the realization of (A*, B*) it follows from (6.4) and Proposition 18 applied to A*
that v ((A*)~1) is also a geometrically simple eigenvalue of (A*)™'. Moreover, since v (A1) =
v ((A*)_l) we find that 45 and @4+ g- are the unique eigenfunctions for A, respectively A*,
with eigenvalue \; = v (A_l)_1 =v ((A*)_l)_1 . Since the eigenfunctions ¢4 5 and 4+ g« are
strictly positive, even satisfy (6.5) with mp respectively mpg-, we find fQ PABPA* B dr > 0.
The eigenvalue A1 is algebraically simple according to Lemma C.2. Hence Assumption 2 and
the estimates (2.19), (2.20) and (2.22) are satisfied. O
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Appendix A - Simple eigenvalues

The aim of this section is to recall the notion of K-simple eigenvalue introduced by Crandall
and Rabinowitz in [12] and to extend some of their results for our purposes.
Let X and Y be Banach spaces over K =R or C.

Definition A.1 Let T, K € L(X;Y). Then Ao € K is called a K-simple eigenvalue of T if:

i. there exists ¢ € X with Ty = MKy and ¢ # 0;
ii. dim N (T — XK) =1 and codim R (T — M K) =1
iii. K¢ R(T — NK).

By ii. T'— MK is Fredholm of index 0. In particular R (T — A\gK) is closed, see [12]. The
vector ¢ above is called a K-eigenvector of T. It follows from ii. and iii. that

Y=R(T —XK)®span{Kyp}. (A1)

Lemma A.2 Let T, K € L(X;Y) and let A\g € K be a K-simple eigenvalue of T. Then Ao is a
K'-simple eigenvalue of T', where T', K' denote the adjoint of T, K, acting from Y' to X'.

Moreover, if W € Y’ is the corresponding K'-eigenfunction, then N (¥) = R(T — \K).
Hence the eigenvector ¥ can be normalized by ¥ (Kyp) = 1.

Proof. Using (A.1), the closedness of R (T — A\gK) and Hahn-Banach’s Theorem it follows that
there exists ¥ € Y’ satisfying ¥ (K¢) = 1 and N (V) = R(T — M\K). Notice that such ¥ is
unique. We use ¥ to prove that \g is a K'-simple eigenvalue of T".

i. Since N (¥) = R (T — M K) we find

((T’ — MK') (\p)) ()= ((T —AoK) a:) =0 for all z € X.

ii. We have for ® € Y’ that
B e N (T' = MK') = N (@) D R(T — \K).

If ® # 0, then by (A.1) we have ® (K¢) # 0 and ®(-) = ®(K¢p) V(). It follows that
dim N (T’ — MK') = 1.
Since R (T — M\oK) is closed also R (T — M\ K') is closed and we have

R(T' = XoK') = R(T" = MK') = N (T = MK)" = {® € X1 (p) = 0}

Hence codim R (7" — M K') = 1.

ili. (K'0) (p) =¥ (K¢)=1implies K'¥ ¢ R(T" — \K'). O
In what follows we shall denote by Py the projection in ¥ on span {K¢} corresponding to

the decomposition (A.1). We have

Pyy=VY(y) Ky foryeY. (A.2)
It turns out that there is a natural projection P; in X on span{¢} defined by

Pz =V (Kz) ¢ forxeX. (A.3)
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corresponding with the decomposition
X =N ((VoK)®span{p}. (A.4)

Indeed we have Pip = U (Kyp) ¢ = ¢ and Py (Piz) = P (V(Kz) ¢) = ¥ (Kx) ¢ = Pz for
every x € X and (A.4) follows.

These projections, which are such that (7' — A\ K )|N(P1) : N(P1) — N (F) is an isomor-
phism, will be very convenient in section 4. Indeed, from (A.1-A.4), ii. and the Open Mapping
Theorem it follows that the restriction of 7' — MK to N (P1) is an isomorphism from N (P;)
onto R (T — MK).

In the next theorem we show that for A € K near A\ the restriction of T'— A\gK to N (Pp) is
also an isomorphism from N (P;) onto R (T — A K).

Theorem A.3 Let T,K € L(X;Y) and let \g € K be a K-simple eigenvalue of T. Let Py :
Y —-Y and P; : X — X be as above. Then

i. for every A € K, Sy := (T — MoK),|,
N (P).

. is a bounded linear operator from N (Py) into
1
ii. there exists 6 > 0 such that for A € K with |X — Xo| < 6 we have

a. Sy € Isom (N (P1) ;N(PO)) ,

b A Silel (N (Po); N (Pl)) is analytic,

. if A% Ao then T — AK € Tsom (X, Y) .

Remark. We have the following scheme for |\ — X\g| < 6.

T — AK
X — Y

I I
isomorphism

N(P) —> N(R) = R(T-MK)
S S
span{p} = R(P1)) —> R(P) = span{Ky}

Proof. i. For x € N (P;) and A # A9 we have (T'— AK)x = (T — MK)x + (A= X)) Kz. It
suffices to show that PoKx = 0. And indeed, from (A.2-A.3) we have PpKz = U (Kz) K¢ =
K (Pyz) = 0.

ii. We have Sy € L (N (Pl),N(PO)) for A € K. Since Sy, € Isom (N (P)) ,N(PO)) and

since A — S) is analytic, the result follows. Note that for 0 < |A — A\g| < 6 one finds
(T = AK) ™" =S5 o (I - Py) + 2 Po O

Appendix B - Regular elliptic problems

Let (A, B) be as in (2.2) and (2.3):

A= D" aq(z) ((%)a and Bj= Y Dbja(x) (8—636)&.

la<2m laf<m;
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Definition B.1 The elliptic boundary value problem

Au = f inQ,
{Bu 0 on 09, (B.1)

18 called regular if
i. A is properly elliptic;
1. B is a normal system;
ii. (A, B) satisfies the complementary condition.

See [29, 5.2.1] or [22, Chapter 2, Def. 1.2, 1.4, 1.5]. These three conditions are defined as
follows.

o A is a properly elliptic operator if for all x € Q and all independent couples &, € R™ the
polynomial

T Y aa (@) €+ ) (B2)

has exactly m roots with positive imaginary part. In our case we consider coefficients
aq (z) which are real-valued. Then the condition reduces to 3, o, @a () £* # 0 for all

¢ € R\ {0} and x € Q, the usual ellipticity condition.

o B={Bi,...,By,} is a normal system of boundary conditions if:
denoting by m; the order of B;, the B; can be ordered such that

0<mp <mg <...<my <2m;
and, with n, the outwards normal direction at x € 952,

Z bjo(x)ny #0forallz e 0Q and j =1,...,m.

|loe|=m;

Before stating third condition we need to fix some notations. Let £,7 € R” and 7 € R. If
(B.2) holds we may write

Z Ay (.CL') (§ + Tn)a =a" («%577777) a - (x; 57 7777—)

|o]=2m

in such a way that for each z € Q, £,n € R™ the m zeroes 7'j+ of 7 — a™ (z;&,m,7) satisfy
Re7:” > 0 and the m zeroes T of 7 — a” (z;€,n,7) satisfy Re7;” < 0. Define the polynomials

{pj};‘n:1 by ’
pj(‘r;Ea:;VwaT): Z b‘,a(w) (£I+TV$)Q'

laf=m;
e B3 satisfies the complementary condition with respect to A if:
for each z € 02, each tangential direction &, and normal direction v, the polynomials

{pj (z; &, Vas )};”:1 are linearly independent modulo a™ (x;&;, vy, *) -

Notice that we may replace Au by (A — A)u in (B.1) without affecting the regularity.
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Appendix C - The adjoint problem

Definition C.1 Let C be a densely defined operator C in LP (Q) with 1 < p < co. Let %+% =1.
The adjoint C* is defined by

D(C*) = {veli(Q); IM >0 s.t |[,Cuvdx| <M |ull, YueD(C)},
C*v

w, where w is the only element of L () satisfying
JoCuvdr = [quwdxz  for allu € D(C).

One has
R(C)Y*=N(C*) and R(C*)* =N (C)

where R (C)* = {velLi(Q); [, fvde forall fe R(C)}. The operator C* is closed in L9 (£2)
and moreover, if the operator C' is closed then we have, since LP () is reflexive, that (C*)* = C.
See [20, Theorem 5.29].

Proof of Theorem 8, parts i.-v. Let (A,B) be regular elliptic, let p,q € (1,00) with
% + % = 1 and let the corresponding realization A in LP (2) be defined as in section 3.4. In the
same fashion we define for the adjoint system (.A*, B*) the unbounded operator A, in L7 () by
D(A,) = HZ™ (Q) and A,u = A*u for u € D (A,). Observe that in view of (2.7) Hpr"? ()
does not depend on the choice of the complementing boundary operators B, but only on the
pair (A, B) . From Green’s formula (2.6) we also have

/Auvd;r;:/u Ayvdz for all u € D(A) and v € D (Ay). (C.1)
Q

In particular we may choose (B*)* = B implying (A,), = A.
Part i. See [29, Theorem 5.3.4] and the references therein.
Part ii. See [29, Theorem 5.4.1].
Part iii.-iv. The closedness of A is a consequence of estimate (3.10) for » = 0. The closedness of
R (A), together with dim N (A) < oo, follows from (3.10) and the compactness of the imbedding
of H?™P into LP (see [22, Chapter 2, Lemma 5.1]). From ii. we obtain that if u € N (A) then
u € o2y H¥™ P = C> (Q) . Hence N (A) is independent of p.
Part v. This statement is equivalent with A* = A,. From (C.1) we have A, C A*. It remains
to prove that D (A*) C D (A,). We shall proceed as in [22, Chapter 2, Theorem 8.4].
First we will show that
R(A) D N (A)*, (C.2)

where N (4,)" = {u e LP; (u,v) = 0 for all v € N (A,)}. Set M = N (A,)" N C® (Q) . From
Theorem 7 we have M C R (A) and hence also that M C R(A) where M is the closure of M
in LP. We claim N (A,)* C M. Observe that N (A4,) C C® (Q) C LP with dim N (4,) < oo
and hence LP = N (A,) @ N (A,)". Let P denote the associated projection on N (A,). Since
dim N (4,) < oo and N (A,)" is closed in LP, the projection P is continuous. Given f €
N (A,)*, that is Pf = 0, we can find a sequence {g,}°°, € C™ (Q) such that g, — f in L.

n=0

Setting fn = (I — P) gn, we have f, € N (4,) N C® () = M and
lim f,=(I—P) lim g, =(I—-P) f=f.

Hence N (A*)J‘ CMCR(A).



26 Uniform anti-maximum principles

Next we will show that (C.2) implies

N(A*) € N(A)), (C.3)
R(A*) C R(A,). (C.4)

Since (C.2) holds we have N (A*) = R(A)* C N (4,)*" = N (4,). The inclusion (C.2) for A,
reads R (A,) D N ((A,),)" and implies R (4*) C R(A*)* = N (A)F = N ((A))*" C R(A,).

Finally we show that from (C.3) and (C.4) it follows that D (A*) C D (A,) . Indeed, if (C.3)
and (C.4) hold, let v € D (A*) and set f = A*v. By assumption there exists o € D (A,) such
that A,0 = f. Since 0 = A*v — A0 = A* (v—10) we find v — 0 € N (A*) C N (Ay) € D(Ay)
and consequently that v =0 +v—0 € D (4,). O

Lemma C.2 Let \ is a geometrically simple eigenvalue of A and of A* with corresponding
eigenfunctions ¢ and @*. Then the following are equivalent:

i. X is an algebraically simple (in the sense of [20]) eigenvalue of A and hence of A*;
7. the pair of eigenfunctions satisfies

/Q o (2) ¢ (2) di 0. (C5)

Proof. i=ii. Indeed, suppose this integral would be zero. Since every g € L? can be written
as g = g1 + cp* with g1 = (A* — A\) v for some v € D (A*) we would find

/Qsocc)g(x)dx:/gso(x)(«zt*—A)v(az)dm+c/so(x)so*(x)dx:

Q

:/(A—)\)go(a:)v(x)da;—l—c/gp(x)go*(x)da::().
Q

Q

Hence ¢ = 0, a contradiction.

ii=-i. Again we proceed by contradiction. Suppose there is ¢ € D (A) such that (A — X)) =
. Then

/Qw:cm*(:c)dx:/Q<A—A)Mw)so*(w)dx:/gwx)(m—A)so*(x)dmo.

Appendix D - An imbedding

Lemma D.1 Letn > 1, p € (1,00) and suppose that s — % > mq € N. Then there exists ¢ > 0
such that for all w € H%P (Q) N Hy""? (Q) it follows that

lw (z)] < ¢ [[w]gapq) d(@,00)™ for all v € Q. (D.1)

Proof. If we H*F () and s — 2 > my then w € C™ (Q) by Sobolev’s imbedding. Moreover,
there exists ¢; such that for all u € H*P (Q)

lwllems (@) < € ol zomy (D.2)
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For m; = 0 we are done. If m; > 1 then, since ’(a%)aw(x)’ < Hw”cml(ﬁ) for all z € Q and
a € N with |a| < my, it follows that

()" o

where we take v, the direction along a shortest line connecting x with the boundary 0f2. Using

< ||w||le (@) for all z € Q,

lal
that (8—2z> w =0 on I for |a] < mj — 1 and integrating along that line yields

0 @)] £ = [0l (42, 0)™ (D.3)

Combining (D.2) and (D.3) implies (D.1). O

Appendix E - A version of Hopf’s boundary point Lemma

For the sake of completeness we give a proof of a version of Hopf’s boundary point Lemma that
we need. See e.g. [14, Lemma 3.4 and (3.11)] for the standard version.

Lemma E.1 Let 0Q € C? and suppose that u € C(Q) is superharmonic in . Assume
infyequ = 0. Then either

i. u=0, or
ii. u>0inQ and for every xg € I with u(xg) = 0 one has

0
i (x0) < 0.

Proof. A superharmonic function satisfies the strong maximum principle (see [14]), that is,
either w = 0 or u (v) > minyego u(y) = 0 for all x € Q. Let x9 € 9 be such that u (zg) = 0.
Since 9Q € C? there exists a ball B C Q with 9B N 92 = {x}. Set h to be harmonic in B
and to satisfy h = u on dB. Then h € C*° (B) N C (B) and the standard Hopf’s boundary
lemma yields that ¢ > 0 exists such that h(z) > ¢ |x — x| for x € [xg,xp], where [zg,zp] is
the segment from xg to the center g of B. Then w — h is superharmonic, hence v > h in B
implying %u (x0) < —c. O

Appendix F - On the Krein-Rutman Theorem

We state some extension of the Krein-Rutman Theorem which can be found by combining results
in [21]. First we recall the notion of ug-bounded for operators in LP, p € (1,00).

Definition F.1 An operator T : LP — LP for which there exists 0 < ug € LP such that for all
f € LP with 0 # f > 0 there are cy,dy > 0 such that cpug(x) < T f(x) < dfug(x) in Q, is
called up-bounded.

Clearly such 7 is positive. The theorem that will be convenient for our purposes is the
following.
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Theorem F.2 Suppose that T : LP — LP is compact and ug-bounded for some 0 < ug € LP.
Then the following holds.

iii. Bvery positive eigenfunction of T is a multiple of .

i. The spectral radius v (T) > 0 is a geomeltrically simple eigenvalue of T .

ii. There exists a corresponding eigenfunction @ which satisfies for some c,d > 0 :

cup (z) < p(x) <dug(z). (F.1)

Proof. Since 7 is up-bounded there is ¢ > 0 such that coug < 7up. By [21, Lemma 9.1] one
finds v (7) > .

The cone of positive functions in LP is reproducing: every f € LP can be written as f™ — f~

where f*, f~ are nonnegative functions in LP. Hence [21, Theorem 9.2] states that v (7) is an
eigenvalue with corresponding eigenfunction ¢ being positive. Since condition b) of [21, Theorem
11.1] is satisfied v (7) is geometrically simple and ¢ is the unique positive eigenfunction up to

normalization. The ug-boundedness of 7 implies (F.1). O
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