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1 Introduction

Classical solvability of “positive” semilinear elliptic Dirichlet problems of higher order

Lu(x) + g(x, u) = f(x) in Ω,

Dαu|∂Ω = 0 for |α| ≤ m− 1
(1)

is not yet very well understood. Here L is a uniformly elliptic operator of order 2m, Ω ⊂
IRn (n ≥ 2) a sufficiently smooth bounded domain. The linear operator L is assumed to be
positive definite, that is, for all u ∈ C2m(Ω) with Dαu|∂Ω = 0 (|α| ≤ m − 1) the following
holds:∫

Ω
Lu(x) · u(x) dx ≥ c0||u||2Wm,2(Ω),

where c0 is a positive constant. The nonlinear term is subject to a sign condition

g(x, t) · t ≥ 0 for all t ∈ IR, x ∈ Ω.(2)

We want to explain the crucial difference between the second order (m = 1) and higher
order (m > 1) case.
If m = 1 a very satisfactory result is known. Indeed, the sign condition (2) alone is

sufficient to ensure classical solvability of the Dirichlet problem (1). There are two very
strong devices in the theory of second order elliptic equations, which make the proof of the
needed a-priori maximum estimate an easy exercise:

• A very general comparison principle: Lu ≥ 0 in Ω, u ≥ 0 on ∂Ω implies either u > 0
in Ω or u ≡ 0 in Ω.

• The restriction of u on level sets defines a new Dirichlet problem, e.g. on Ω+ := {x ∈
Ω : u(x) > 0}.

On Ω+ the term f(x) − g(x, u(x)) is bounded from above by supΩ f+, and the general
comparison principle yields a bound for u+. The negative part u− is estimated in the same
way.
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Now let us turn to higher order equations. The nonlinear operator u �→ Lu + g(., u) is
still coercive with respect to the Wm,2-norm, but things get substantially worse with respect
to pointwise properties. If m > 1 the level set trick fails completely because we have to
observe at least two boundary conditions simultaneously. Further we loose the comparison
principle in its general form, too.
Up to now all existence results for classical solutions to (1) need some extra condition

on g, usually some growth condition. So the known existence results are in the higher order
case m > 1 considerably weaker than in the second order case. On the other hand we do
not know examples showing that the existence results are already optimal.
The aim of this paper is to find out to what extent the authors’ comparison result for

equations of arbitrary order [GS] allow for more general or at least different conditions on
g than the usual ones. Our main tool will be a rather general local maximum principle for
differential inequalities of arbitrary order.
The plan of the present paper is as follows. In section 2 we briefly discuss the state of the

art and our main result. In section 3 we give a precise formulation of our existence theorem.
In section 4 the local maximum principle is presented. This is used in section 5 to prove the
existence theorem.

2 Comparison with existing results

Usually, if n > 2m, the Dirichlet problem (1) is considered under controllable growth condi-
tions

|g(x, t)| ≤ C(1 + |t|τ), τ =
n+ 2m

n − 2m.(3)

If n = 2m only polynomial growth is assumed, if n < 2m the nonlinearity g may grow
arbitrarily. Under some additional monotonicity assumption on g, classical solutions u ∈
C2m,µ(Ω) to the Dirichlet problem (1) exist, see e.g. [L], [W1], [W2]. For n → ∞ only little
more than linear growth is admissible. We presume that the restrictive growth condition (3)
is caused by a very restricted knowledge of comparison principles for higher order equations.
Luckhaus [L] also shows, that the growth condition (3) implies regularity for every weak

solution u ∈ Wm,2
0 (Ω) to (1).

Several authors, see e.g. [K], [G1], [G2], [SM], [SP], [T], are interested in whether there
are different or more general conditions on g than (3) that imply the existence of classical
solutions. Tomi [T] e.g. treats fourth order equations (m = 2) with a nonlinear term g(u).
The function g is supposed to be monotone and L to be the square of a second order operator.
The existence of a solution u is shown, which is classical in the interior and takes on the
boundary values in a weak sense: u ∈ C4,µ(Ω) ∩ W 2,2

0 (Ω). The papers [K] and [SP] also
contain results in this direction.
The first author [G1], [G2] used the positivity of the Green function for (−∆)m under

Dirichlet boundary conditions in balls, i.e. of a very weak comparison principle. Beside the
sign condition (2) on u �→ g(u) an asymmetrical condition is imposed:

−C(1 + |t|σ) ≤ g(t) ≤ C(1 + |t|τ),(4)

where n+2m
n−2m

≤ τ ≤ ∞, 0 ≤ σ < 4m
n−2m

+ 1
τ
· n+2m
n−2m

and vice versa. The condition “τ =∞” means
arbitrarily strong growth of g+. Unfortunately the linear principal part has to be very special,
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namely L = (−∆)m. Then again there exists a solution in the class C2m,µ(Ω) ∩ Wm,2
0 (Ω).

Although the family of growth conditions (4) is rather flexible, e.g. g(u) = expu − 1 is
admissible (τ =∞), it seems to be as strong as condition (3), if we put τ = n+2m

n−2m
.

For further references and comments see also [G1], [G2].
In our previous paper [GS] a rather general comparison result in balls has been found.

This enables us to treat nonlinearities u �→ g(u), u · g(u) ≥ 0, whose positive part may grow
arbitrarily and whose negative part may grow linearly. Moreover, L is allowed to be rather
general, only the leading term has to be a power of a second order elliptic operator with
constant coefficients. The solution class is the same as above, i.e. C2m,µ(Ω) ∩Wm,2

0 (Ω).
Having our comment on condition (4) in mind, we think that for large dimensions n the

restriction on the dependence of g on u is considerably weaker than the controllable growth
condition (3).

3 The existence result

For the purpose of convenient reference we first introduce our main assumptions. Most of
the notation is adopted from [GT].
Let n,m ∈ IN , n ≥ 2, µ ∈ (0, 1). We assume n ≥ 2m, because in the case of small

dimensions, our results would be contained in [W1].

Assumptions A :

I. Ω ⊂ IRn is a bounded domain of class C2m,µ.

II. The elliptic operator L is of the form

Lu(x) =


−

n∑
i,j=1

aij
∂2

∂xi∂xj




m

u(x) +
∑

|α|≤2m−1

bα(x)D
αu(x)

with λ|ξ|2 ≤ ∑n
i,j=1 aijξiξj ≤ Λ|ξ|2, for some 0 < λ < Λ, and bα ∈ C |α|,µ(Ω).

III. The operator L is coercive:
∫
Ω
Lu(x) · u(x) dx ≥ c0||u||2Wm,2(Ω).(5)

for all u ∈ C2m(Ω), Dαu|∂Ω = 0 (|α| ≤ m− 1).

IV. The nonlinearity g ∈ Cµ(Ω× IR) satisfies the sign condition:

g(x, t) · t ≥ 0, for all t ∈ IR, x ∈ Ω,(6)

and a one-sided growth condition:

g(x, t) ≥ −C0(1 + |t|σ), t < 0, x ∈ Ω;(7)

where

σ



= 1, if n ≥ 6m,
< 4m

n−2m
, if 6m > n > 2m,

< ∞, if n = 2m.
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Remarks. 1) Instead of (7) we may assume that g+ grows linearly and g− arbitrarily.
2) The formally adjoint operator L∗ also satisfies A.II and A.III.

Theorem 1 (Existence of classical solutions) Let the assumptions A.I-IV be satisfied.
Then for any f ∈ C0,µ(Ω) the Dirichlet problem

Lu(x) + g(x, u) = f(x) in Ω,

Dαu|∂Ω = 0 for |α| ≤ m− 1
(8)

has a solution u ∈ C2m,µ(Ω) ∩Wm,2
0 (Ω).

Remark. If Ω is a ball, aij = δij and if the coefficients bα are “small”, then u is globally
smooth, i.e. in C2m,µ(Ω).

The crucial tool for the proof of Theorem 1 is a local maximum principle for linear differential
inequalities, see Theorem 2 in Section 3 below.
With help of this local maximum principle we derive in Section 4 local a-priori maximum

estimates for smooth solutions of Dirichlet problems like (8). These local a-priori estimates
and an approximation procedure are used to show the existence of locally smooth solutions.

4 A local maximum principle

In what followsBρ(x0) denotes the open ball in IR
n with radius ρ, centered at x0. B := B1(0).

In our previous paper [GS] Green’s functions for higher order operators have been esti-
mated. We extensively exploited the fact, that Green’s function for (−∆)m with Dirichlet
boundary conditions is known explicitly in balls [B]. The main result is summarized in the
following lemma, which is essential for the proof of our local maximum principle for solutions
of higher order differential inequalities.

Lemma 1 Let Lu(x) := (−∆)mu(x) +∑
|α|≤2m−1 bα(x)Dαu(x), and assume the coefficients

to be smooth: bα ∈ C |α|,µ(B).
There is a number M0 =M0(n,m) > 0 and a constant C = C(M0) such that the following

holds.
If one has

∑
|β|≤|α|

||Dβbα||C0(B) ≤ M0 for all |α| ≤ 2m− 1, then the Green function GL for

the Dirichlet problem

Lu(x) = f(x) for x ∈ B,

Dαu|∂B = 0 for |α| ≤ m− 1

exists and is positive. We have:

0 ≤ GL(x, y) ≤ C ·G(−∆)m(x, y) for x, y ∈ B,(9)

| ∂
|α|

∂yα
GL(0, y)| ≤ C for y ∈ ∂B, |α| ≤ 2m− 1.(10)
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Proof. We put M := sup0≤|α|≤2m−1

∑
|β|≤|α| ||Dβbα||C0(B).

We denote the corresponding Green operators by GL and G(−∆)m,

(GLf)(x) :=
∫

B
GL(x, y)f(y) dy, (G(−∆)mf)(x) :=

∫
B
G(−∆)m(x, y)f(y) dy.

We take from [GS] that GL : C0,µ(B)→ C2m,µ(B) exists for M sufficiently small. Moreover,
positivity of GL, the estimate (9) and the following representation formula were shown:

GL =
∞∑

ν=0

(−1)ν(
∑

|β|≤2m−1

G(−∆)mbβ(.)D
β)νG(−∆)m .(11)

In order to show (10) we have to consider the formally adjoint operator

L∗v = (−∆)mv +
∑

|β|≤2m−1

(−1)|β|Dβ(bβ(.)v) =: (−∆)mv +
∑

|β|≤2m−1

b∗β(x)v.

Due to our strong smoothness assumptions on bβ , L∗ has smooth coefficients too, bounded
by a small factor C ·M . If M is small enough, we have in analogy with (11):

GL∗ =
∞∑

ν=0

(−1)ν(
∑

|β|≤2m−1

G(−∆)mb∗β(.)D
β)νG(−∆)m ,

GL∗(x, y) is well defined and positive. In order to find an estimate for ∂|α|

∂xαGL∗(x, y), |α| ≤
2m− 1, we have to control terms like

(C1M)
ν

∫
B
· · ·

∫
B
|x− z1|2m−|α|−n · |z1 − z2|2m−|β1|−n · . . . · |zν − y|2m−|βν|−n dz1 . . . dzν

≤ (C2M)
ν

∫
B
· · ·

∫
B
|x− z1|1−n · |z1 − z2|1−n · . . . · |zν − y|1−n dz1 . . . dzν;

(12)

the constants C1, C2 and C3 below only depend on n and m; they do not depend on ν. Using∫
B |ξ − z|1−n · |z − η|1−n dz ≤ C|ξ − η|1−n, we may estimate (12) by

(C3M)
ν|x− y|1−n.

For |x| = 1, |α| ≤ 2m− 1 and M ≤ M0, M0 small enough we find

| ∂
|α|

∂xα
GL∗(x, 0)| ≤ C(M0).

Observing GL(x, y) = GL∗(y, x), (10) follows.

Theorem 2 (Local maximum principle) Let Ω ⊂ IRn be an open bounded set, K ⊂ Ω
a compact subset, let L satisfy assumption A.II on Ω. In particular, there is a number M̃ ,
such that for any |α| ≤ 2m− 1 one has

∑
|β|≤|α| ||Dβbα||C0(Ω) ≤ M̃ . Let q > n

2m
, q ≥ 1.

Then there exists a constant C = C(n,m, λ,Λ, q, M̃, dist(K, ∂Ω)), such that for every
subsolution u ∈ C2m(Ω), f ∈ C0(Ω) of

Lu ≤ f,

it follows that

sup
K

u ≤ C{||f+||Lq(Ω) + ||u||Wm−1,1(Ω)}.(13)
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Proof. In order to apply Lemma 1, we need the coefficients to be small. This can be obtained
by using a suitable scaling.
After a linear coordinate transformation we may assume aij = δij; i.e. the principal part

of L is (−∆)m.
Let x0 ∈ K, without loss of generality we may write x0 = 0. We put

ρ0 := min{1,
1

2
dist(K, ∂Ω),

M0

M̃
} > 0.(14)

Here M0 is the small positive number of Lemma 1.
For ρ ∈ (0, ρ0] we define the following functions B → IR:

uρ(x) = u(ρx),

fρ(x) = ρ2mf(ρx),

bα,ρ(x) = ρ2m−|α|bα(ρx).

On B we get the differential inequality

(−∆)muρ(x) +
∑

|α|≤2m−1

bα,ρ(x)D
αuρ(x) ≤ fρ(x).(15)

Furthermore we have for x ∈ B, |α| ≤ 2m− 1 that by (14)
∑

|β|≤|α|
|Dβbα,ρ(x)| ≤

∑
|β|≤|α|

ρ2m−|α|+|β||(Dβbα)(ρx)| ≤ ρ
∑

|β|≤|α|
||Dβbα||C0(Ω) ≤ ρ0M̃ ≤ M0.

Hence we may apply Lemma 1. Let Gρ denote Green’s function for the operator Lρ in
(15). We remark that the estimates (9), (10) hold uniformly in ρ ∈ (0, ρ0]. We use the
representation formula for solutions of Lρv = h; beside Dαu, |α| ≤ m − 1 the boundary
integrals contain factors like ∂|α|

∂yαG(0, y), m ≤ |α| ≤ 2m − 1, and some of the coefficients bα

and some of their derivatives of order ≤ m. With estimates (9) and (10) of Lemma 1, we
find that there are constants Ci(M̃, ρ0) such that:

u(0) = uρ(0) ≤
∫
|y|≤1

Gρ(0, y)f
+
ρ (y) dy + C1(M̃, ρ0)

∑
|α|≤m−1

∫
|y|=1

|Dαuρ(y)| dω(y)

≤ C2(M̃ , ρ0){||f+
ρ ||Lq(B1) +

∑
|α|≤m−1

ρ|α|
∫
|y|=1

|(Dαu)(ρy)| dω(y)}

≤ C3(M̃ , ρ0){ρ2m−(n/q)||f+||Lq(Bρ) +
∑

|α|≤m−1

ρ|α|−n+1
∫
|y|=ρ

|Dαu(y)| dω(y)}.

There is a constant C = C(M̃, q, ρ0, n,m), such that for ρ ∈ [ 1
2
ρ0, ρ0], one has:

u(0) ≤ C{||f+||Lq(Ω) +
∑

|α|≤m−1

∫
|y|=ρ

|Dαu(y)| dω(y)}.

We remark, that C behaves like ρ1−n
0 as ρ0 ↘ 0.

The estimate (13) follows by integration with respect to ρ ∈ [ 1
2
ρ0, ρ0].

6



5 Proof of the existence theorem

We first prove a local a-priori-maximum-estimate for solutions of Dirichlet problems like (8).
This estimate is an immediate consequence of the local maximum principle, Theorem 2.

Lemma 2 Let the assumptions A.I-IV be fulfilled. Let K ⊂ Ω be a compact subset. More-
over we assume that there exists a smooth function G : IR → IR, G ≥ 0, G′ ≥ 0 such that
we have

g(x, t) ≤ G(t), x ∈ Ω, t ∈ IR.

Let M̃ be a number, such that for any |α| ≤ 2m− 1 one has
∑

|β|≤|α|
||Dβbα||C0(Ω) ≤ M̃.

Let u ∈ C2m,µ(Ω), f ∈ C0,µ(Ω) solve

Lu(x) + g(x, u) = f(x) for x ∈ Ω,
Dαu|∂Ω = 0 for |α| ≤ m− 1.

(16)

Then there exists a constant

C = C(n,m, λ,Λ, M̃, c0, C0, σ, G, ||f ||C0(Ω),Ω, dist(K, ∂Ω))

such that

sup
K

|u| ≤ C.

Proof. We introduce another compact subset K̂ ⊂ Ω such that K ⊂ K̂ ⊂ Ω, dist(K, ∂K̂) ≥
1
3
dist(K, ∂Ω), dist(K̂, ∂Ω) ≥ 1

3
dist(K, ∂Ω).

First of all testing (16) with u and making use of assumption (6) and of Poincaré’s
inequality we obtain:

||u||Wm,2(Ω) ≤ C(c0,Ω)||f ||L2(Ω).

Now (16) implies a differential inequality on Ω:

Lu(x) ≤ ||f ||C0(Ω) − g(x, u(x))

≤ ||f ||C0(Ω) + 1{y : u(y)≤0}(x) · C0(1 + |u|σ).
(17)

We want to apply the local maximumprinciple. Due to the imbeddingWm,2(Ω) ↪→ L2n/(n−2m),
in the case n < 6m the right hand side may be interpreted as an exterior force:

||1 + |u(.)|σ||Lq ≤ C(1 + ||u||σLσq) ≤ C(1 + ||u||σWm,2) ≤ C(1 + ||f ||σL2),

where q = 1
σ
· 2n

n−2m
> n

2m
, if 6m > n > 2m, and q > 1, if n = 2m. Theorem 2 yields:

sup
K̂

u ≤ C1(n,m, λ,Λ, M̃, c0, C0, σ, ||f ||C0(Ω),Ω, dist(K, ∂Ω)).(18)
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Let now n ≥ 6m, σ = 1. We introduce a C∞-function h : IR → IR, 0 ≤ h ≤ 1,

h(t) =



1, if t ≤ −1,
0, if t ≥ 0.

Then writing b̃0(x) = C0 · h(u(x)) it follows from (17) that:
Lu(x) + b̃0(x)u(x) ≤ ||f ||C0(Ω) + 2C0.

Replacing L by L+ b̃, M̃ by M̃ +C0, application of Theorem 2 gives the estimate (18) from
above also in the case n ≥ 6m.
In order to estimate u from below we consider a differential inequality on K̂:

Lu(x) ≥ −||f ||C0(Ω) − g(x, u(x)) ≥ −||f ||C0(Ω) −G(u(x))

≥ −||f ||C0(Ω) −G(C1),

C1 is taken from (18). Applying Theorem 2 to (−u),K, K̂, the proof of Lemma 2 is complete.

Proof of Theorem 1. We apply a well known approximation procedure, see e.g. [T].
In a first step modified Dirichlet problems are solved. Let h : IR → IR be a C∞-function,

0 ≤ h ≤ 1,

h(t) =



1, if t ≤ −1,
0, if t ≥ 0.

For k ∈ IN we consider

gk(x, u) = g(x, u) · h(u− k)

and the corresponding Dirichlet problem

Lu(x) + gk(x, u) = f(x) in Ω,

Dαu|∂Ω = 0 for |α| ≤ 1.
(19)

Due to the boundedness of g+
k and the weak growth of g

−
k it follows (see [T], [W1]) that (19)

has a classical solution uk ∈ C2m,µ(Ω).
In a second step we discuss the convergence properties the sequence (uk). As gk satisfies

the sign condition (6), (uk) is uniformly bounded in Wm,2
0 (Ω). Obviously there exists a

majorizing function G as described in Lemma 2:

−C0(1 + |t|σ) ≤ gk(x, t) ≤ G(t).

So for every compact subset K̂ ⊂ Ω, the sequence (uk) is bounded in C0(K̂). Passing to a
smaller compact subset K, applying interior Schauder estimates [DN] and interpolation of
weighted Hölder seminorms (see e.g. [GT]), we find that (uk) is bounded in C2m,µ(K) for
any compact subset K ⊂ Ω.
Exhausting Ω by compact subsets, applying the Arzela-Ascoli theorem and a diagonal

procedure we find a subsequence, which converges locally in C2m and weakly in Wm,2
0 (Ω) to

a solution u ∈ C2m,µ(Ω) ∩Wm,2
0 (Ω) of Lu(x) + g(x, u(x)) = f(x).
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