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The book on maximum principles by Protter and Weinberger contains a maxi­
mum principle for systems of essentially positive elliptic equations. These systems 
arc wcakly couplcd, that is: no coupling in the derivatives. Recently the problem 
has bccn rcvisitcd by several authors, e.g. [21] and [28]. Nagel uses semigroup 
theory for operator matrices and finds as an application a positivity result for 
thc clliptic system. De Figueiredo and Mitidieri use the maximum principle for 
onc cquation. In this note we will give a direct proof by using an extension 
of thc Krein-Rutman Theorem. The underlying space will be (C(O))k. In our 
approach it is sufficient to have operators with continuous coefficients. The 
thrce conditions wc usc can be described by: (i) essentially positive coupling 
matrix; (ii) full coupling; (iii) existence of a positive supersolution. We will show 
thc cxistencc of a unique first eigenfunction. Furthermore we will investigate 
the necessity of the three basic conditions. A partial result will be shown for 
somc systems that are not far from essentially positive. (Essentially positive 
is also known as cooperative.) For the last result we need pointwise estimates 
for Green functions. Recent results for such estimates are listed in an appendix. 
Implications for the parabolic system will be given. 

1 Main rcsult 

Thc domain Q is a bounded, open and connected subset of lR" that satisfies 
a uniform cxterior cone condition. We consider for u, f: 0-+JRk the following 
system of differential equations: 

( 1.1) Lu=Hu+f m Q 

u=O on (JQ; 

wherc: 
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L is a diagonal matrix of strictly elliptic second order operators, that is: 

and for some A>O: l:a)j(x)~;~i~"'-1~1 2 for all x,~EIRn; His kxk matrix of 
ij 

functions on n with zero diagonal elements. 
Wc assume that the coefficients of Land H are in C(O); hence the elliptic 

operators Lµ are uniformly elliptic. 
The three basic conditions in order to obtain a strong positivity result are 

the following. 

Condition 1 H is essentially positive ( cooperative ). 

A matrix His called essentially positive if Hµv(x)~O for all µ=l=v and xEO. 

Condition 2 H is fully coupled. 

That is, the index set { 1, 2, ... , k} cannot be split up in two disjoint nonempty 
scts r:t and ß such that Hµv(x)=O in Q for µEr:t,~Eß. _ _ 

For an essentially positive matrix it means H, with Hµv=max{Hµv(x); xEO}, 
is irrcducible. See [19]. 

Condition 3 1here is a positive strict supersolution of (1.1) with f = 0. 

That is: there is cj>E(fl'l,;~n(Q)nC(Q))k such that cj>~O, (L-H)cj>~O and either 
cj>=l=O on r!Q or (L-H)cj>=l=O in Q. 

Some notations Let u be a (vector)function in (C(O)t By u~O we mean that 
uJxl > 0 for all xEO (Q is open) and all components VE {1, 2, ... , k}. 

For <.p in an ordered vector space we write <.p>O ifO=l=<.p~O. 
An operator A is called strictly positive if A <.p > 0 for <.p > 0. 

Remark 1./ If all three conditions hold the supersolution cj> satisfies cj> ~ 0. 
1 ndeed, if (L- H) cj> ~ 0 and cj> ~ 0, then Lcj> ~ H cj> ~ 0, hence Lv <!>v ~ 0, hence 

<!>v=O or <!>v~O by the scalar minimum principle ([23, Theorem 9.6]). Now if 
cj>1,=0 for µErx and <!>v~O for vEß and if both sets are nonempty, then 

k 

L H 
1
, v <!>v = L

1
, <!>µ = 0 for µE rx. Hence H µv = 0 for VE ß and H is not fully coupled, 

v-- 1 

a contradiction. 

Theorem 1.1 Let Conditions 1, 2 and 3 be satisfied and fE(lf(Q))k with p~n. 
TI1en the fä/lowing holds. 

(i) TI1ere is a unique UE(fl'!,;/(Q)n C 0 (Q))k that satisfies (1.1). 
(ii) /(f~O then u~O; !f f>O then u~O. 

(iii) 1here is a unique positive eigenfunction \jf E(fl'l,;~n(Q) n C 0 (Q))k; "1~0 and 
( L- H) \jJ = A \jJ for some A > 0. ( U nique after normalizing). 

Remark 1 .2 If the Conditions 1 and 3 hold but the system is not fully coupled 
one still obtains (i) when cj> in Condition 3 is a supersolution that is strict in 
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every component (or in every fully coupled subset of components). Now the 
sccond part of (ii) only holds componentwise. There is still a first eigenfunction 
"1>0, but not necessarily "1~0. The eigenfunction is unique if and only if the 
natural ordering of the fully coupled subsets is complete. 

Rcmark 1.3 In our proof we use Theorem 9.30 of [23] in order to solve 
(Lr,+ß)ur,=fr, in n, ur,=0 on an. Assuming br, cµ(·)EL00 (n), instead ofcontin­
uity, will be sufficient. In that theorem it is also assumed that the domain satisfies 
an exterior cone condition. That is the only part of our proof where the regularity 
of the domain plays a role. 

On the other hand, if one assumes Lipschitz-continuity of the coefficients 
of Lr, one can solve the elliptic equation above if all boundary points are regular 
for the Laplacian. Hence the exterior cone condition in Theorem 1.1 can be 
rcplaced by this regularity. For a survey concerning sufficient conditions on 
the regularity of the boundary, see [23, p. 139]. 

Rcmark 1.4 Assuming f E(LJ'(Q))k with p > n, it is possible to have the coefficients 
of Hin Lq(Q) with q~pn/(p-n). 

Remark 1.5 The related eigenvalue problem: 

Lu=A.Hu in n 

u=O on an 

has been studied by several authors. See e.g. [32, 24, 9, 17]. 

Proof' of' Theorem 1.1 We will solve the system in two steps. In the first step 
we show for ß )arge enough the following: 

Lu=Hu+f 

u=O 

in n 
on an 

~ u=(L+ßJ)0 1 (H+ßJ)u+(L+ßJ)0 1 f, 

where (L+ ß 1)0 1 is a diagonal matrix containing the inverse of Li+ ß with zero 
Dirichlet boundary condition on the i-th element of the diagonal. 

W ith A = ( L+ ß /)0 1 (H + ß J) the second step will be: 

U=(/-A)- 1 (L+ ß/)0 1 f = L Av(L+ ß/)0 1 f. 
v=O 

Step 1 Set ß= 1 vmax{-cµ(x); xEO, l~µ~k}. Then the inverse of Lµ+ß with 
Dirichlet boundary conditions is weil defined by [23, Theorem 9.30] as an opera­
tor on lJ'(n)::iC(Q) and (Lµ+ß) 0 1 fµEWi~~P(n)nC0 (Q) for all pE[n, oo). The 
maximum principle in [23, Theorem 9.6] shows that if fµ > 0 then (Lµ + ß)0 1 fµ 
~O. The restriction to C(Q) or C0 (Q) we will also denote by (Lµ+ß)0 1

. Now 
(L+ ßl)0 

1 E2,((C(Q))\ (C0 (0)t) is weil defined and strictly positive. 
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This operator (Lµ + ß)ü 1 is compact as well. Indeed, let S denote the unit 
ball in C(Q) and let vES. Since n is bounded, l(Lµ+ß)0 1 vl~(Lµ+ß)0 1 1 and 
Jim ((L11 +ß)0 1 l)(x)=O and since Wi;~P(Q)cC 1 (Q) the set (Lµ+ß)0 1 S is 

x--1-,•n 

bounded and cquicontinuous, and hence relatively compact by Arzela-Ascoli. 

Lemma 1.2 (L+ ß/)0 1 E2((C(Q))k; (C0 (Q))k) is strictly positive and compact. 
Moreover, if f E(IJ'(Q))k with fµ> 0, then ((L+ ß/)0 1 f)µ~0. 

Ncxt wc will show some properties of A =(L+ ß/)0 1 (H + ßl)E2((C0 (Q))k). 
Since the restriction to C0 (Q) of every component operator is compact too, 

(L+ ß/){i~ 1 E2'((C0 (Q))k) is compact. Hence A is strictly positive and compact 
as the product of a bounded, strictly positive and a compact, strictly positive 
opcrator. The strong maximum principle [23, Theorem 9.6] also shows that 
(L1,+ß)0 1 EY"(C0 (Q)) is irreducible, that is: C0 (Q) and {O} are the only closed 
latticc ideals in C 0 (0) which are invariant under (Lµ + ß)0 1 . The closed lattice 
ideals in C0 (Q) are sets {fEC0 (Q); f(x)=O for xEK} with K a closed set in 
n. See the first example on p. 157 of [33]. Since every component of (L + ß/)0 1 

is irreducible and since H + ß/ ~ I, the only possible lattice ideals, that are invar­
iant under A, are subsets of (C0 (Q))k with every component equal to C0 (Q) 
or ( 0}. From the fact that H is fully coupled it follows that they can only 
be the trivial ones (C0 (Q))k or {O}. Indeed, !et I be a non-zero closed A-invariant 
ideal, thcn there is 0 < f EI with fv ~ 0. If H µv =F 0 then (A f)µ ~ 0. Repeating this 
argument k times we find, since H is fully coupled, that (Ak f)v ~ 0 for every 
component v. Using the second part of Lemma 1.2 we can summarize: 

Lemma 1.3 A =(L+ ß/)0 1 (H + ß/)E2((C0 (Q))k) is positive, irreducible and com­
pact. Moreover, if O<fE(IJ'(Q))k then O~Ak+ 1 f. 

Step 2 The operator L Avis well defined (and positive and bounded) if r(A) < 1. 
v=O 

By a theorem of de Pagter [29] one finds that the spectral radius r(A) is positive. 
Since A is compact and positive, the Krein-Rutman Theorem [27] shows that 
r(A) is an eigenvalue with a positive eigenfunction. Similarly, since the dual 
operator A' too is compact (Schauder) and positive, r(A) is an eigenvalue of 
A' with a positive eigenfunction '11E((C0 (Q))k)'. Let < ·, ·) denote the pairing 
bctween (C0 (Q))k and its dual. The operator A' is defined by <A'<I>, u)=<<I>, Au). 
Since A is irreducible it follows that ':11 is strictly positive. Indeed, let UE( C0 (OW 
satisfy u>O. Then there is m such that <'11, Amu)>O and it follows that <'11, u) 
=(r(A))-"'(':11, Amu)>O. See [33, Proposition III.8.3]. In the first appendix we 
state some of the results on Banach lattices that are used here. 

By Condition 3 there is <j>E(C(Q))k such that (L + ß/)<j>~(H + ß/)<j>>O. By 
thc strong maximum principle [23, Theorem 9.6] and the fact that <!> is a strictly 
positive strict supersolution, one finds that <!> > (L+ ß/)0 1 (H + ß/) <!> = A <!> > 0. 
Sincc 'I' is strictly positive this results in <'11, <!>) > <'11, A <!>) = 
(A''I', <f>) =r(A)('I', <!>) >0. This shows that r(A)< 1. With Lemma 1.3 we find 
that Ak 1 1 (L+ fH)0 1 f~O if f>O. We may conclude: 

v=O 

'/71e restriction of TEY"((C0(Q))k) is positive, irreducible and compact. Moreover, 
i/'(kfE(U'{Q))k, then o~ Tf. 
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A solution of(l.1) is defined by u= Tf. The positivity shows uniqueness. 
lt follows from the results stated in the first appendix, among them the 

Krein-Rutman Theorem [27], that T has a unique positive eigenfunction "1 
with eigenvalue r(T) > 0. Then "1 is an eigenfunction of L- H with eigenvalue 
r(T)- 1. Moreover, every eigenfunction of L-H in (C0(Q))k is also an eigenfunc­
tion of T. This shows the uniqueness of the positive eigenfunction. D 

Bandle [5] remarked that a similar proof holds for other boundary condi­
tions as weil. We might even have different boundary conditions for different 

components. Consider Neumann boundary condition Bv uv = - ddn uv, where n 

is the outward normal. We have (with sufficient regularity) when ß is large 
enough, for 

a compact and strongly positive solution operator (Lv + ß)h. 1 E2"'( C(Q); C(Q)). 

Corollary 1.5 Let Conditions 1, 2 and 3 be satisfied. Let p ~ n. 
lf' UE( Wi~~P(n) n C(Q))k satisfies 

( 1.2) Lu=Hu+f m n 
u=\jl on an; 

with O~fE(lJ'(n))k and O~\j/E(C(an))\ then O~u or O=u. 

Proof: Let ß > 0 be large enough. By [23, Theorem 9.18/9.30] there is a solution 
WE(Vl')~/(n) n C(Q))k of 

(L+ ßl) w=O in n 
W=\jl On an. 

The function w is nonnegative and satisfies wv~O if "1v>Ü. Then v=u-w is 
the nonnegative solution of 

Lv=Hv+f+(H + ß/)w in n 
v=O on an. 

By Theorem 1.1 one finds that v ~ 0 if (f + (H + ßl) w) > 0. Since u = v + w ~ v the 
result follows. D 

The maximum principle for one equation does not use any regularity for 
the domain. To have a similar result for systems we have to modify Condition 3. 

Corollary 1.6 Let n be an open, bounded and connected subset of JR". Suppose 
Conditions 1, 2 and 3 are satisfied. Moreover suppose <!>in Condition 3 satisfies 
<l>~cd on Qfor some a>O. Then uE(Vl')~~P(n)nC(Q))\ with p~n, such that 

(L-H)u~O in n 
u~O an an 

satisfies either u=O or u~O. 
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Proof: Suppose that uv(x0)<0 for some x 0 En 1 . Let c>O be the smallest number 
such that w=u+c<J>~O. Since wv(x)>O for X in a neighbourhood of an, there 
is n 1 cn with smooth boundary, with wv(x)>O on n\n, and such that Condi­
tion 2 still holds on n 1 . Theorem 1.1 on n 1 shows w~O, a contradiction. If 
u~O thcn for every smooth domain n 1 cn, with n\n1 small enough, Theo­
rem 1.1 shows u~O or u=O in n, and hence in n. D 

2 On conditions similar to Condition 3 

In ordcr to have the literal version of the strong maximum principle, that is 
the following implication holds for all ME 1R + and f ~ 0 with 1 = (1, ... , 1 f: 

L u=Hu+f 

u ~Ml 

in n 
on an 

wc would need Condition 3 with <!> = 1. 
1 n other words 

k 

=> u~M 1 or u=M 1, 

(2.1) -cµ+ I Hµv~O for all µ, 
v~o 

which is thc genuine restriction of Protter and Weinberger [31, (7) p. 190, 192]. 
De Figueiredo and Mitidieri use in [21, 22] a supersolution <!> for which 

every component lies above cd(x, an)3 (c>O, l1< 1). 
Consider the related parabolic system: 

(2.2) (1 ~~+L) u=Hu+f 111 E=n x (0, T) 

u(t) = cp(t) 

u(O)=u0 • 

on an for tE(O, T) 

From semigroup-theory (see [14, Proposition 7.1]) one knows that a 
C0 -semigroup is positive if (and only if) the resolvent operator ('AI +L-H)- 1 

is positive for all A large enough. For Condition 3 this corresponds with the 
cxistcncc of <!>>0 such that (Al +L-H)<j>>O for all A )arge. Since <!>= 1 will 
do, Conditions l and 2 are sufficient for a similar theorem in the parabolic 
casc. 

Let f, cp, u0 ~0. One obtains ifum(ti)=!=O that u(t)~O for all t>t 1 • 

For a strong maximum principle for one equation Walter in [35] uses <!> 
that is strictly positive but not necessarily a strict supersolution. A similar result 
holcls for systcms. 

Condition 3a. There is a supersolution <j>E(VY;~~n(n)nC(Q))k of (1.1) with <J>>O 
and (L-H)<j>~O. 

Assuming <!> ~ 0 instead of <!> > 0 is not really a restriction. 
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Corollary 2.1 Let Conditions 1, 2 and 3 a be sati~fied. Let p ~ n. 
(i) Then there is a unique positive eigenfunction \j/E(W[~~P(n)n C0 (Q))k with 
(L- H) \jl = A \jl for some A ~ 0. ( Unique ajter normalizing). 
(ii) Let uE(W[~/(n)nC(ö)t with u~O on an satisfy (L-H)u~O. If u satisfies 
u ~ - M \jl f(Jr some M > 0, then one of the following holds. 
(a) u=O or (b) u~O or (c) u=cx\jl with cx<O. 

Remark 2.1 lf n has a uniform interior ball condition it follows from the strong 
maximum princip)e that \jlv(x)~yd(x, an) for every COmponent V (some y>0). 
Sec [35, Lemma 1]. Hence, if u is Lipschitz continuous and u~O on an, then 
u ~ - M \jl for some M. Then statement (ii) becomes similar to the one in [35]. 

Proof: After rcplacing (L- H) by (L+ I - H) Theorem 1.1 shows part (i). 
(iia/b) Condition 3a is weaker only if(L-H)Q>=O in n and Q>=O on an. Hence, 
if these two equalities do not hold, we can apply Theorem 1.1. Indeed, let ß 
be !arge enough. Since u~O on an and (L+ ßJ)u~(H + ßJ)u Theorem 9.6 of 
[23] shows that u~(L+ ß/)0 1 (H + ßl)u. Then w=(L+ ß/)0 1 (H + ßJ)u satisfies 

(2.2) Lw=Hw+f m n 

w=O on an. 

The function f =(H + ß/)(/-(L+ ß/)0 1 (H + ßJ))u satisfies O~fE(C(O)t From 
Theorem 1.1 it follows that w = 0 or w ~ 0 and hence u = 0 or u ~ w ~ 0. 
(iic) lf (L-H)Q>=O in n and Q>=O on an it follows from Theorem 1.1 that 
«!> is (a multiple of) thc unique positive eigenfunction and the eigenvalue 'A = 0. 
Notice that v=M~+u~O and (L-H)v=f~O. If v>O on an or f>O then 
Condition 3 is satisfied, with Q> replaced by (L+ ß/)0 1 

( H + ßJ)v, and the first 
cigcnvaluc is positive, a contradiction. Hence v=O on an and (L-H)v=O, which 
shows that v. and hence u, is a multiple of \jl. D 

Wc will end this section with a special case of(l.1). 

Corollary 2.2 Suppose that the Conditions 1 and 2 are satisfied and suppose H 
is a constant matrix. Moreover let the operators Lµ have a common eigenjimction 
1·~0 (P=Ü on an) with Lµv='Aµv for allµ. 

Let A = (A.~1 ). Then t he following two statements are equivalent. 
(i) There is a vector pEJRk with p>O and (A-H)p>O. 

(ii) Jf u satisfies (1.1) with f~O, then u~O; if f>O then u~O. 

Proof of C orollar y 2.2 (i) => (ii): Condition 3 is satisfied with Q> = v p. 
(ii) => (i): lf (A-H)p=O then it follows from (ii) and (L-H)pv= v(A-H)p=O 
that p v = 0, and hence p = 0. So A- H is nonsingular and there exists a vector 
p with (A-H)p>O. Again by (ii) and (L-H)pv=v(A-H)p>O it follows that 
pv>O and hence p>O. D 

Remark 2.2 Suppose Condition 1 holds. Then the following four statements are 
cquivalent for constant H (see [7, pp. 134~138]): 
(iii) A-H is a nonsingular M-matrix; 
(iv) A-H is semipositive in matrix sense; there 1s pEIRk with p~O and 
(A-H)p~O ([7, /27]); 
(v) all the lcading principal minors of A-H are positive ([7, E 17]); 
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(vi) A- H is inverse-positive in matrix sense: (A-H)- 1 exists and each element 
of (A- H)- 1 is positive ([7, N38]). 

De Figueiredo and Mitidieri show in [21] by a different proof that, for coop­
erative systems with eonstant coeffieients and Lµ = -1, (v) is a necessary and 
sufficient condition in order to have a maximum principle. Another proof of 
this result by using (vi) instead of (v) is given by Clement and Egberts in [15]. 

Remark 2.3 Suppose Conditions 1 and 2 hold and H is eonstant. Then the state­
ments (i) in Corollary 2.2 and (iv) are equivalent. One direction is trivial, the 
other is shown as follows. 

Let p be the veetor in (i), and set A=(A+ß/)- 1 (H+ß/), with ß positive 
and !arge enough for A + ß/ to have strictly positive diagonal elements. Then 
Ais a positive operator and p>Ap>A 2 p> ... >Akp>0. Since the system is 

k-1 

fully coupled one finds p~Akp. Then K= I Amp satisfies K~O and 
m=O 

(A-H)K =(A + ßl)(p-Ak p)~O. 

3 Ncar the first eigenvalue 

1 n this section we will fix p > n. Condition 3 will be satisfied if one replaces 
L by L-c for some c sufficiently negative (take <!>= 1 and -c 1 > l(L-H)<J>I). 
Then T': (l!'(Q))k -+(C0 (Q))k defined, for ß>O, by 

T'. =(L-cl -H)ü 1 = I ((L+(ß-c)/)0 1 (H + ßJ)t(L+(ß-c)/)0 1 

v=O 

is compact and strictly positive. Tc((IT(Q))k) with norm ll(L-c/-H)ullP is a 
Banach space. Since L-A0 I -H =(/ -(c-A.0 ) T')(L-cl -H) we find from Theo­
rem 1.1: 

Proposition 3.1 Suppose Conditions 1 and 2 are sati,'ified. 1hen there exists A0 EIR 
such that 
(i) L-A0 I - H: T'((l!'(Q))k)-+ (IT(Q))k is a Fredholm operator of index 0, and 

. t "(L-A0 I -H)=span { u0 } with u0 ~O; 
(ii)f(ir A<A0 the operator T'-=(L-AI-H)0 1

: (l!'(Q))k-+(C0 (Q))k exists and is 
compact. Moreover, if O<uE(l!'(Q))k then 0~ T'-u. 

Remark 3.1 Barta proved in [6] that the lowest eigenvalue A0 of 

- -1 u ='Au in n, 

u=O on an, 

satisfies, ifwEC2 (Q) and w(x)>O for all xEO, 

>. {- ,1 w(x) } 
A0 =mf w(x) ; xEO . 
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The result has bccn extended to nonselfadjoint scalar problems in [30]. A similar 
result holds for systems that satisfy Conditions 1 and 2. For a function 
WE(C(O)n C 2 (Q))k that satisfies w~O, we find: 

. {((L- H) w)v(x) } 
Ao~mf wv(x) ;xEQ,vE{l,„.,k} . 

Dcnotc this infimum by "-w· Since w~O it follows that (L-Aw/-H)w~O. If 
thc last incquality is not an equality or ifw=FO on an, we find that Condition 3 
is satisfied for L-A"' I - H. Hence by Theorem 1.1 A0 -Aw > 0. In the case of 
two equalities w is a multiple of the first eigenfunction and A0 = Aw. From the 
last fact wc also find: 

Ao = sup {A.w; 0 «i WE(C(O) n C 2 (Q))k}. 

For A- A0 > 0 but small enough there is an anti-maximum principle as in [12] 
at least whcn the boundary an is Cl.1. The proof is similar to the one of 
CICment and Pclctier. lnstead of assuming this regularity, we prefer to assume 
the conscquencc of this regularity that is used in the proof, namely a compact 
imbedding of appropriate Banach spaces. As a result one will still have an 
anti-max im um principle for a smaller class of right hand sides when the bound­
ary is lcss smooth. 

Following argumcnts from [2, 3] we define, using the eigenfunction u0 from 
Proposition 3.1, thc ordered Banach space (even a Banach lattice) 

with norm 

{I Uv(x) 1 } llullw=sup (uo)v(x); xEn, VE{l, „., k} . 

Condit ion 4 There exists a Banach space flJ 1 with flJ 4 f1J 1 4 (ll(n))k, such that 
T' : :11 1 ----> :Jjj is compacl. 

1 f n has a c I. 
1-boundary it follows from the construction of r and [23, 

Theorem 9.15] that r UE(W 2 ·P(n) n Co(O))k for UE(IT(n)t By the Rellich-Kon­
drachov Theorem ([l, Theorem 6.2]) W 2 ·P(n) is compactly imbedded in C 1 (0). 
The strong maximum principle shows that Uo ~ 0 and Uo(x) ~Cl d(x, an) 1 (some 
cr>O) for xEn. Then vE(C 1 (0)nC0 (0))k satisfies lvl~cu0 . Hence we may take 
.111 = (LJ'(n)t 

Theorem 3.2 Suppose Conditions 1 and 2 are satisfied and let A. 0 be as in Propo­
sition 3.1. Take O<fE(IT(n))k and let uE(i-t;;~P(n)nC0 (0))k be a solution of 
(L-Al-H)u=f. 
(i) If A0 < A, then 0 ;tu, that is, for some component v and some xEn: uv(x) <0. 

(ii) Suppose Condition 4 also holds and that fEfl 1 . Ihen there is 8 > 0, which 
depends on f, such that, whenever A. 0 < A < A.0 + 8, it follows that u «i 0. 

Remark 3.2 lf A = A0 and 0 < f, then there is no solution in fJ. If uEfl is a 
solution, then for K !arge enough u + K u0 is positive and satisfies (L-A0 I 
- H)(u + K u0 ) = f> 0. Hence the conditions of Theorem 1.1 for L-A.0 I -H are 
satisficd and its first eigenvalue is positive, a contradiction. 
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Prool (i) Suppose A0 <A and O~u (u=l=O since f=J=O), then Condition 3 is satisfied 
for L- AI - H and A < A-0 by Theorem 1.1, a contradiction. 
(ii) Thc proof of the second part uses the ideas of [12]. 
(ii a) Dcfine the Banach space 

9t'=T'(.%'1), 

with the norm ll(L-c/ -H) nll 1 and set Y' =(L-A-0 I -H)~. First we show that 

(3.1) .<!JJ 1 =span {u0 } EB Y'. 

Sincc (L-A-0 I -H) =(/ -(A-0 -c)T')(L-c/ -H)E!l'(~; .%' 1) is a Fredholm opera­
tor of index zcro, it is sufficient to show that u0riY'. Let TE!l'((C0(Q))k) denote 
thc rcstriction of T'. T is compact, strictly positive and irreducible. Similar as 
in stcp 2 of the proof of Theorem 1.1, the dual operator T' is also compact 
and strictly positive, and r(T')=r(T)=(A0 -c)- 1 >Ü. By the Krein-Rutman The­
orem thcrc exists a strictly positive eigenvector \J'0 of T' with T'\J'0 =(A0 
-c)- 1 \J'0 . Hence <\J'0 , Tu0 ) =(A0 -c)- 1 <\J'0 , 0 0 ) > 0. 

Supposc fE.'/,' that is, there exists WE.%' 1 such that f = (L-A-0 I - H) Tc w = 
w-(A0 -c)T"w. lt follows that 

This shows that u0 ri .Cf'. Moreover, we can define continuous projections P0 : 

.YJ 1 --> span { u0 } and I - P0 : .%' 1 --> Y' in the following way: 

(3.2) 

Clearly P0 f = 0 for fEY' and Po u0 = u0 . 

Secondly we show that Tc(Y')c.Cf'. Let UETc(Y'). Then it follows that there 
exists WE;J6' 1 with u=Tc(L-A-0 /-H)T'w=(L-A-0 /-H)TcT"wEY'. Hence one 
also has ;# n Y" = T"(Y') and 

(3.3) .9' = span { u0 } EB T'(Y'). 

(iib) Thc decomposition is invariant under (L-A/-H) for arbitrary A. 
If WE(L-A/-H)T"(.'/') then w=(L-AJ-H)T"(L-A-0 /-H)T'u for some 

UE::!ß 1 • Since (L-AJ-H)T'(L-A-0 !-H)Tcu=(L-A0 l-H)T'(L-Al-H)T"u, 
wc find that 

(L-A- I -H) Tc(Y') c Y'. 

Clcarly (L-A/-H)u0 =(A 0 -A-)u 0 . 

Let ( L- AI - H)r denote the restriction of (L- AI - H) to T" ( Y'). There is 
Ö1 >0 such that for A < A-0 + 81 the operator (L-Al - H)r: Tc(Y')--> Y' is an 
isomorphism and, for 1 A- A0 1 < ö 1, T; = (L- AI - H)r- 1 is an analytical function 
of A-. 

For 0<1A-A0 1 < Ö1, by setting f = P0 f + f 1 with f1 =(/-Po) f EY, the solution 
u can bc written as 

(3.4) 
-1 

u = A _ A Po f + T; f 1 • 
0 
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(ii c) Sincc T; = T;0 I ((A.-A.0 ) T;0
)" and T;0

: Y--+ fJ}) is compact, there exists 

c1 >0 such that llT,Af1 llw<c1 for all A with 1 A-A0 1 <}81 . Hence 

(3.5) 

Let PcJ f = a u0 . By (3.4) and (3.5) it follows that 

Set ö =min [ ! Ö1 , c; 1 a}. For AE(A0 , A.0 + 8) one finds u ~O. D 

4 When the coupling matrix is not essentially positive; the non cooperative case 

Onc will not find a positivity result for a system with !arge 'negative coupling' 
or with small negative coupling and general positive boundary values. 

Weinberger in [36] considers invariant sets for elliptic systems which are 
not ncccssarily the positive cone. Cosner and P.W. Schaefer in [16] consider 
rcstrictions of thc cone for the right hand side that allow a decoupling. Results 
in a different dircction are obtained by using the following result from potential 
theory. 

U ndcr sz~fficient regularity of the boundary and the elliptic operator L, there 
is i:>O such that ./(1r allf>O: 

(4.1) 

(L)l~ 1 is the inverse<!/" L with zero Dirichlet boundary condition. 

This rcsult (see (6.8) in the appendix) shows that u ~ 0 if f> 0 in 

(4.2) Lu=f-Ev m n, 

Lv=f in n, 

u=v=O on an. 

Rcsults for this systcm can be found in [34, 8, 10]. 
Thc cstimatc is used for right hand side f with some components equal 

to zero in [11] to obtain a solution with all components positive. 
We will considcr the non cooperative case as a perturbation of the coopera­

tivc systcm ( 1.1) and allow all positive right hand sides f Uniformly with respect 
to f; we get positivity of some fixed components of the solution. 

Consider 

(4.3) Lu=Hu-EPu+f in n 
u=O on an; 

with 
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(i) P=(~ ~), where Pisa constant m x (k-m) matrix with P;i~O; 
(ii) H is constant and Lv = L 1 for all VE { 1, 2, ... , k} with c1 ~ O; 
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(iii) if n~3, the coefficients of L 1 are Hölder continuous and anEC1
•

1
; if n=2, 

the coefficients of L 1 are Lipschitz continuous and anEC2 ·a. 
Let rx respectively ß denote the first m, respectively the last k-m components 

and rewrite ( 4.3) as: 

Laua=HaaDa+HapUp-EPup+fa m n, 

LpUp=HpaDa+HppDp+fp in n, 

Ua=O on an, 
up=O on an. 

Set Da= V a - Wa such that the system becomes: 

(4.4) in n, 

Lava=HaaVa+HapDp+fa in n, 
LpUp=Hpava+HppDp-Hpawa+fp in n, 

Wa=O on an, 
Va=O on an, 

To solve for wa, we have to consider the system 

(4.5) 

ü=O on an, 

which is not necessarily fully coupled. However, since x = (L- H)0 1 1~0 we 
havc that (La-Haaha=Haß Xp+la~O and Condition 3 is satisfied on every 
fully coupled component. Use Theorem 1.1 on these subsets and one finds that 
(La - H aalo 1 is weil defined and positive. Hence (La - H aalo 1 P is positive and 

Set v=(va, up) and define B: (C0 (Q))k-+(C0 (Q))k by 

(4.6) B=(~ Hpa(La~Haalo 1 P) · 

This yiclds a boundary value problem with the non local term B: 

(4.7) Lv=Hv-ioBv+f in n, 

v=O on an. 
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The solution u is then as follows: 

(4.8) 

Wc will show that we do have a uniform pos1tiv1ty result for v, and hence 
for u11 . In gencral such a result can not be found for the other components 
of u. 

From (4.7) we find that v = -E(L- H)0 1 B v + (L- H)0 1 f and hence, since 
(L-H)<) 1 and Bare bounded operators in (C0(Q))k, for E small enough: 

V= I (-E(L-H)ü 1 Bt(L-H)ü 1 f 
v=O 

is weil defincd. Moreover: 

(4.9) V= L (E(L- H)(; 1 B)2 v(/ -E(L-H)(; 1 B)(L- H)(; 1 f. 
v=O 

Sincc (L- H)<) 1 B is a positive operator, it is sufficient to establish positivity 
of thc operator Kc: (Lp(Q))k ~ (C0 (0)l defined by: 

(4.10) 

For (L- H)<) 1 wc can use the expression from Lemma 1.4 and with setting ß = 1 

WC gct (L- H)c) 1 = I ((L± /)(; 1 (H + nr (L+ /)ü 1. 

v= 0 

Lemma 4.1 Let p?;. n. Assume the Conditions 1, 2 and 3 are satisfied for (1.1). 
A !so let (i) (ii) and (iii) he true. Then there is a constant c > 0 such that for 
all UE(Lr(Q))k with u?;_O: 

k-1 k-1 

(4.11) c- 1 L .'Fv+ 1 (H + Jtu~(L-H)0 1 u~c I ffev+ 1 (H + Itu. 
v= 0 v=O 

Moreover, il a is a suhset of {1, 2, ... , k}, then there is a constant c>O such 
that fi1r all UaE(Lr(Q)r with ua?;_O: 

k-1 k-1 

(4.12) c- 1 L .r+ 1 (Haa+ It Ua~(La-Haalo 1 Ua~C L ffev+ 1 (Haa.+ Itua. 
v= 0 v=O 

Here .F denotes the operator defined by (ffeu)(x)= S F"(x, y)u(y)dy, F" is defined 

in (6.3) and (6.4) of the appendix. n 
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Proof: The lcft hand side inequality of (4.11) is a direct consequence of 

k-1 

(L-H)- 1 = L ((L+/)- 1 (H +I)t(L+I)-l ~ L ((L+I)- 1(H +/)t(L+I)- 1
, 

v=O 

and Theorem 6.1 and the remark thereafter. F or (La - H aa)o 1 the analogue hoJds. 
Proof of the right hand side: 

( i) Decomposition 

Because of assumption (ii) we can write 

(L-H)- 1 = L(L1+1)-(v+l)(H+Jt. 
v=O 

Let <pEC 0 (0) be the first eigenfunction of L 1 with eigenvaJue A,0 . Since H + I 
is irreducible, (H + l)k- 1 contains just positive eJements and the finite dimension­
al version of the Krein-Rutman Theorem gives an eigenvector ~EIR\ with ~;>0 
for all i and with eigenvaJue p(H+/). Set µ0 =p(H+J)-l. Then: 

(4.13) 

From Condition 3 it follows that A- 0 > µ0 . 

Sincc ~~O there are positive numbers c1 and c2 such that for every 
jE{ 1, 2, „., k}, with ej thej-th unit vector: 

(4.14) c1 (H + J)k- t ej~~~c2 (H + J)k- l ej. 

For thc sccond part Jet ej be the unit vector in IRa and ~a the restriction of 
~ to !Ra. Let iEcr(j) if ((Haa+/)k-l e);=l=Ü (jEr:t.U)ccr), and Jet rra(j) denote the 
projcction on thc crU) components. Then, for some c1, c2>0: 

(4.15) 

and 

(4.16) (H aa + /) ITa(j) ~a = ITa(j)(H aa + /) ITa(j) ~a 

~ ITaw(H aa + /) ~a ~ ITa(j)(µo + 1) ~a · 

( ii) Componentwise 

AppJying (L-H)- 1 to ujej, with uj~O, one gets: 

y:;::Q 

k-2 

= l:(L1+1)-<v+l)uj(H+Jtej 
v=O 

+(L1+1)1 -k L (Li+ 1)-(v+ 1) uj(H + It(H + I)k-1 ej. 
v=O 
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Sincc all thc involved operators are positive, (4.14) shows: 

"' 
(4.17) c1(L 1+1)1 -k L (L1+1)-(v+ l) ui(H + Ir<H + l)k- I ei 

v=O 

~U-1+1) 1 -k L (L1+1)-<v+ 1l ui(H +lt~ 
v=O 

~(L, + 1)' -k L (L1+1)-tv+ ll(µo +lt ui~ 
v=O 

=(L 1 +1) 1 -k(L 1 -µ0)-
1 ui~ 

~c2(L 1 +1) 1 -k(L1 -µ0 )- 1 (H + J)k- l uiei. 

Hcncc therc is c>O such that 

(4.18) (L-H)- 1 u1e1 

~c (t~(L, + 1)-<v+ 1l(H + It +(L 1 +1)1 -k(L 1 -µ 0)-
1 (H + l)k- l )uiei. 

Using (4.15) and (4.16) in (4.17), with n:a.UJ~a. instead of ~ and H"" instead of 
H, we get the analogous inequality for (L"-H"")- 1 uie1. Since this is true for 
cvcry componcnt, we can replace u1e1 by u in (4.18), respectively uieJ by u". 

( iii) Estimates ./(>r the Green .functions 

U sing the rcsult stated in Theorem 6.1 and the remark thereafter there is c > 0 
such that 

k- 2 

L (L1+1)-(v+ l)(H +lt u+(L1-µo)- 1 (L1+1) 1 -k(H + w-l u 
V-'- 0 

k - l 

~ c L .'f'v + i ( H + It u. 
v= 0 

With (4.18) it shows the right hand side of (4.11). Similarly we obtain (4.12). D 

By using Lemma 4.1 the sufficient condition for positivity will be merely 
algcbraic. Define the diagonal matrix E" by: 

if iEcr, 

if i f. cr. 
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Theorem 4.2 Assume the Conditions 1, 2 and 3 are satisfied for (1.1). Also let 
(i), (ii) and (iii) be satisfied. Suppose that for some c > 0: 

v+ 1 

(4.19) Eß(HEatP~c L Hs for VE{l, 2, ... , k-3}. 
s= 0 

7111:11 t here is Eo> 0 such that, for all EE [O, E0) and f E(Lp(Q))k with f~ 0, the 
solution v of (4.7) satisfies v~O or v=O=f. Hence respectively uß~O or u=O=f. 

Remark 4.1 For 3 x 3 systems condition (4.19) is void. 

Remark 4.2 Although for every f~O with f;>O for iErx, there is E.r>O such 
that for every EE[Ü, EJ) the solution u satisfies u~O, one cannot expect a uniform 
rcsult for u as Theorem 4.2 states for v. Hence, the result above cannot be 
uscd for thc parabolic case. By discretizing the time variable and solving the 
clliptic problem for every time step one looses positivity of the inhomogeneous 
tcrm after the first step. 

Pro<J( Wc will show that the operator K„ defined in (4.10), is positive for E 

positive but small enough. By Lemma 4.1 we have appropriate estimates for 
(L--H)<) 1

• 

In ordcr to show that E(L-H)0 1 B(L-H)0 1 ~(L-H)0 1 for some E>Ü it 
is sufficicnt, by Lemma 4.1, that for some c>O 

k-lk-lk-1 
(4.20) L L L .'#'µ+v+t+ 3 (H+/)µEßHEa((H+/)EatP(H+/)' 

11=0 v=O t=O 

k- 1 

~CL .~v+l(H+/)v. 
v=O 

Notice that (H + J)k- 1 has strictly positive entries. Since we know from Corol­
lary 6.2 of the appendix that there is c > 0 such that .~ 2 ~ cffe (and for any 
cEIR: .Fj;c.7 2

) we may show just as weil that there is c>O with: 

k--lk-lk-1 k-1 

L L L·'#'µ+v+t+ 3 HµEßHEa(HEJvPHt~CLffev+l(H+It. 
µ=0 v=O t=O v=O 

This last inequality is true if and only if there is c > 0 with 

k-1 

.„:z-v+.i E11 (HE~)v+ 1 P=<c ~ QJ;µ+ 1 (H+/)µ " II {O 1 k 1} r ~ L. '"' 10f a VE , , .. „ - . 
µ=0 

Again since .'F 2 ~ c.'F and .'#' j; cffe2 it is sufficient that: 

v+2 
.,,z-v+.l Eß(HE~)v+l P=<c.· ~ 0Wµ+l(H+/)µ f r' 11 VE{O 1 k 1} .r ~ L."' o a , ,„„ -
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or cquivalcntly, thcrc is c>O such that: 

v+ 2 

Ell(HE_)v+tp<=c·"H~' f 11 {O 1 k 1} • L. or a VE , , . „, - . 
µ=0 

Finally, sincc His irreducible we have that the matrix I + H + ... + Hk- 1 contains 
only strictly positive elements. Which means that it suffices to check the last 
incqualityforvE(O, 1, ... ,k-4}. D 

Wc will end this section with an example. 
Let Q hc a houndcd, sufficiently smooth domain in JR". Let u be a solution 

of 

(4.21) (-ß+ l)u1 =Uz -EU4 +f1 m Q, 

(-ß+ l)U2 =U3 -EU4 +f2 m Q, 

(-ß+l)U3=U4+f3 m Q, 

(-ß+ J)U4=U1 +f4 in Q, 

U1 =U 2 =U 3 =U4=0 Oll an. 

Thc conditions of Theorem 4.2 are satisfied for this system. Hence there exists 
~: 0 >0 such that for all eE[O, i;0 ) the following holds. For f>O the solution 
u satisfics u_, p 0 and u4 p 0. 

5 Appendix 1 

In this papcr we uscd the following results on a Banach lattice E with dim(E)> 1. 

Krein-Rutman Theorem [27] Let TE 2' (E) be a compact and positive operator 
ivith r=r(T)>O. 771cn therc is Ü<uEE with Tu=ru. 

De Pagter Theorem [29] Let Tc!l'(E) be a positive, irreducible and compact 
01wrator. 11icn r( T) > 0. 

Corollary (of [33, Theorem V.5.2]) Let TE!i'(E) be a positive and irreducible 
opcrat or ll'it h r = r( T) > 0 as an eigenvalue and T' cp = r cp for some 0 < cp E E'. Then: 
(i) r is 1 hc uniquc cigenvaluc of' T with a positive eigenvector; 

(ii) iuEt'; Tu=ru} has dimension one. 

6 Appendix 2 

1 n Seel. 4 wc uscd pointwise estimates for Green functions. With sufficient regu­
larity of thc cocfficicnts and of the boundary of the domain all Green functions 
for sccond ordcr clliptic operators (zero Dirichlet boundary conditions) have 
a similar hchaviour. Rcsults of this type have been obtained for n > 2 by Hueber 
and Sicvcking [25, 26] and independently by Zhao [37] and Cranston et al. 
[ 18]. Rcsults for n ~ 2 arc publishcd by Ancona in [ 4]. 
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Theorem 6.1 (Hueber-Sieveking) Let L be a strictly elliptic operator on lR" with 
11>2: 

(6.1) 

witlz Hiilder-continuous coejflcients and c~O. Let Q be a bounded Cl. 1-domain 
and !et G denote the Green function (zero Dirichlet boundary condition). Then 
t here is ex> 0 such that: 

(6.2) 

with 

(6.3) 

In Theorem 8 of [4] Ancona states a similar estimate. Let L 1 and L 2 denotc 
sccond order strictly clliptic operators as in (6.1). He assumes that L 1 and L 2 

havc Lipschitz continuous coefficients and that the domain (in lR" with n ~ 2) 
has a c2 ·~ houndary except at a closed set <l>. At <l> the boundary is Lipschitz 
and satisfies some technical conditions. If L 1 and L 2 have the same principal 
part on Cl> there is c > 0 such that the corresponding Green functions satisfy 

c- 1 ::;;Gi(x,y)<c forall x,yEQ. 
- Gz(X, y)-

By using a result of Zhao in [38] we obtain (6.2) for n = 2 with 

(6.4) F2 (x, y)=log(l +d(x, DQ) d(y, oQ) lx-yl- 2
). 

As a conscqucnce of Theorem 6.1 one gets: 

Corollary 6.2 Let Q be a hounded c1. 1-domain in lR" with n~3. Let L 1 and 
L 2 he two el/iptic operators satisfying the conditions of Theorem 6.1. Let G 1 and 
G2 denote the Green functions. Then there is ß > 0, depending on Q, such that: 

(6.5) Gi(x, z)~2(z, y) ~ß(lx-zl2-n+ly-zl2-n) for x, y, zEQ. 
Gi(x, y) 

Remark 6.1 Cranston et al. [18] showed a theorem related to Corollary 6.2 
(which thcy call thc 3 G Theorem) to obtain the estimates for the Green functions. 

Zhao showed in [38] a similar estimate for n = 2 and L= - ~- U sing the 
rcsult of Ancona the equivalent of(6.5) for n=2 is: 

(6.6) 
G 1(x,z)G 2 (z,y) 

---~~~c(max(-log lx-zl, l)+max(-log ly-zl, 1)). 
G1(X, y) 

lt follows from (6.5) respectively (6.6) that there is MElR such that: 

(6.7) f Q_i(x, z) Gz (z, y) d z::::;; M for all x, yEQ. 
n Gi(x, y) -
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Then for 1: < M - 1 and 0 -f-f~ 0 it follows that: 

(6.8) ((/-c(L2 )0 1)(Li)0 1f)(x) 

= J Gi(x, y)f(y)dy-E J J G2 (x, z) G1(z, y)f(y)dydz 
!! Q Q 

= J Gi(x, y) (1-E J G1(~ z: Gz~Z, y) dz)f(y)dy 
!! Q 1 X, y 

~ J Gi(x,y)(l-EM)f(y)dy>Ü for XEÜ. 
!! 

Rcmark 6.2 If L 1 = L 1 =-Athen: 

(6.9) J G(x, z)_(;~~ dz=E~•n· 
12 

G(x, y) 

E·~ is the expectation for Brownian motion killed outside n, starting in X and 
c(mditioned to converge to y. The path lifetime is Tn. See e.g. [20]. 

Rcmark 6.3 Without using the relation with conditioned Brownian motion or 
potential thcory, bounds for (6.9) have been considered in [34, 8, 10]. In the 
one dimensional, rcspcctively the radially symmetric case on the ball in IR" 
one finds the following expression for the smallest bound M. 

ro 

(6.10) M= L (f,.)-1, 
n=l 

wherc [l..11 ) is the set of all eigenvalues of 

-Acp=A.cp m Q 

<P=O on an. 
See [34] and [10]. 

The series in (6.10) only converge in a basically one dimensional domain. 

Remark 6.4 For x -f- y and x, yf/=80 one finds immediately that 

J G1(x,z)G 2 (z,y) dz>O. 
n G1 (x,y) 

However, there is no uniform positivity result for - u when E is !arge, where 
11 is the expression in (6.8). Since one can show that 

Jim S G 1 (x,z)G 2 (z,y)dz=O 
x~.vn G,(x,y) ' 

there is for every E>O a functionfEC(Ö), with.f~O, and xEO such that u(x)>Ü. 
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