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Uniform Anti-Maximum Principle for Polyharmonic
Boundary Value Problems

Philippe Clément and Guido Sweers

ABSTRACT. A uniform anti-maximum principle is obtained for iterated poly-
harmonic Dirichlet problems. The main tool, combined with regularity results
for weak solutions, is an estimate for positive functions in negative Sobolev
norms.

1. Introduction and statement of main results

Let us recall the situation for the second order boundary value problem

—Au = du+f inQ,
(1) { v = 0 on 09,

where 2 is a bounded smooth domain in R™. It is well known that for A < Ay,
with A\; the first eigenvalue, a sign preserving property holds: f > 0 implies that
u > 0. In [4] it has been shown that when A — A; > 0 and small a sign reversing
phenomenon occurs. The more precise statement for (1.1) of this so-called anti-
maximum principle is as follows.
For f e LP(Q) with 0 # f >0 and p > n there exists Ay > A\ such that for
A € (A1, Af) the solution u of (1.1) satisfies u < 0 in .

In [11] it has been proven that the restriction on p, that is p > n, is genuine.
Indeed, for 2 smooth there is f € L™ (), with f > 0, such that the solution u of
(1.1) changes sign for all A > A;.

A much stronger result would have been that the sign reversing result holds
for A € (A1, A\ +6) with § > 0 independent of f. Such a result could be called a
uniform anti-maximum principle and in fact exists for another boundary condition.
Indeed for the one-dimensional Neumann problem, —u” = Au+ f in Q with v/ =0
on 09, such a uniform anti-maximum principle was obtained in [4].

In order to get a better understanding when the anti-maximum principle holds
uniformly, we consider some elliptic systems of higher order: iterated polyharmonic
Dirichlet problems. Let m and k be fixed positive integers. Defining

(1.2) D(A) = H¥2(Q)nH" ()

’ A = (=A)":DA)CL?>(Q) — L*(Q),
we will study for f € L? () sign properties for A near \; of
(1.3) Aru =M+ f,

where )\; is the first eigenvalue of A¥. Equation (1.3) corresponds to the boundary
value problem (=A)™u = Mu + f in Q, and (Z) (=A)™u = 0 on 99 for
1=0,....m—1and 5 =0,...,k — 1. Here n denotes the outward normal.
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A necessary condition for sign-reversing and sign-preserving property for (1.3)
to hold with A\ near A1, is that the first eigenvalue is simple and that the correspond-
ing eigenfunction has a fixed sign. On general domains polyharmonic operators with
Dirichlet boundary conditions do not have a first eigenfunction with a fixed sign.
Boggio ([3]) however proved that for Q = B a ball, the Green function for Au = f is
positive and hence, by results of Jentszch ([8]) or Krein-Rutman (see [9]), the first
eigenvalue is algebraically simple and has a strictly positive eigenfunction (see [7]).
Although the eigenfunction remains positive under small perturbations of the do-
main ([7]) we will restrict ourselves to 2 = B when m > 1. Note that eigenfunctions
of A and of A™, m > 1, coincide.

THEOREM 1. Let A be as in (1.2) and suppose that, either

i. m=1 and Q is a bounded domain in R™ with 0Q € C*°, or
ii. m>1and Q= {z € R";|z| < R} for some R > 0.

Let A1 be the smallest eigenvalue of A¥. If n < 2m (k — 1), then there exists
6 >0 such that for all X € (A1, A\ +6) and f € L* () with 0 # f > 0 the solution
u of (1.8), which belongs to C™ (Q) , satisfies

u(x) < 0 forallxef,
(1.4) (%)lu(x) = 0 forallzx €9 andie€ {0,1,...,m—1},
(_%)mu (x) < 0 forallze .

The conditions of Theorem 1 guarantee that all eigenvalues are real and posi-
tive. Moreover, for A € [0, A1) the system in (1.3) is sign preserving. See [7].

The inequality n < 2m (k — 1) is sharp. A proof of this fact will appear else-
where.

The result in Theorem 1 coincides with that of Theorem 3 in [5]. In [5] more
general, not necessarily self-adjoint, boundary value problems were considered using
Sobolev spaces H™P () with p # 2. The non-Hilbert approach forces the proofs
to be rather involved. An advantage of using LP-type spaces is that one finds as an
intermediate result a non-uniform anti-maximum principle. For the system in (1.3)
it reads as:

PROPOSITION 2. Let A and Q C R™ be as in Theorem 1.
Ifn < 2pm (k — %) , then for f € L? () with 0 # f > 0 there exists a Ay > A such
that for all X € (A1, \y) the solution u of (1.3) which belongs to C™ (Q), satisfies
(1.4).

2. Solutions to Au = f

First we will recall and derive some properties of solutions to Au = f, that is,
for the system

(21) F) o m—1
u:%u:-~-=(%) uw=0 on ON.

The spaces H*2 (Q) and HY? (Q) for k € Z that we use are defined in [10].
We recall that

(2.2) H2 (@) = (H? (Q))' for s € R.

For short notation we set H*? = H%? (Q) etc.
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2.1. Strong solutions. It follows from Theorem 8.4 of [10, page 196] that the
operator A is self-adjoint in L?. Indeed conditions (i), (i) and (iii) of [10, page 148]
are satisfied, the operator A is formally self-adjoint and the boundary operators C;

can be chosen equal to B; = (ai)] in Theorem 8.4.

Next we show that N (A) :7{0} Ifu € D (A) satisfies Au = 0 then ((u,u)),, =
JouwAudx = 0, where the bilinear form ((-,-)),, is defined by

JoA%Tu A% vdy for m even,

(2.3) ((w,v)),, = { % (A"Slu) AV, (AmTflv) dx for m odd.

By a one-dimensional version of an inequality of Poincaré it follows for v € H5’2
with © bounded, that

2
(2.4) /UQdeCQ/ (81}) dx for each i € {1,...,n}.
Q o \0

X

Hence there exists cq », > 0 such that
(2.5) /QUQ dz < com ((u,u)), . for all u € HJ">.

Therefore Au = 0 implies u = 0. By applying Theorem 5.4 of [10, page 165] we
obtain:

LEMMA 1. Let s > 0. For each f € H®%? there exists a unique solution u €
HY? 0 H?™ 452 of (2.1). Moreover, there exists cq . > 0 such that

(2.6) [ull gromees < cmos 1 fll gz for all f € H*2.

2.2. Weak solutions. By duality we may extend the estimate in (2.6) for
s < 0. Note that [10, Theorem 8.3, page 195] extends the estimate in (2.6) to
s € [-m,0) with s+ £ ¢ Z. For s € [—2m, —m) the same estimate is no longer true
due to the fact that H*2 = (H, %)’ has to be replaced with (HJ"? N H~*2)’. For
sake of short notation we will use for k € N

(2.7) L e

= sup {|<<p7f>| ip € H(;”’Q N H™%2 with ol gpmn,z < 1} ,

where (¢, f) denotes the value of the functional f at . For f,g € L? we will also
use the notation (f,g) = [, f g dx.

Notice that for m, £ > 0 the norm ||| _, ., , (resp. [|-[|_,, _,) is strictly weaker
than the norm ||-[|_,,, _ . (resp. |[[lo_,,_,)-

According to Lemma 1 the operator Ay : H(T’Q NH?>™2 - [2? defined by Agu =
Au is an isomorphism. Hence A_; : L2 — (HJ"? N H?>™2)’ defined by A_; = A},
is an isomorphism, that is, for all v € L? there is unique f € (Hy"> N H*™?2)" with
A_yjv = f in the sense that [, v Apdx = (p, f) for all ¢ € HJ"> N H?*™2. From the
self-adjointness of A it follows that A_; is an extension of Ag. We get the following
scheme:

/
(2.8) HI™? 0 H2m2 A0 Ly~ (L) A (Hénﬂ mHQm,Q) _
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Defining for k € NT the spaces
B, = {uem?n2 Aiye HV forogjgm—1}7
B . = (BN)I

and By = L? ~ (L), we obtain the following scale of Hilbert spaces with restric-
tions and extensions of Ay :

Ay Ap_ A A A_ A_o A_ A__
(210) ...=5B, =5 ... 5B 5B =SB, 5.5 B, TS L
— — — — — — — —

(2.9)

See [2, Chapter V]. The operators A, : B,11 — B, for k € Z are isomorphisms.
Finally, we introduce the (complex) interpolation spaces B, , 1 defined by

(2.11) Byy1 = [Bx, Buy1]
LEMMA 2. Let k € Z.
i. If k>0, then B, 1 = {u € H2mstm2: Aiy e HM? for 0 < j < Ii}.

1
2

!
ii. If & <0, then B, 1 = (B_K_%> .

PROOF. It is known, see [13, Thm 4.3.3, p.321], that for x > 0 that the space

[Bi; Brt1]) 5 is the subspace of H*"+m2 = [P+ D:2 Fp2mes2]), submitted to

exactly all boundary conditions of B,11 that are of order less then 2mx + m — %

The second result follows from [X', Y], = [X, Y]y, see [10, Thm 6.2, p.29]. O

3. Positivity and simplicity of the first eigenfunction

We will need that the first eigenvalue be simple, with the corresponding eigen-
function be positive and having an appropriate behavior at the boundary.
Let d denote the distance to 052 :

(3.1) d(z,00) =inf {|z — y|;y € 00}

LEMMA 3. Let Q be as in Theorem 1. Then the first eigenvalue pm,1 of A
is strictly positive and simple. Moreover, the corresponding eigenfunction o, 1,
chosen positive, satisfies for some ¢y, Cpy, > 0

(3.2) em d (2, 00)" < @ma (x) < Cpd(z,00)™ for all z € Q.

ProOOF. If m = 1 and  is a bounded domain in R™ with smooth boundary
the eigenfunction for the first eigenvalue is positive. The estimate in (3.2) follows
from Hopf’s boundary point Lemma and ¢; 1 € C! (Q) N Cy (Q) .

Now suppose that m > 1. Then Q = {x € R"; |x| < R} and the explicit formula
of the Green function by Boggio [3, (48), page 126] guarantees that the solution u
of (~A)"u = f e C(Q) with 0 # f > 0 with the Dirichlet boundary conditions

(%)j u=0o0ndQ, j=0,...,m— 1, satisfies for some c; >0

(3.3) u(x) > cpd(z,00)™ for all x € Q.

Since the Green function is positive Jentszch’ Theorem ([8]), or Krein-Rutman,
implies that the first eigenvalue A, is algebraically simple and that the corre-
sponding eigenfunction ¢,, 1 is positive. Using (3.3) and the fact that ¢, 1 €
cm (Q) N C'(’)”_l (Q) there are ¢,,,, C,, > 0 such that

(3.4) Cm d (2, 00)" < @i (z) < Cpd(z,00)" for all z € Q,

which completes the proof. O
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4. Solving by eigenfunctions

Recall that the unbounded operator A : D (A) C L? — L? is positive self-
adjoint (see 2.5). Since the imbedding of H?™? in L? is compact we find that A~! :
L? — L2 is compact and positive symmetric. Hence L? has a complete orthonormal
system consisting of eigenfunctions of A. Let us denote these eigenfunctions by
{¢m,i}ie, and the corresponding eigenvalues by {im i}, , that is, for i, j € N*

=17
(_A)n: Pm,i = Mm,iPm,i in Q,
(4.1) (ai) Om,i = 0 on 0N for k =0,1,...,m,
<90m,i7 me,j> = 6”

Using (2.6) repeatedly one finds that ¢,,; € H*? for all k € N and hence ¢,,; €

C (Q) . An equivalent norm on the space B, defined in (2.9,2.11) for k € 1Z, is
given by

1
2\ 2
(42) lullp, = (320 1255 o))
We may use these eigenfunctions to solve (1.3). Note that Ay = b, ;.

LEMMA 4. There exist Cioma > 0 and 6 > 0 such that the following holds.
Let A € R with ‘)\ — an,1| < 6. For all f € B_1y, with (pm.1, f) = 0 there exists a
unique weak solution ux € By, to

(A~ Nu = f
<<pm,1a U’> = Oa

and moreover

(4.3) HUAHB;,C < Crmo ”fHB_;k .
2 2

PROOF. The lemma is an immediate consequence of (¢, 1, f) = 0, the solution
formula

> 1
(w4 ur =3 o (s ) P
i=2 :U“m,i —A
and choosing 6 € (O, Mﬁ%g - an,1) . -

5. A weighted C-space
Let us define Cym (Q) = {u € C(Q) ;]Jull4m < oo} where

(5.1) ] gon = sup{‘d(gia‘%w = Q} :

A similar space C. (©2) has been used by Amann in [1], where e is the solution to
—Ae =11in Q and e = 0 on 9. For 9Q € C*7 the spaces C. () and Cq (Q)
coincide. Note that

(5.2) CH(Q) NC™ () = Cym () — Co ().
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5.1. An imbedding. The next lemma is a consequence of the imbedding
(5.3) H'nH™ — c =t (Q) nC™ (Q) for n < 2.

LEMMA 5. Let Q C R™ be a bounded domain with 022 € C* and suppose that
n < 2k. Then there exists com,x > 0 such that for all w € HJ* N H™tE

(5.4) [l gm < €om,p [l prmen -

PROOF. Since 2k > n the Rellich-Kondrachov Theorem §h0ws that there exists
a cq,x > 0 such that ||“||Cm((z) < coi ||ull grmen - If v € C* (Q) N HY then v =0 on

09 and hence (an inequality of Poincaré)
(5.5) v ()] < ||U||C1(Q> d(z,00Q) for all x € Q.

A repeated use of the last inequality shows that v € C™ (Q) N H{" satisfies

(56) u (@)l < —

om () d(z,00)™ for all z € Q,
and hence (5.4) follows with ¢ m. . = cq../m!. O

By the previous lemma and the definition of the norm in (2.7) for the dual
space we find:

COROLLARY 3. Let Q C R™ be a bounded domain with 0Q € C*° and suppose
that n < 2k. Then there exists cq m .« > 0 such that for all f € L?

(5.7) 1l e < Cm.nsup {[{p, )]0 € Cam (Q) with |

6. An estimate for positive functions in a negative Sobolev space

om <1}

PROPOSITION 4. Let ¢, 1 be the first eigenfunction of (4.1) satisfying (3.4)
and normalized by (Pm1,¢m,1) = 1. Let 2k > n. Then there exists ¢ > 0 such that
for all f € L? with f > 0 the following estimate holds

(6.1) If = (om,1, f) <Pm,1||_m,_,g <c(om1,f)-

PROOF. Let us define fo = f — (pm,1, f) ©m,1. In view of (5.7) it is sufficient
to prove that there exists a constant C' such that

(6.2) (@, fe) < C{pm, f)-

for all ¢ € Cygm () with [J[| jm < 1.
Let ¢ be such a function. Hence by (3.2) we have

(6.3) lo ()] < cptom. () for all z € Q.
Since (pm,1, fe) = 0 it follows that
(64) <<)07 f€> = <C%190m,1 - ¥ _f6>

where (6.3) shows that ¢, ¢ 1—¢ > 0. From f > 0 we obtain — feo < (¢m.1, f) Pm.1
and hence

(6.5) (et om1 — @, —fe) <t oma — @, (Om1, f) om,1) -
Since (pm 1, f) ©m,1 > 0 and since (6.3) also implies that ¢;;,' .1 + ¢ > 0, we find
(66) <C;L1<Pm,1 - ¥, <90m,1a f> <Pm,1> S <2cv_n1<)0m,1, <90m,1a f> <P7n,1> .

Combining (6.4), (6.5), (6.6) and {¢.,.1,¢m.1) = 1 we obtain (6.2) with C = 2¢,,!.
O
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Proposition 4 can be reformulated as an imbedding of L' (€, ¢, 1dx) into
(HSR,Q N Hm+/i,2)l'

COROLLARY 5. Let ¢, 1 and k be as in Proposition 4. Then there exists c; > 0
such that

©67) Il < cl/ U omade  for all f € L' (Qpmada).
Q

PROOF. Since L? is dense in L' (Q, ¢, 1dx) it is sufficient to show (6.7) for
fe€L? Set fT=2%(f|+f). By Proposition 4 we find

“f+||—m7—m S ||f+ - <50'm,,17 f+> S077171“—771,—;@ + ||<$0m717 f+> s07n71||—1ﬂ,—m S
< (e+cpmy) / 1 omda.
0
With the estimate for f~ = 3 (|f| — f) we find (6.7) for c1 = c+cy,, ;- O

7. Proof of the main result
In order to prove Theorem 1 we consider Sy : Bi,, — B_1, defined by S\ =
2 2
Ak — X\ For f € B_1) and A # u’;m = \; the solution w satisfies
1
K = A

s

(7.1) U = (Pm,15 f) Pm,1 + Uer

where u ) = (SA)_1 fe with fe = f — (pm.1, ) ¢m,1- By Lemma 4 we have
(72) luealln, <Cillfells .
2 2

and since B_1;, D (Hy" N H*™)" it follows that

(73) 1£ills,. < Colfell oy
2

By Proposition 4 we find if 2 (k — 1) m > n that

(7.4) ||fe||_m7_(;€_1)m S C3 <90m,17 f> .

Since ue x € B%k C Hy" N H*™ we have
(7.5) ”ue,)\”Héankm <Cy ”ue’)‘”BLk
2

and assuming 2 (k — 1) m > n it follows by Lemma 5 with k = (k — 1) m that
(7.6) |2,

dam S C5 ||ue,>\||H6ank7n .

Hence for all A with |A — & || < & and § as in Lemma 4 we find by using (7.6),
(7.5), (7.2), (7.3), and (7.4):

(77) |Ue,)\ (I)| S 06 <90m,1a f> d($7 8Q)m .

Finally, using the estimate in Lemma 3 for ¢,, 1 we find that if 0 < A — u’fn,l <01
with 61 = min {6, S } that

Cs

(7.8) u(x) < (ﬁ (om,1, ) + CC—S {Pm.1, f>) ©m,1(x) <0
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Since —¢,1 satisfies the estimates in (1.4) the solution u satisfies these same esti-
mates.
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Observe that for —6; < A — u’ﬁml < 0 a similar estimate from below recovers
maximum principle.
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