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Università degli Studi di Trieste

Piazzale Europa 1
34100 Trieste

Italia

Guido Sweers∗

Department of Pure Mathematics
Delft University of Technology

PObox 5031
2600 GA Delft

The Netherlands

July 23, 1997

∗Enzo Mitidieri and Guido Sweers were supported by the EU through HCM Network
contract nr. ERBCHRXCT930409 Reaction Diffusion Systems and by MURST 40% and
60%.

1



1 Introduction

In this paper we shall study the existence of a principal eigenfunction for the
vector-valued elliptic eigenvalue problem (L −H) Φ = λBΦ in Ω,

Φ = 0 on ∂Ω,
(1)

and its relation with a maximum principle. The operator L is supposed to
be a diagonal matrix of second order uniformly elliptic partial differential
operators and H and B are cooperative matrices with entries in C(Ω̄). The
domain Ω ⊂ RN is bounded. We do not assume that the boundary satisfies
a regularity condition.

Systems of elliptic and parabolic differential equations arise in studies
and models related to population dynamics, combustion theory and nerve
conduction. In this respect, see for instance the survey of Aronson and
Weinberger [3] and the book of Bebernes and Eberly [5] .

Dealing with problems connected to existence, uniqueness and stability
of solutions to these systems, the associated elliptic eigenvalue problem plays
an important role (see [1],[8], [15],[19]). Closely related to the latter problem
is the existence of a comparison principle or maximum principle.

In most of the literature on elliptic and parabolic systems (see for example
[9],[10], [18],[23],[24],[26],[29],[30]) it is assumed that the boundary of the
domain Ω is smooth.

Without this assumption one is faced with several difficulties even in
the case of a single equation. For the single equation on domains without
much regularity there exist at least two approaches. On domains that are
regular in the sense of Perron (see [11]) solutions that are continuous up to
the boundary can be defined by a limiting process. On general domains self-
adjoint problems can be studied in weak sense by minimizing the associated
energy functional.

Only recently Berestycki, Nirenberg and Varadhan in [6] (see also Ancona
[2], Nussbaum and Pinchover [20] and Pinsky [22] for related results) studied
the eigenvalue problem removing all regularity assumptions of the boundary
without using the self-adjointness. In doing so they had to define in which
sense a solution, which in general is not continuous at boundary points,
satisfies the boundary condition. It comes out that a good definition can be
obtained by an approximation procedure, see Definition below.
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Vector-valued elliptic systems are in general not self-adjoint even if the
second order differential operators are self-adjoint. Hence without regularity
assumptions on the boundary ∂Ω the approach of Berestycki, Nirenberg and
Varadhan for the scalar equation seems to be the most natural for vector-
valued problems.

Elliptic systems make up a broad class of problems. A structural condi-
tion for these systems to have similar features as a scalar elliptic equation
is that the coupling is weak and quasimonotone. Weak coupling means that
there is no coupling by derivatives of the solution; quasimonotone, generally
called cooperative for linear systems, gives a sign condition on the coupling
(see [18],[23],[29]). In this paper we shall consider only systems which satisfy
the cooperativity assumption.

Let us mention briefly some of the complications due to the possible lack
of smoothness of ∂Ω. A main tool that is used in [6] as well as in the present
paper is the Krein-Rutman Theorem. For applying the Krein-Rutman Theo-
rem it is sufficient to have a strongly positive and compact solution operator
(see Amann [1]). Without the regularity at the boundary proving the com-
pactness of the solution operator becomes rather complicated even for the
scalar case. However recently Birindelli in [7] gave an alternative and sim-
ple proof of the compactness in the case of second order scalar equations.
Her method of proof applies as well as in the vector valued case, indeed we
shall follow an argument taken from [7] in this paper. Regularity results
for domains that are smooth except for a finite number of corners become
very involved, the interested reader may refer to Grisvard [12] and [13] for
appropriate Sobolev type spaces.

In general, in the vector-valued case the strong positivity of the solution
operator does not hold. However, it follows from a theorem of De Pagter
[21] that the strong positivity and the compactness property of the solu-
tion operator that is used in the Krein-Rutman Theorem, may be replaced
by positivity, irreducibility and compactness. The cooperative assumption
on the coupling matrix together with the maximum principle for the scalar
case implies the positivity preserving property. The condition which we call
fully coupled implies together with the maximum principle that the solution
operator is irreducible.

The notion in which sense the boundary condition is satisfied was intro-
duced by Berestycki, Nirenberg and Varadhan in [6]. In their approach one
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starts with constructing a function uo by the following limit process.
Let {Ωj}∞j=1 be a sequence of smooth domains that approximates Ω from

inside:
Ωj ⊂ Ω̄j ⊂ Ωj+1 ⊂ . . . ⊂ Ω and

⋃
j∈N

Ωj = Ω (2)

and let c̃ be such that L1 + c̃ ≥ 0. Finally let uj denote the solution of{
(L+ c̃)uj = 1 in Ωj,

uj = 0 on ∂Ωj.

Defining uo by uo (x) = limj→∞ uj (x) for x ∈ Ω, it follows (see [6]) that uo
in W 2,p

loc (Ω) for any p and that uj → uo in C1
loc (Ω) .

Definition (Berestycki-Nirenberg-Varadhan) Let uo be as above. A
solution u of the elliptic equation Lu = f (with appropriate assumptions on
L = −∑ aij

∂
∂xi

∂
∂xj

+
∑
bi

∂
∂xi

+ c and f) satisfies the zero Dirichlet boundary

condition on ∂Ω in the BNV-sense, denoted by

u
uo= 0 on ∂Ω,

if limj→∞ u(xj) = 0 for every sequence xj → ∂Ω, such that uo(xj)→ 0.

In this paper we shall assume that the boundary condition appearing in
(1) is satisfied in the appropriate BNV-sense (see Definition 4 below).

From the remark in [6, page 73] it follows that uo
v
= 0 on ∂Ω for any

v ∈ W 2,N
loc (Ω) with v > 0 and Lv ≥ 0 in Ω. Hence the choice of uo is not

restrictive.

This paper is organized as follows. In the next section we introduce the
necessary definitions and state the main results. The third section contains
a necessary tool that will be used to establish the maximum principle. In the
fourth section we prove the main theorem for the system in (1) when B equals
the identity matrix. Finally, using the result of the two previous sections,
the main theorem is proven in the section five. In the final section, for sake
of completeness, we will state a Krein-Rutman-De Pagter type theorem that
is suitable for our purposes.
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2 Definitions and main result

The general assumptions that we will make throughout the paper are as
follows.

• The set Ω is a bounded, open and connected subset of R

• The operator L is a diagonal k×k matrix of elliptic operators Lµ (1 ≤ µ ≤ k)

Lµ := −
N∑

i,j=1

aµij(x)
∂2

∂xi∂xj
+

N∑
i=1

bµi (x)
∂

∂xi
(x), (3)

satisfying, for some positive constants co, Co, and b, and for all x ∈ Ω, ξ ∈ Rk

the following

co|ξ|2 ≤
N∑

i,j=1
aµij (x) ξiξj ≤ Co|ξ|2, (4)

aµij ∈ C(Ω), bµi , c
µ ∈ L∞,(∑k

i=1 (bµi (x))2
) 1

2 ≤ b, |cµ (x)| ≤ b.
(5)

• The k × k matrices H and B have C
(
Ω̄
)

entries.

Note that we do not assume any regularity hypothesis on ∂Ω.

Let p ∈ (1,∞) and let Lp(Ω) be the usual Lebesgue space. Notice that
(Lp(Ω))k can be identified with Lp(ω) where

ω = ( Ω,Ω, . . . ,Ω︸ ︷︷ ︸
k copies

). (6)

Definition 1 (inequalities) Let D ⊂ RM be a bounded open set. A func-
tion w ∈ Lp(D) is said to satisfy

1. w > 0 if w ≥ 0 a.e. in D and not w = 0 a.e. in D ;

2. w À 0 if w|D∗ > 0 on every open set D∗ ⊂ D.
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Definition 2 (matrices) A k × k matrix A with Aij ∈ C(Ω̄) is called

1. positive if Aij(x) ≥ 0 for all i, j ∈ {1, . . . , k} and x ∈ Ω̄;

2. cooperative if Aij(x) ≥ 0 for all i, j ∈ {1, . . . , k} with i 6= j, and
x ∈ Ω̄.

A cooperative matrix A is called

3. fully coupled if the matrix Ã+ I is irreducible

where the entries of Ã are defined by Ãij = ||Aij||∞.

In the literature cooperativity is also known as essential positivity or
quasimonotonicity ([24],[28]).

Definition 3 (halfsolutions) A function w ∈
(
W 2,p
loc (Ω) ∩ L∞ (Ω)

)k
, with

w > 0 and (L −H)w ∈
(
LN (Ω)

)k
is called

1. a supersolution for the operator L −H if (L −H)w ≥ 0;

2. a strict supersolution for L −H if (L −H)w > 0;

3. a strong supersolution for L −H if (L −H)w À 0.

Next we will define the boundary condition in an appropriate BNV-sense.
Let the sequence {Ωj} consists of smooth domains that approximate Ω from
inside as in (2) and set Mµ = Lµ − cµ. Let uµo be the limit of the functions
uµj that solve Mµu

µ = 1 in Ωj and uµ = 0 on ∂Ωj.

Definition 4 (Dirichlet boundary condition) Let uo be as above. A func-
tion u ∈ (C (Ω))k is said to satisfy the Dirichlet boundary condition in
BNV-sense, u

uo= 0 if, for every µ ∈ {1, 2, . . . , k} and for every sequence
{xj}j∈N ⊂ Ω with Ω, it follows that

lim
j→∞

uµo
(
xj
)

= 0 implies lim
j→∞

uµ
(
xj
)

= 0.
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We are now in the position to formulate the eigenvalue problem that we
shall study in this paper. We say that

Φ ∈
(
W 2,N
loc (Ω) ∩ L∞ (Ω)

)k
is an eigenfunction of (1) with corresponding eigenvalue λ if (L −H) Φ = λBΦ in Ω,

Φ
uo= 0 on ∂Ω.

(7)

As in [6] we set

λ0 = sup

{
λ;∃w ∈

(
W 2,N
loc (Ω)

)k
:

(L −H)w ≥ λBw
and w À 0

}
. (8)

For smooth domains, under appropriate conditions of the operators involved
and for B = I it is known (see [26]) that λ0 is the first eigenvalue in the
usual sense.

Furthermore, we note that if B satisfies
∑k
j=1 Bij(x) > 0 for all 1 ≤ i ≤ k,

then the definition in (8) is closely related with Barta ([4]) type inequalities.

Namely for all w ∈ (C2 (Ω))
k

with w À 0 one has

λ0 ≥ inf
1≤i≤k
x∈Ω

((L −H)w)i (x)

(Bw)i (x)
. (9)

The main results of this paper are contained in the following two theo-
rems.

Theorem 5 Let Ω,L, H,B satisfy the assumptions above and let λ0 be de-
fined in (8). If

a. there exists a positive strong supersolution of L −H;

b. H is cooperative;

c. H is fully coupled;

d. B is cooperative;

e. Bii (x) > 0 for some i ∈ {1, . . . , k} and x ∈ Ω;
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then

i. λ0 is a positive eigenvalue with a strongly positive associated eigenfunc-
tion;

ii. λ0 is the only eigenvalue with a positive eigenfunction and its algebraic
multiplicity is one;

iii. there are no eigenvalues in [0, λ0).

Next we consider the boundary value problem (L −H)u = λBu+ f in Ω,

u
uo= 0 on ∂Ω.

(10)

Theorem 6 Let the assumptions of Theorem 5 be satisfied. Let f ∈ (Lp(Ω))k

with f > 0 and let λ0 be defined in (8). Then the following holds:

i. if 0 ≤ λ < λ0, then there exists a solution W 2,N
loc (Ω) ∩ L∞ (Ω)k of (10)

and uÀ 0.

If B is positive we have:

ii. if λ = λ0, then (10) has no solutions for any f > 0;

iii. if λ > λ0, then (10) has no positive solutions for any f > 0.

Remark 6.1 If in addition to the assumptions made in Theorem 5 we sup-
pose that B is a positive diagonal matrix (Bij ≡ 0 for i 6= j and Bii ≥ 0) then
there is no eigenvalue in (−∞, λ0) and Theorem 6.i. holds for all λ < λ0.

Remark 6.2 Since we do not assume any sign condition on cµ, we may
replace cµ by cµ−γ and Hµµ by Hµµ+γ. Therefore without loss of generality
we may assume that Hµµ ≥ 0 (H positive) or even

Corollary 7 Suppose that the conditions of Theorem 5 are satisfied and that∑
i ≤ k. Then

λ0 = sup inf
w∈(C2(Ω))k 1≤i≤k

((L −H)w)i (x)

(Bw)i (x)
(11)

holds.
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Barta in [4] obtained such a result for the Laplace operator. For more
general second order elliptic equations see [23], [27] and for systems see [26].

Proof. Let us denote the expression at the right hand side of (11) by
λBarta. From (9) we find that λ0 ≥ λBarta. Using the first eigenfunction that
is guaranteed to exist by Theorem 5 we find λ0 ≤ λBarta.

3 The maximum principle, subdomains and

nonzero boundary values

For elliptic equations it is well known that if the solution operator for the
Dirichlet problem is positive on Ω, then it is so for the Dirichlet problem on
any subdomain Ωs ⊆ Ω. A similar result also holds for cooperative systems.

Proposition 8 Let Ω,L, H satisfy the assumptions above and suppose that
the conditions b. and c. of Theorem 5 are satisfied. If there exists u∗ ∈(
W 2,N
loc (Ω) ∩ L∞ (Ω)

)k
such that

 (L −H)u∗ ≥ 0 in Ω,

u∗
uo,Ω
= 0 on ∂Ω,

(12)

and u∗ ≥ 0 in Ω, then the following statement holds.

For every open set Ωs ⊆ Ω, with ∂Ωs smooth, and u ∈
(
W 2,N(Ωs)

)k
such

that  (L −H)u ≥ 0 in Ωs,

u ≥ 0 on ∂Ωs,
(13)

we have u ≥ 0 in Ωs.

Remark. In general the assumption that H fully coupled on Ω doesn’t imply
that H|Ωs is fully coupled on Ωs. This explain why we find u ≥ 0 for (13).
However if H is fully coupled on Ωs then we can improve the last statement
above to u ≡ 0 or uÀ 0 in Ωs.
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Proof. First we observe that Kato’s inequality [16], which can be used for
uµ ∈ W 2,1

loc (Ω) , and the cooperativity of H imply that in a distributional
sense we have

((L −H) min (u, 0))µ = Lµ
(
χ[uµ<0]uµ

)
−
∑
j

Hµj

(
χ[uj<0]uj

)
≥

≥ χ[uµ<0]Lµuµ −
∑
j

Hµjχ[uj<0]uj =

= χ[uµ<0] ((L −H)u)µ +
∑
j

Hµj

(
χ[uµ<0] − χ[uj<0]

)
uj ≥

≥
∑
j

Hµj

(
χ[uµ<0] − χ[uj<0]

)
uj =

=
∑
j 6=µ

Hµjχ[uµ<0]χ[uj≥0]uj −
∑
j 6=µ

Hµjχ[uµ≥0]χ[uj<0]uj ≥ 0.

Hence (L −H) min (u, 0) ≥ 0 in Ωs and min (u, 0) = 0 on ∂Ωs. Since u∗ is a
strongly positive supersolution on Ωs for L −H it follows from [26] that on
every fully coupled subset of {1, . . . , k} we have min (u, 0) ≥ 0 in Ωs. Hence
u ≥ 0 in Ωs.

Remark. Proposition 8 will be used for the proof of Theorems 5 and 6. Once
these theorems have been proved we may use them and prove Proposition

8 for u ∈
(
W 2,N
loc (Ωs) ∩ L∞ (Ωs)

)k
without assuming that ∂Ωs is smooth. In

doing so one needs to replace the boundary condition u ≥ 0 on ∂Ωs by

min (u, 0)
uo,Ω
= 0 on ∂Ωs.

4 The case B = I

In this section we shall study a special case of problem (1) namely B = I (the
identity matrix). Throughout this section we will suppose that the conditions
a., b. and c. of Theorem 5 are satisfied. Let

κ ≥ sup
µ,x

(
k∑
j=1

Hµj(x)− cµ(x)

)
(14)

and consider L −H + κI.
We have the following.

10



Lemma 9 Let e = (1, . . . , 1)T ∈ Rk, k ≥ 1 and let κ > 0 satisfy (14). If

uo is as in Definition 4 then there exists ue = (u1
e, ...u

k
e) ∈

(
W 2,N
loc (Ω)

)k
such

that 
(L −H + κI)ue = e in Ω,

ue
uo= 0 on ∂Ω,

ue À 0 in Ω.

Moreover, we have that uo
ue= 0 on ∂Ω.

Remark: A consequence of the above lemma is that the statements u
ue= 0

on ∂Ω and u
Proof: Let {Ωi}i∈N be a sequence of smooth domains that approximate Ω
from inside as in (2) and let ue,i = (u1

e,i, ...u
k
e,i) be the solution of{

(L −H + κI)ue,i = e in Ωi,
ue,i = 0 on ∂Ωi.

(15)

Since H is fully coupled on Ω, it follows that H is fully coupled on all Ωi for
all i large enough. This implies that we may apply [26, Theorem 1.1]. As
a consequence we have ue,i À 0 for all i large. Since Ω is bounded we may

suppose that Ω lies in the half space
{
x ∈ RN ;x1 > 0

}
. Let dµ be defined by

dµ = sup
x

(cµ −
k∑
i=1

Hµi + κ)

and consider σ ∈ R such that:

σ > sup
µ,x

bµ1 +
√

(bµ1)2 + 4aµ11(1 + dµ)

2aµ11

and v(x) := (eσd − eσx1)e, where d is the diameter of Ω.
We have

((L −H + κI) v)µ =

=
(
σ2aµ11 − bµ1σ

)
eσx1 +

(
cµ −

k∑
j=1

Hµj + κ

)(
eσd − eσx1

)
≥

≥
(
σ2aµ11 − bµ1σ − dµ − 1

)
eσx1 +

(
cµ −

k∑
j=1

Hµj + κ

)
eσd + 1,
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hence (L −H + κI) v À 1 and therefore

(L −H + κI)(ue,i − v)¿ 0.

By using the maximum principle of [26, Theorem 1.1] it follows that

0 < ue,i < v.

As a consequence, by using a standard argument, we find that ue. Indeed,
since {ue,i (x)}i∈N , x ∈ Ω, is a bounded and increasing sequence, it converges.

By choosing c∗ ∈ R such that

Mµu
µ
e = (−κ− cµ)uµe +

∑k

j=1
Hµiu

j
e + 1 ≤ c∗1

it follows that 0 ≤ uµe ≤ c∗uµo and hence ue
uo= 0 on ∂Ω.

By the result in [6, page 73] this implies uo
ue= 0 on ∂Ω.

Lemma 10 Let f ∈ (L∞(Ω))k .

Then there exists a unique u ∈
(
L∞(Ω) ∩W 2,N

loc (Ω)
)k

such that (L −H + κI)u = f in Ω,

u
uo= 0 on ∂Ω.

Furthermore there exists C ∈ R (independent of u and f) such that

‖u‖L∞ ≤ C‖f‖L∞ . (16)

Proof. Consider a sequence of open domains Ωi such that Ωi ⊂ Ωi ⊂ Ωi+1

and Ω = ∪∞i=1Ωi. Let ui, i = 1, 2, . . . , be the solution of{
(L −H + κI)ui = f in Ωi,
ui = 0 on ∂Ωi.

A comparison argument shows that

−z ≤ ui ≤ z. (17)

where z := ue‖f‖L∞ . Therefore, as in the previous proof, it follows that
ui → u, where u is a solution of{

(L −H + κI)u = f in Ω,

u
uo= 0 on ∂Ω.
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We complete the proof by noticing that the boundary condition u
uo= 0 on ∂Ω

and (16) are satisfied by virtue of (17). Uniqueness follows from (16).

Proposition 11 Let f ∈
(
LN(Ω)

)k
.

Then there exists a unique u ∈
(
W 2,N
loc (Ω) ∩ L∞(Ω)

)k
such that

 (L −H + κI)u = f in Ω,

u
uo= 0 on ∂Ω.

(18)

Furthermore there exists C (independent of u and f) such that

‖u‖L∞ ≤ C‖f‖LN (19)

and f > 0 implies uÀ 0.

The proof will proceed following the ideas of the proof of [26, Theorem
1.1].

Proof. First we observe that (L + κI) is a diagonal matrix of uniformly
elliptic operators. From our choice of κ it follows that the hypothesis of [6,
Theorem 1.2] are met. Therefore, the operator (L + κI)−1 subject to the
boundary condition in BNV-sense (Definition 4), is well defined in

Let A := (L+ κI)−1H be the solution operator of the problem{
(L+ κI)u = Hf in Ω,

u
uo= 0 on ∂Ω,

i.e. A(f) = u.
• A := (L+ κI)−1H is compact and irreducible in (LN(Ω))k.

Indeed, by [7, Proposition 1.1] it follows that (L + κI)−1 is a compact
operator. Therefore, since H is bounded, the compactness of A follows.

Let us prove that A is irreducible. First, for easy reference, we recall that
A on (LN(Ω))k is irreducible if for any measurable set K ⊂ ω, with µ (K) > 0
and µ (ω\K) > 0, the set{

f ∈ (LN(Ω))k; fi(x) = 0 for all x ∈ Ki, 1 ≤ i ≤ k
}

13



is not invariant with respect to A.
In our situation, since the maximum principle holds (see [6]), it follows

that every component of (L + κI)−1 is irreducible. Using the fact that H
is fully coupled (recall that we have assumed Hii ≥ 0) we find that A is
irreducible and positive (see [26, proof of Lemma 1.3]).

Now, by using a result of De Pagter (see Theorem 18) it follows that
r(A) > 0.

• The operator (I − A)−1 is well defined and (I − A)−1 =
∑∞
ν=0 A

ν .

By Theorem 17 (Krein-Rutman) it follows that r (A) (> 0) is an eigen-
value of A and its adjoint A∗. We shall denote by φ and ψ (respectively) the
corresponding positive eigenfunctions .

Next we consider the function ue given by Lemma 9. We recall that 0.
We have

(L+ κI)ue = Hue + eÀ Hue

and then
ue À (L+ κI)−1Hue.

As a consequence

〈ψ, ue〉 > 〈ψ,Aue〉 = 〈A∗ψ, ue〉 = r(A) 〈ψ, ue〉

and 〈ψ, ue〉 > 0. This proves that r(A) < 1 and the claim follows.

In order to complete the proof, let us observe that, as a consequence of
the preceding claims, we know that for any f ∈ (LN(Ω))k there exists u such
that

u = (I − A)−1(L+ κI)−1f.

This in turn is equivalent to

u− (L+ κI)−1Hu = (L+ κI)−1f

i.e. {
(L+ κI)u−Hu = f in Ω,

u
uo= 0 on ∂Ω.

(20)

It remains to prove (19). From Lemma 10 and r (A) < 1 it follows that

‖u‖∞ ≤
M

1− r(A)

∥∥∥(L+ κI)−1 f
∥∥∥
∞
.

14



On the other hand, by the generalized version of the Alexandrov-Bakelman-
Pucci Theorem (see [11, Theorem 9.1] and [6]) we obtain∥∥∥(L+ κI)−1 f

∥∥∥
∞
≤ C ‖f‖LN .

Finally, by noticing that H is fully coupled, if f > 0 it follows that

(I − A)−1(L+ κI)−1f ≥ Ak(L+ κI)−1f À 0.

This completes the proof.

Corollary 12 There exists a positive eigenvalue λ1 of the problem (L −H)φ = λ1φ in Ω,

φ
uo= 0 on ∂Ω,

with corresponding eigenfunction φ ∈
(
W 2,N
loc (Ω) ∩ L∞(Ω)

)k
satisfying φÀ 0.

Proof. Let Sκ := (L − H + κI)−1 in
(
LN(Ω)

)k
be the inverse subject to

the boundary condition in BNV-sense (Definition 4). As before it follows
that Sκ is positive and irreducible, while by standard Sobolev embedding
and inequality (19) it is compact. Therefore the elements of the spectrum of
Sκ are isolated eigenvalues and at most converging to 0. An application of
Theorem 16 (see below) gives the existence of a principal eigenvalue µ of Sκ
with its corresponding eigenfunction φ > 0.

Hence λ1 = 1
µ
−κ is the principal eigenvalue of (L−H) with corresponding

eigenfunction φ such that φÀ 0. Let us prove that λ1 > 0.
By assumption there exists a strong positive supersolution w of (L−H),

that is
(L −H + κI)w > κw > 0. (21)

By Proposition 11 the function defined by

w̃ = Sκ (L −H + κI)w

satisfies w̃ ∈
(
W 2,N
loc (Ω) ∩ L∞ (Ω)

)k
and w̃ À 0. Next we consider a sequence

{Ωi} of smooth domains contained in Ω and satisfying (2). Let Sκ,i :=
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(L −H + κI)−1 be the resolvent operator of problem (20) considered on Ωi.
By Proposition 8 it follows that

w ≥ Sκ,i (L −H + κI)w on Ωi.

Since Sκ,i (L −H + κI)w = Sκ,i (L −H + κI) w̃ → w̃ for ∞ we find

w̃ ≤ w on Ω

and hence

w̃ = Sκ (L −H + κI)w > κSκw ≥ κSκw̃ on Ω.

Let µ denote the principal eigenvalue of Sκ. Since µ is also the principal
eigenvalue of the adjoint operator S∗κ with corresponding eigenfunction ψ it
follows that

0 < κ 〈ψ, Sκw̃〉 < 〈ψ, w̃〉 =

=
1

µ
〈S∗κψ, w̃〉 =

1

µ
〈ψ, Sκw̃〉 ,

where 〈·, ·〉 denotes pairing of
(
LN (Ω)

)k
with its dual. As a consequence we

find λ1 = 1
µ
− κ > 0.

Corollary 13 Let λ < λ1 and f ∈ (LN(Ω))k.

Then there exists a unique u ∈
(
W 2,N
loc (Ω) ∩ L∞(Ω)

)k
such that{

(L −H)u = λu+ f in Ω,

u
uo= 0 on ∂Ω.

Moreover if f > 0, then uÀ 0.

Proof. For λ = −κ the result follows from Proposition 11. The only
restriction for κ is (14) and hence the result holds for all λ ≤ κ. For λ ∈
(−κ, λ1) we can proceed as in the proof of Proposition 11. Indeed observe
that ν ((L −H + κ)−1 (κ+ λ)) = (λ1 + κ)−1 (κ+ λ) < 1 and (L −H + κ)−1

is strictly positive, hence the following function

u =
∞∑
k=0

(
(L −H + κ)−1 (κ+ λ)

)k
(L −H + κ)−1f

is well defined and it is the desired solution for our problem.
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5 Hess’ lemma, cooperative B

In this section we shall study the existence of a positive eigenvalue λB with
positive eigenfunction Φ of the problem (L −H)Φ = λB BΦ in Ω,

Φ
uo= 0 on ∂Ω.

(22)

Our result is the following.

Proposition 14 Let the assumptions a.-e. of Theorem 5 be satisfied. Then

there exists λB > 0 and Φ ∈
(
W 2,N
loc (Ω) ∩ L∞(Ω)

)k
with Φ À 0 such that

(22) holds.

The proof is organized by partially following the ideas contained in [15]
and [14].

Proof. First we observe that without loss of generality we may assume that

Bii > −1 for all i ∈ {1, . . . , k} . Consider now Kα :
(
LN (Ω)

)k → (
LN (Ω)

)k
defined by

Kα = (L −H + αI)−1 (B + I) ,

where α ≥ 0 and (L −H + αI)−1 is subjected to the Dirichlet condition as
in Definition 4. From Corollary 13 it follows that for any α ≥ 0 the operator
compact, positiveandirreducible.

A useful property shared by Kα is contained in the following lemma.

Lemma 15 There exists α > 0 and w ∈
(
W 2,N
loc (Ω) ∩ L∞(Ω)

)k
with w À 0

such that αKαw ≥ w.

Proof: Let i ∈ {1, . . . , k} , σ > 0 and let us choose δ > 0 and x0 ∈ Ω such
that B, x0 ⊂ Ω and Bii (x) ≥ σ for Bδ,x0 . Here, as usual, we have denoted by

Bδ,x0 the set
{
x ∈ RN ; |x− x0| < δ

}
.

Consider the eigenvalue problem (Li −Hii) v = λv in Bδ,x0 ,

v = 0 on ∂Bδ,x0 .
(23)
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A direct computation shows that
(
(L −H)−1 e

)
i

is a positive strict superso-

lution of (23the operator Ti =
(
(Li −Hii)|B,x0

)−1
, subject to zero Dirichlet

boundary condition on Bδ,x0 , is positive, compact and irreducible (by the
strong maximum principle). As a consequence there exists a first positive
eigenvalue λ̃ with eigenfunction φ̃ of Ti. Let us extend φ̃ equal to 0 outside
of Bδ,x0 . Consider

Φ̃ =(0, . . . , φ̃, . . . , 0)T

ith-entry

and set w = αKαΦ̃ with α = λ̃
We claim that Φ̃ ≤ αKαΦ̃. Indeed, since Φ̃ > 0 we find that w À 0.

Hence (B + I) Φ̃σ + 1Φ̃ and

(L −H + αI)
(
w − Φ̃

)
= α (B + I) Φ̃−

(
λ̃+ α

)
Φ̃ > 0 on Bδ,x0 . (24)

Observe that although the strong maximum might fail for the system on
Bδ,x0 (the system is not necessarily fully coupled on a subdomain of Ω) the
component-wise strong maximum principle still holds (see Proposition 8).
Hence (24) and w − Φ̃ À 0 on ∂Bδ,x0 imply that w − Φ̃ À 0 on Bδ,x0 .
Moreover from w À 0 = Φ̃ on Ω\Bδ,x0 it follows that αKαΦ̃ À Φ̃ on Ω. In
addition, using the fact that αKα is a strongly positive operator we find that

αKαw = (αKα)2 Φ̃À αKαΦ̃ = w À Φ̃ > 0.

This completes the proof.

Proof of Proposition 14: Since Kα is compact, positive and irreducible
it follows from Theorem 16 that there exist a first eigenvalue 1

α1
> 0 of Kα

with corresponding eigenfunction Φ1, that is

Φ1 = α1KαΦ1.

Then, by Lemma 15, we find that there exists w > 0 satisfying αKαw ≥ w.
Hence

1

α1

= r (Kα) ≥ 1

α
,

where r (Kα) is the spectral radius of Kα.
Varying α we construct a sequence (αn,Φn)n≥1 with α0 = α such that for

n ≥ 1 {
0 < αn ≤ αn−1;

Φn = αnKαn−1Φn > 0 and ||Φn|| = 1.
.

18



From the sequence (αn,Φn)n≥1 we can extract a subsequence, still denoted
by (αn,Φn), such that Φn → Φ and αn → λ > 0 with

Φ = λKλΦ.

It follows that
Φ

uo= 0 on ∂Ω

and
(L −H + λI) Φ = λ (I +B) Φ ⇒ (L −H) Φ = λBΦ

Hence λ = λB and the proof is complete.

Remark. Using the existence of a positive supersolution in one step, we just
get a value λ such that Φ = λKαΦ with λ ≤ α and not necessarily equal.

Proof of Theorem 5 and 6. We have directly that λB = λ0. Using the
function Φ of Proposition 14 we find that for all λ ∈ [0, λB) the conditions
of Theorem 5 are satisfied for (L −H) replaced by (L −H − λB) . As a con-
sequence the results of section 3 where B = I apply thereby completing the
proof.

6 The results of Krein-Rutman and De Pagter

A real vector space with a partial ordering, say (E,≥) , is called a vector
lattice if f, g ∈ E implies that f ∨ g ∈ E, where leastupperboundof{f, g} .
With a norm supplied (E,≥, ‖·‖) is called a Banach lattice if (E, ‖·‖) is a
Banach space and if (E,≥) is a vector lattice such that |f | ≤ |g| implies
‖f‖ ≤ ‖g‖ . Here |f | = f ∨ (−f) . The set A ⊆ E is called a lattice ideal if
|f | ≤ |g| and g ∈ A imply f ∈ A. An positive operator S ∈ L (E) is called
irreducible if {0} and E are the only closed lattice ideals that are invariant
under S.

Theorem 16 Let E be a Banach lattice with dim (E) > 1 and let T ∈ L (E)
be a positive irreducible and compact operator. Then the spectral radius r of
T satisfies r > 0 and there is 0 < φ ∈ E such that Tφ = rφ. Moreover, r
is the unique eigenvalue with a positive eigenfunction and the eigenvalue is
algebraically simple.
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This theorem is the combination of the famous Krein-Rutman [17] the-
orem and an important result of De Pagter [21] that replaces the positivity
of the spectral radius of T by irreducibility. This last condition is in gen-
eral much easier to check. In E = Lp (ω) (with the Lebesgue measure and
1 ≤ p <∞), where ω is an open set in Rn, the closed ideal are of the form
{f ∈ Lp (ω) ; f = 0 a.e. on K} (see [25, page 158]). This implies that for a
positive operator S on E, irreducibility is equivalent to Mχω\K

◦S ◦MχK
6= 0

for every measurable set K ⊂ ω with µ (K) , µ (ω\K) > 0. Here the opera-
tor MχK

is the multiplication with the characteristic function χK of K. For
(compact) kernel operators the theorem above is known as the Theorem of
Jentzsch.

In this paper we have used E = (Lp(Ω))k for p ∈ (1,∞) . Note that E
can be identified with Lp(ω) where ω is as in (6).

Theorem 17 (Krein-Rutman) Let T ∈ L (E) be a compact and positive
operator with a strictly positive spectral radius r. Then there is ϕ ∈ E with
ϕ > 0 and Tϕ = rϕ.

Theorem 18 (De Pagter) Let E be a Banach lattice with dim (E) > 1 and
let T ∈ L (E) be a compact, positive and irreducible operator. Then it has a
positive spectral radius r.

The uniqueness in Theorem 16 remains to be shown. Since T is positive
and compact, the adjoint T ′ ∈ L (E ′) is positive and compact; it also has the
same spectral radius positiveeigenfunctionφ ∈ E ′ with T ′φ = rφ. By Theo-
rem V.5.2. of Schaefer [25] it follows that ϕ is the only positive eigenfunction
of T and moreover, the eigenvalue r for T is algebraically simple.
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