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0. Introduction. Consider the semilinear problem 

{ -~u = f (x, u) 

u=O 

inn, 

on an, 
(0.1) 

where n is a bounded domain in IRn and f : n x IR ........ R. It is well known, see e.g. [16], that 
for f E C 1(0 x IR) and hence solutions in C 2+19 (0), there is a solution in between a sub
and a supersolution. (The supersolution has to lie above the subsolution) There the super
and subsolutions are assumed to be in C 2 (0). Similar results for sub- and supersolutions in 
W 2·P(O) are shown in [5, 6]. 

A first place where a weaker supersolution is used is [13]. Deuel and Hess established 
existence of a solution between weaker sub- and supersolutions in [10]. 

Amann showed in [3, 4] for the classical case (u E C 2 (0) n C 19 (0)) in fact the existence 
of a minimal and a maximal solution between a sub- and a supersolution in c 2+19 (0). 

The classical proofs can be extended to functions f which are Lipschitz. In this note we 
will show that the result is still true even if f is not Lipschitz. In section 1 we will use super 
(sub) solutions in C(O). In section 2 we will use super (sub) solutions in W 1

•
2 (0) and allow 

general bounded domains. Neither definition of super (sub) solution is included in the other 
even for regular domains, though a C0 (0)-solution is necessarily a W~'2 (0)-solution. Thus 
neither of our two main results is included in the other. 

1. A maximal solution in C(O). In this section we consider (0.1) for functions f in 
C(O x R). Moreover we assume that every boundary point is regular with respect to the 
Laplacian. A boundary point is regular if there exists a barrier-function at that point. For 
a definition see [12, p. 25]. In this section we are interested in solutions u in C(O). 
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Definition 1.1. The function u is called a C-solution of (0.1) if: 

1) u E C(O), 

2) f0 (u. - 6.cp - f(x, u)cp) dx = 0 for all cp E C0 (n), 

3) u = 0 on an. 

In this section the following definition of weak super (sub) solution will be used. 

Definition 1.2. The function u is called a super (sub) solution if: 

1) u E C(O), 

2) f0 (u. - 6.cp - f(x, u)cp) dx 2 ($) 0 for all cp E v+(n) = {cp E C0 (n); cp 2 O}, 

3) u 2 ($) 0 on an. 

This definition is previously used in [7]. 

Theorem 1.3. Assume 
f : fi x IR --. IR is continuous, ( 1.1) 

n is a bounded domain of !Rn and every boundary point is regular. ( 1. 2) 

Let v1 respectively v2 be a sub- respectively a supersolution of (0.1), satisfying v1 :::; v2 in 
n. Then there exists a minimal C-solution U1 and a maximal C-solution U2 such that, for 
every C-solution u with v1 Su S v2 we have 

(1.3) 

In the proof we will approximate a subsolution by smooth functions. We cannot hope that 
these approximations themselves are subsolutions. However, a less strong result is sufficient. 

Let J be the mollifier defined in [12, p. 147]. 

and set 

{ 

exp((lxl - 1)- 1 ) 
J(x) = 

0 

for lxl < 1, 

for lxl 2 1, 

( 1 y )-1 x J,(x)= J(-)dy J(-). 
liln f f 

For v E C(O) define J, * v E C0 (1Rn) by 

(J, * v)(x) =in J,(x - y)v(y) dy. 

Moreover, for sake of convenience, define for 8 > 0 

n(/5) = {x En; d(x, an)> 8}. 

( 1.4) 

( 1.5) 

( 1.6) 

(1.7) 

Lemma 1.4. Let v be a subsolution of (0.1) and let 8 > 0. Then for all f < 8 we have 

-6.(J, * v) - (J, * f(., v)):::; 0 in n(/5). ( 1.8) 

Moreover limdo J, * f(-, v) = f(-, v) uniformly in n(/5). 

Proof: Since f (., v) E C (0) the second statement follows immediately. 
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To prove (1.8) let r.p E v+(0(8)). Hence J, * r.p E v+(n) if E < 8. Since vis a subsoluticm 
we find 

0?: L (v. - D.(J, * r.p) - f(-, v)(J, * r.p)) dx 

= L (v(J, * -D.r.p) - f(-, v)(J, * r.p)) dx 

= r ((J, * v). - D.r.p - (J, * J(-, v))r.p) dx 
}Rn 

= r (-D.(J, * v) - (J, * !(·, v)))r.pdx. 
lri(/5) 

(1.9) 

Since -D.(J, * v) - (J, * f(·,v)) is continuous and since (1.9) is valid for all r.p E v+(n(b)) 
we find (1.8). 

Proof of Theorem 1.3: The existence of a solution is shown in [8] using similar arguments 
as in [2]. For the sake of completeness we repeat the proof. 

Step 1: Existence of a solution. First we will modify f. Define 

{

f(x,v1(x)) 

f*(x,u) = J(x,u) 

f(x, v2(x)) 

if u < v1(x), 

if v1(x) :Su :S v2(x), 

if v2(x) < u, and x E IT. 

(1.10) 

Since f E C(IT x IR) and v1 , v2 E C(IT) we find that f* E C(IT x IR) and even that f* is 
bounded. By Schauder's Theorem we will show the existence of a C-solution of (CU) with 
f replaced by f*. Let K : C(IT) --> C(IT) denote the solution operator of 

{
-D.u = ¢ 

u=O 

inn, 

on 80, 
(1.11) 

that is u = Krp. K is a compact linear operator in C(IT), where C(IT) is equipped with the 
maximum norm. Let F : C(IT) --> C(IT) denote the Nemytskii operator for f*, that is 

F(u)(x) = f*(x, u(x)) for u E C(IT), x E IT. (1.12) 

Then F is continuous and bounded: there is M > 0 such that 

llF(u)lloo :SM for all u E C(IT). (1.13) 

By the Schauder Fixed Point Theorem there is u E C(IT) with 

u = KF(u). (1.14) 

This function u is a C-solution of (0.1) with f replaced by f*. 
Finally we will show that v1 :Su :S v2 in IT. This implies u is a C-solution of (0.1) for the 

original f. Suppose u is a solution of (0.1) with f* and set n+ = {x En; v2 (x) < u(x)}. 
We will show that n+ is empty. Suppose not. Since u and V2 are continuous, n+ is open. 
Moreover we have: 

{ (u-v2)(-D.r.p)dx:S { (f*(x,u(x))-f(x,v2(x)))r.pdx=O. (1.15) 
lri+ lri+ 
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for every 'P E v+ (n+ ). Then u - V2 in C(n+) is subharmonic and nonnegative inn+. Since 
subharmonic function on n+ achieve its maximum on the boundary an+ (see [12]), U = V2 

in n+' a contradiction. Similarly, one proves V1 :=::; u inn. 

Step 2: The Zorn Lemma. Let P denote the collection of all C-solutions u of (0.1) with 
V1 :=::; u :=::; V2 in n. Let { u,} iEl be a totally ordered subset of p. 

First we will show that {u;};EJ is an equicontinuous family. Since F(u;) E V(n) (for 
all p E (1, oo)) we find that u; E W1~'[(n) (see [12, Th. 9.9]). By the Sobolev Imbedding 
Theorem (see [1, Th. 5.4]) we find that u; E C 1 (n). Since both u; and F(u;) are bounded 
uniformly with respect to i, it is even true that { u; };EI is equicontinuous on every compact 
subset of n. 

To show the equicontinuity near the boundary an, we use a weak version of the maximum 
principle. Set 

M = max {If ( x' u) I; min V1 < u < max V2' x E n} 

and let u* E C0 (0) n C 2 (n) be the function which satisfies 

{
-~u* = M 

u* = 0 

inn, 

on an. 

(1.16) 

(1.17) 

Since an is regular, u* exists, see [12, Th. 2.14]. Moreover, u* - U; and u* + u; are super
harmonic in n and zero at the boundary. Hence similarly to step 1, we have for all i E I 
that: 

-u* :=::; U; :=::; u* in 0, (1.18) 

and hence { u;};EI is equicontinuous on 0. 
We will show that u(x) = supiEJ u;(x) is a C-solution. From the equicontinuity of the u; 

it follows that u E C0 (0). Moreover, because of the equicontinuity and the total ordering 
there is a sequence {Un }nEN in this family, with 

(1.19) 

and 
u(x) = Jim Un(x). (1.20) 

n--+oo 

Then condition 2) of Definition 1.1 is a consequence of the Lebesgue Dominated Convergence 
Theorem. 

Step 3: 

Lemma 1.5. The maximum of two subsolutions is a subsolution. (for subsolutions as in 
Definition 1.2) 

For the proof of Theorem 1.3 it is sufficient to show that the maximum of two C-solutions 
is a subsolution. Since the result is interesting in itself we will prove this slightly stronger 
lemma. 

Suppose both v0 and V 8 are subsolutions. We will show that v* defined by 

v*(x) = max(v0 (x), v8 (x)) (1.21) 

is also a subsolution of (0.1). 
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The conditions 1) and 3) from Definition 1.2 are immediately satisfied. We will show 
condition 2) by the Kato-inequality (see [14]): 

-fn lwl~cpdx s - L sign(w)~wcpdx for w E C 2 (0), cp E v+(n). (1.22) 

For Vo, Vs E C 2 (0) the result directly follows: 

( 1.23) 

S -~ L (~vo +~Vs+ sign(vo - vs)(~vo - ~vs))cpdx 

SL (X[vo>v,JF(vo) + X[vo<v,JF(vs) + ~X[vo=v,J(F(vo) + F(vs)))cpdx 

= L F(v*)cpdx, for cp E v+(n). 

For v0 , V8 E C(O) we will use the mollifier J, defined in (1.5) and define v0 ,, = J, * v0 , 

Vs,<= J, *Vs. 
Fix cp E v+(n) and set {j = d(80,supp(cp)). If f < {j we may use Lemma 1.4 to show 

that: 

{ 
- ~vo,, SJ,* F(vo) 

- ~Vs,• SJ,* F(vs) 

Similarly to (1.23) we find 

in supp( cp), 

in supp( cp). 

- L max(vo,,,Vs,,)~cpdx SL (X[vo,,>v,,,]J< * F(vo) + X[vo.«v.,,]J, * F(vs) 

1 
+ 2X[v0 ,,=v.,,J(J, * F(vo) + J,F(vs)))cpdx 

(1.24) 

( 1.25) 

Since v0 , Vs are continuous max(v0 ,,, Vs,,) -+ max(v0 , vs) and J, * F(vi) -+ F(v;) (i = 0, 1) 
uniformly on supp( cp) for f 1 0. Moreover, the first term in the right hand side of ( 1.25) can 
be estimated as follows. 

L IX[v0 ,,>v.,,](J, * F(vo) - F(v*))cpl dx 

SL X[vo,,>v,,,JIJ, * F(vo) - F(vo)lcpdx +lo X[vo,,>v,,,JIF(vo) - F(v*)lcpdx (1.26) 

S llJ, * F(vo) - F(vo)llL""(supp<p) L cpdx + llF(vs)lloo L X[vo,,>v.,,]X[vo<v.]'Pdx. 

By using the continuity of F( Vo) on n for the first term and the Lebesgue Dominated 
Convergence Theorem for the second term we see that the right hand side in (1.26) goes 
to zero for f 1 0. The two remaining terms in (1.25) can be estimated similarly. Hence as 
required 

- L v*~cpdx SL f(x,v*)cpdx. (1.27) 
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Step 4: Completion of the proof. By the first step we have the existence of a C-solution u E 
[v1, v2 ]. Step 2 shows that there is a maximal C-solution in the sense of partially ordering. 
From the third step we know that if there are two C-solution Ua and ub, then max(u,,, ub) 
is a subsolution. Hence as a consequence there is a C-solution Uc E [max( ua, ub), v2 ]. By 
this result and step two, there is a unique maximal C-solution u 2 in the sense of partially 
ordering and hence a maximal solution in the sense of Theorem 1.3. Similarly one shows 
the existence of the minimal C-solution u 1. 

2. A maximal solution in W 1,2 (n). In this section we prove a variant of Theorem 
1.3 for general bounded domains n in !Rn but for solutions in W 1,2 (n). Thus we consider 
the equation (0.1), where now by a solution we mean an element of W~'2 (n), with f(-, u) E 
L 1(n), satisfying the equation in the weak sense as in Definition 1.1. To make the distinction 
we will call this a W-solution. For sub- and supersolution we use a slightly different definition 
than in section 1. 

Definition 2.1. The function u is called a super (sub) solution if 

1) u E w1,2 (n), 

2) f0 (u. - b.cp - f(x, u)cp) dx ~ ($) 0 for all cp E ZJ+(n) = { cp E C0 (n); cp ~ O}, 

3) u ~ ($) 0 on an in the sense of Kinderlehrer and Stampacchia {15, p. 35}. 

In [15] the function u in W 1,2 (n), is called nonnegative on E c 0, if there exists a 
sequence {un}nEN in W 1'00 (S!) with Un--+ U in W 1'2(n), such that: 

un(x) ~ 0 for x EE. (2.1) 

Theorem 2.2. Assume that n is a bounded domain in !Rn and that J : n x IR --+ IR 
satisfies the Caratheodory condition. Let v1 , respectively v2 , be a subsolution, respectively 
a supersolution of (0.1), with 

vi(x) s v2(x) inn, (2.2) 

and 

. 2n . 
sup{lf(x, v) I v1(x) S v S v2(x)} E LP(n) with p > n + 

2 
(p > l 1f n = 1). (2.3) 

Then there exists a minimal W-solution u 1 and a maximal W-solution u2 such that, for 
every W-solution u with vi S u S v2 we have 

(2.4) 

Remark: A function J : n x IR--+ IR satisties the Caratheodory condition if u--+ J(x, u) is 
continuous for almost all x inn, and x--+ f(x, u) is measurable for all u in IR. 

Proof of Theorem 2.2: The proof is very similar to the proof of Theorem 1.3. 

Step 1. The existence. That there is a solution between a subsolution and a supersolution 
follows from Deuel and Hess [10]. There is only one place where their proof needs to be 
changed. To show that u S v2 on n, we need to know that, if u E W~'2 (n) and v2 ~ 0 on 
an in the sense of [15] (see (2.1)), then (u-v2 )+ E W~'2 (n). To see this, note that it follows 
from [15] that there exist functions Wn in W 1,00 (n) such that Wn ~ 0 on OH and Wn--+ V2 

in W 1,2 (n). By replacing Wn by Wn + ~' we can assume Wn > 0 near an. Moreover, since 
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u E W~'2 (0) there exist smooth functions Un of compact support in 0 such that Un -+ u 
in W 1•2 (0) as n -+ 00. Then (un - Wn)+ is of compact support in 0. Hence for f small 
enough J, * (un - Wn)+ E CQ°(O). Since J, * (un - Wn)+ -+ (un - Wn)+ in W 1

•
2 (H) for 

t l 0 and (un - wn)+ -+ (u - v2 )+ in W 1
•2 (0) as n -+ oo, (u - v2 )+ E W~'2 (n). Since 

LP(O) c w- 1•2 (0), our assumptions imply those in [10]. 

Step 2. Zorn's Lemma. The proof of [10] shows that the W-solutions 7J, of (0.1) with 
V1 $ u $ V2 on 0 are bounded in w5·2(0). Thus if {u;};EJ is an ordered family of W
solutions with v1 $ u; $ v2 there is a sequence {Un }nEN in this family, with 

(2.5) 

and 
Un -+ U weakly in W 1•2 (0) for n-+ 00. (2.6) 

Since Un, u E W~'2 (0), the Sobolev lmbedding Theorem ([l, Th. 6.2, part IV]) shows 
that there is a subsequence converging strongly to u in L 2 (0). We will omit the change of 
notation necessitated by passing to subsequences. Since a further subsequence must converge 
pointwise almost everywhere (see [l, Corol. 1.2.11]) and since {un}nEN is increasing, 

V1 :::; Un $ U $ V2 in 0 a.e., for all n. (2.7) 

Moreover, since Un -+ u weakly in w~·2 (0) and pointwise, the Dominated Convergence 
Theorem shows that u is a W-solution of (0.1 ). A Zorn's lemma argument implies that the 
set of solutions between v1 and v2 has a maximal element in the sense of the ordering. 

Step 3. The maximum of two solutions is a subsolution. Let v3 and v4 be W-solutious. We 
will show that sup( V3, V4) E w~·2 (!1) is a subsolution. If v E w~·2 (0) is a W-solution of (0.1) 
with V1 $ v $ V2, f (" v) E LP ( !1) and hence by standard regularity results v E W17,·~ ( H). 
Now Kato's proof shows that (1.22) holds for w E W1~·;(0). Hence we can prove that 
sup( v3 , v4 ) is a subsolution by a similar argument to that in step 3 of the proof of section 
1. Indeed we do not need mollifiers. 

We can complete the proof of Theorem 2.1 by the same argument as in section l. 

Remark 1. The methods can be generalized to allow f to depend on V'u, provided that 

lf(x, u, s)I $ k(x) + Klsl for v1(x):::; u $ v2(x), where k E £P(!1) (pas before). (2.8) 

The proof needs only minor modifications except in the analogue of step 2. Here, if Un is 
an increasing sequence of solutions with v 1 $ Un :::; v2 for all n, we prove as before that 
{un}nEN is bounded in W 1·2(0). We then deduce from the equation that, if K c n is 
compact, {un}nEN is bounded in W 2·P(K) and hence converges strongly in w,~,';(n). The 
rest of the proof of step 2 is much as before. Ifv1 ,v2 E W 1 •00 (!1) we can allow rather better 
growth rates. The idea here, as in [5], is to choose a smooth map <I> : IRn -+ IRn with bounded 
image and 

(2.9) 

and apply the above argument to the equation with f(x, u, V'u) replaced by f(x, u, <I>(V'u)). 
One then proves an estimate for solutions between v1 and v2 which shows that any solution 
of the new equation with a suitable <I> is a solution of the original equation. This depends 
on a W 1•00 -estimate. For example, if 0 has a C2-boundary and if 

lf(x,u,s)I $ K(l + lsl 2
) for x En, V1(x):::; u:::; v2(x), (2.10) 
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one can establish the W 1''°-estimate by using the main estimate in Amann and Crandall 
[5]. Hence we obtain the result if f has quadratic growth in V'u. For an arbitrary domain, 
one can establish our result if 

lf(x, u, s)I :::; K(l + lsn for x En, v1(x) ~ u ~ v2(x), r < 2. (2.11) 

The idea here is that, by using the Nirenberg-Gagliardo inequalities (see [11, Th. 10.l]), we 
can establish W 1,00 -estimates on compact subsets of n and this suffices to obtain the result. 
We use a sequence of truncations ~n and pass to the limit. 

Remark 2. Our result, when f does not depend on V'u is true for unbounded n if we 
consider solutions and super (sub) solutions which are in W 1,2 (f!nB(O, R)) for every R > 0, 
where B(O, R) is the ball in !Rn of centre 0 and radius R. We prove the existence by using 
the existence of solutions on n n B(O, R) and passing to the limit as R -+ oo. Steps 2 and 
3 are established by working on bounded subsets of n. 
Remark 3. Lastly, one can replace ~u by a more general second order elliptic operator 
provided that the top order coefficients are in W1~'i(n) for q > n, and the lower order 
coefficients are in Lk;'c(f!). In some cases where f does not depend on V'u, one can allow a 
more general linear part by using the technique on page 451 of [9]. 
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