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1 Introduction

For most `nice' elliptic boundary value problems there is a general expectation that the �rst

eigenfunction is unique and of �xed sign. And indeed, for second order elliptic di�erential equa-

tions with Dirichlet boundary conditions such a result holds as a consequence of the maximum

principle. It is well known that such a maximum principle does not have a direct generalization

to higher order elliptic problems. Nevertheless, the hypothesis that the principal eigenfunc-

tion for the biharmonic Dirichlet problem is of �xed sign does appear in earlier papers, see for

example [32] from 1950. Let us be more precise.

The biharmonic eigenvalue problem with Dirichlet boundary conditions is the following:�
�2
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;

' = @
@n
' = 0 on @
;

(1)

where 
 is a bounded domain in Rn : Closely related to the eigenvalue problem is the biharmonic

di�erential equation with Dirichlet boundary conditions, the so-called clamped plate equation:�
�2

u = f in 
;

u = @
@n
u = 0 on @
:

(2)

The famous conjectures for these two problems were as follows; by now both of them have

numerous counterexamples.

Conjecture 1 (Szeg�o, 1950) If 
 is a `nice' domain, then the �rst eigenfunction for (1) is

of �xed sign.

Conjecture 2 (Boggio-Hadamard �1908) If 
 is a `nice' (convex) domain, then (2) is

sign-preserving, that is, f � 0 implies u � 0:

Or as Hadamard writes on page 14 of [23]:

Malgr�e l'absence de d�emonstration rigoureuse, l'exactitude de cette proposition ne

parâ�t pas douteuse pour les aires convexes.
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2 When is the �rst clamped eigenfunction of �xed sign?

Note that a Krein-Rutman type argument shows that a true second conjecture implies the

result of the �rst. In other words, if (2) is sign-preserving for 
, then the �rst eigenfunction of

(1) on 
 is of �xed sign.

The second problem, (2), forms a model for the clamped plate where f is the load and u the

deviation of the plate 
: Boggio ( [4], [5]) and Hadamard ([22], [23]) extensively studied this

model.

Both the Boggio-Hadamard conjecture and the Szeg�o conjecture proved to be wrong. DuÆn

and others ([12], [15], [28], [7], [9], [25] and [31]), starting in 1949, established convex smooth

domains for which the problem in (2) is not sign-preserving. Co�man in [9] proved that the �rst

eigenfunction on a square changes sign. Sign changing �rst eigenfunctions are also found in [25].

The aim of this present note is to review the relation between the domain and the sign

changing of this �rst eigenfunction. We will do so by considering some families of domains.

Isoperimetric questions for the principal eigenfunction of (1) will not be addressed. For those

type of results we refer to the papers by Talenti ([36]) and Ashbaugh-Laugesen ([1]). Finally we

refer to [27] for eigenfunctions on a number of special domains.

2 Rectangles

The �rst counterexample to the Boggio-Hadamard conjecture is due to DuÆn. In [12] he showed

that the Green function changes sign on an in�nitely long rectangle. See also [30]. If 
 is a

long rectangle a positive function f with small support yields an oscillatary behaviour for the

solution u away from that support. A numerical experiment for a rectangle with ratio 3 � 1

con�rms such behaviour. See Figure 1. There f � 0 is zero except for some area near the short

right hand side around 2=3 from the front side. Note that even this rough approximation also

shows a small negative e�ect in a corner. Such a sign-change near right angles for (2) has been

proven by Co�man and DuÆn in [7].

Figure 1: the red area corresponds with u < 0

Before Co�man proved in 1984 by analytical means ([9]) that the �rst eigenfunction on a

square changes sign, numerical results in 1972 and 1982 ([2] and [21]) predicted so. Recently,

in 1996, these numerical results on the square have been revisited by Wieners ([37]). He could

prove that the sign-changing of the numerically approximated �rst eigenfunction is rigorous,

that is, the sign changing e�ect is to large to be explained by numerical errors.
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For the problem in (2) Boggio and Hadamard expected that (assuming smoothness?) con-

vexity was a suÆcient condition for the sign-preserving property. Although convexity is not

suÆcient for (2) one could ask if convexity and smoothness would be suÆcient for the Szeg�o

hypothesis. Since the �rst eigenfunction on a square, convex but nonsmooth, is not of one sign

([9]) there is not much hope for a positive answer. See [25].

The stronger Boggio-Hadamard conjecture is not true on smooth domain suÆciently close

to a square. Co�man and Grover in [8, Theorem 8.1] were able to prove a much more general

result.

Theorem 3 (Co�man-Grover, 1980 ) Let f
i; i 2 Ng be a family of domains with 
i �


i+1 for all i 2 N; and [i2N
i = 
. If (2) is not sign preserving on 
; then it is not sign

preserving if 
 is replaced by 
i with i large enough.

A similar result for the �rst eigenfunction can be found in the paper by Kozlov, Kondrat'ev en

Maz'ya ([25, Theorem 1]). They construct a sequence of smooth convex domains that exhaust an

appropriately chosen cone. Since the corresponding �rst eigenfunctions are proven to converge

to the sign-changing �rst eigenfunction on the cone the conclusion follows.

3 Ellipses

Boggio obtained an explicit formula for all polyharmonic Green functions for the Dirichlet prob-

lem on a ball in any dimension. For the biharmonic problem on 
 =
�
x 2 R2 ; jxj < 1

	
this

formula becomes

G (x; y) =
1

8�
jx� yj

2

Z �(x; y)

1

v
2 � 1

v
dv with �(x; y) =

r
1 +

(1�jxj2)(1�jyj2)
jx�yj2

:

Since this Green function is positive it proves the sign-preserving property on the disk. From

[17] it follows that for domains close, in a smooth sense, to the disk the Green function remains

positive. However, for more eccentric ellipses positivity breaks down. Garabedian showed that

on an ellipse with ratio of the axes larger then 2, a positive f exist for which u changes sign.

Setting

E` =
n
x 2 R2 ; (x1=`)

2 + x
2
2 < 1

o
(3)

we summarize:

Theorem 4 (Garabedian 1951 1., Grunau-Sweers 1996 2.)

1. There are large ` such that (2) is not positivity preserving for 
 = E`:

2. There is `� > 1 such that if ` 2
�
`
�1
� ; `�

�
; then (2) is positivity preserving for 
 = E`:

There are numerical approximations (mentioned in [24]) for the �rst ` where sign change

appears. Although it seems likely that there exists a number `0 such that (2) is positivity

preserving for 
 = E` if and only if ` 2
�
`
�1

0
; `0

�
the author is not aware of a corresponding

theorem.
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What about Szeg�o's conjecture on eccentric ellipses? As far as the author knows there are

no rigorous results for the sign of the eigenfunction on eccentric ellipses. For ellipses with small

eccentricity one may show that the �rst eigenfunction remains positive (see for example [18]).

Only numerical results seem to support the conjecture that on rather eccentric ellipses the �rst

eigenfunction changes sign. See Figure 4 and 5 in the Appendix. So a conjecture would be the

following.

Conjecture 5 There exists a number `e 2 (1;1) such that the �rst eigenfunction is positive

for 
 = E` if and only if ` 2
�
`
�1
e ; `e

�
:

Even for the weaker result that there exists a number ` such that the �rst eigenfunction

changes sign on E` is open. If `0 and `e exist, then by results in [20] it would follow that `0 < `e:

Note from Figure 5 that the size of the minimum (the negative part) is near 10�5; the

eigenfunction is normalized by max� = 1:

4 Elongated disks

By an elongated disk we mean two half disks joined by a rectangle:

D` =
[

�`�y1�`

B1 (y1; 0) ; (4)

where Br (y) =
�
x 2 R2 ; jx� yj < r

	
: In contrast to eccentric ellipses the author wasn't able to

�nd numerical evidence for a sign-changing �rst eigenfunction. Let me put it into a conjecture.

Conjecture 6 Let D` be as in (4). For every ` � 0 the �rst eigenfunction of (1) on 
 = D` is

of �xed sign.

For a numerical approximation of the �rst eigenfunction on an elongated disk see Figure 2.

In [20] it has been shown, roughly spoken, that for an appropriate family of domain per-

turbations ` ! 
` the statement `Green function is positive' breaks down strictly before `�rst

eigenfunction is positive' does. For convex domains sign changing seems to be appearing near

boundary points where the curvature becomes big. And in fact, next to the eigenvalue, another

quantity that remains bounded for D` and not for E` is the curvature. A rather bold conjecture

in such a direction would be the following.

Conjecture 7 There is a number C > 0 such that the following holds. Suppose that 
 is a

convex domain in R
2
: Let �1;
 be the �rst eigenvalue of (1) and denote by �
 the maximal

curvature of @
: If �1;
 � C �
4


; then the �rst eigenfunction is of �xed sign.

For the family of ellipses E` in (3) one �nds �E`
= `

2
: For the elongated disks above �D`

= 1

for all ` and also the �rst eigenvalue remains bounded. Indeed, one �nds that �1 (D`) !

�1 [�1; 1] for `!1: Here �1 [�1; 1] is the �rst eigenvalue on the one-dimensional interval. The

corresponding eigenfunction is

v (y) =
cos (t y) cosh (t)� cosh (t y) cos (t)

cosh (t)� cos (t)
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Figure 2: A positive �rst eigenfunction on an elongated disk

with t = (�1 [�1; 1])
1

4 the �rst positive number such that tan t+ tanh t = 0 (that is t t 2:365).

Indeed this limit follows by testing the Rayleigh quotient for 
 = D`

�1 = inf

(R


(��)2 dxR


�2dx

;� 2 H
2
0 (
)

)

with � (x; y) = � (x=`) v (y) : Here � is some nonnegative smooth function with support in [�1; 1] :

5 Annuli

A main assumption that appears over and over again is the convexity of the domain. Domains

which are far from convex are domains with holes. The standard examples are the annuli:

A" =
�
(x; y) ; "2 < x

2 + y
2
< 1

	
with 0 < " < 1; (5)

Already Hadamard knew that the Green function on the annulus (couronne circulaire in [23])

changes sign. The sign-changing Green function for the annulus was revisited in [29] and [14].

For general domains with a small hole Co�man and Grover in [8, Proposition 8.1] proved that

no sign preserving property can hold for (2).

The eigenvalue problem for domains with holes has �rst been studied by DuÆn and Sha�er

([13]). With Co�man ([6]) they could show that for the annuli with a small hole, the �rst

eigenfunction changes sign. They used an explicit formula and explicit values of the Bessel

functions involved and obtained even a critical number for the ratio of the inner and outer

radius. The proof has been further simpli�ed in [10].

Theorem 8 (Co�man-DuÆn-Sha�er) There exists "0 > 0 such that the following holds.
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1. If " < "0; then the �rst eigenvalue has multiplicity two. There exist two independent

eigenfunctions for this �rst eigenvalue with diametral nodal lines.

2. If " = "0; then the �rst eigenvalue has multiplicity three. There exists a positive eigen-

function for this eigenvalue and there are two independent eigenfunctions with diametral

nodal lines.

3. If " > "0; then the �rst eigenvalue has multiplicity one and the corresponding eigenfunction

is of �xed sign.

6 Dumb-bells

A sign changing �rst eigenfunction for a dumb-bell shaped, hence simply connected, domain has

been obtained numerically in a recent preprint of Brown e.a. ([3]). The numerics show that

reducing the size of the connecting bar forces the �rst eigenfunction to increase the number of

sign changes. One might describe this as a wobbling e�ect in the bar, which is similar as DuÆn's

oscillating in long rectangles. As Davies explained ( [11]) in the numerical probem a continuous

reduction of the size of the connection caused the �rst odd and the �rst even eigenfunction to

alternate in having the smallest eigenvalue.

Graphics of numerical approximations on the �rst two eigenfunctions on two dumb-bell

shaped domains are found in Figure 6 and 7.

Figure 3: A dumb-bell shaped domain resp. a lima�con for r = 1 + 4

5
cos'

7 Lima�con

A �nal question could be if convexity is necessary for either problem. Such a question was an-

swered long ago by Hadamard. He already noticed that the convexity condition is not necessary

even for the sign preserving property for (2). The domain he considered was the interior of a

nonconvex Lima�con of Pascal ([23]): in polar coordinates r < 1 + 2a cos' with a <
1

2
:

Acknowledgement: Without numerous and very enjoyable discussions with Hans-Christoph

Grunau this survey could not have been written.
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Numerics: The eigenfunctions have been approximated and plotted by Mathematica 4.0

on a Pentium III. The steps in the computation are as follows.

� A uniform grid is distributed on a rectangle containing the domain. By a simple test points

are either inside or out.

� On the interior points the biharmonic operator is approximated by �nite di�erences. In

order to reduce the number of nodes symmetry in the y-direction is used for all examples;

for the ellipse and the elongated disk also symmetry in the x-direction. The resulting

matrix is a block �ve diagonal matrix (13 nonzero diagonals).

� The eigenvectors are computed by the Mathematica command Eigenvectors. The

eigenvectors are ordered by the size of the eigenvalues.

� Finally the eigenvectors are plotted by standard Mathematica commands.
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Figure 4: Numerical approximation of the �rst eigenfunction on the ellipse 120� 15.
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Figure 5: The same eigenfunction blown-up vertically to show the negative part.
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Figure 6: The �rst (left!) respectively the second eigenfunction on a two-dimensional `dumb-

bell'.
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Figure 7: On a more tighter dumb-bell the eigenvalues switched again. The one on the left is

the �rst eigenfunction. In an enlarged picture the approximation of the �rst and of the second

eigenfunction display an extra (small) sign-change in the connecting area.


