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It is better to have failed and tried,
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Week 1

From models to differential
equations

1.1 Laundry on a line

1.1.1 A linear model

Consider a rope tied between two positions on the same height and hang a sock
on that line at location x0.

x0
XXXXXXXXXXXXXXXXXXXXXXX¡

¡
¡
¡
¡
¡

XXX
XXy

¡
¡
¡¡µF2

F1
α β

Then the balance of forces gives the following two equations:

F1 cosα = F2 cosβ = c,
F1 sinα+ F2 sinβ = mg.

We assume that the positive constant c does not depend on the weight hanging
on the line but is a given fixed quantity. The g is the gravitation constant and
m the mass of the sock. Eliminating Fi we find

tanα+ tanβ =
mg

c
.

We call u the deviation of the horizontal measured upwards so in the present
situation u will be negative. Fixing the ends at (0, 0) and (1, 0) we find two
straight lines connecting (0, 0) through (x0, u(x0)) to (1, 0) . Moreover u0(x) =
tanβ for x > x0 and u0(x) = − tanα for x < x0, so

u0(x−0 ) = − tanα and u0(x+0 ) = tanβ.
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This leads to
u0(x+0 )− u0(x−0 ) =

mg

c
, (1.1)

and the function u can be written as follows:

u (x) =

½ −mg
c x (1− x0) for x ≤ x0,

−mg
c x0 (1− x) for x > x0.

(1.2)

Hanging multiple socks on that line, say at position xi a sock of weight mi

with i = 1 . . . 35, we find the function u by superposition. Fixing

G (x, s) =

½
x (1− s) for x ≤ s,
s (1− x) for x > s,

(1.3)

we’ll get to

u (x) =
35X
i=1

−mig

c
G (x, xi) .

Indeed, in each point xi we find

u0(x+i )− u0(x−i ) = −
mig

c

·
∂

∂x
G (x, xi)

¸x=x+i
x=x−i

=
mig

c
.

In the next step we will not only hang point-masses on the line but even a
blanket. This gives a (continuously) distributed force down on this line. We
will approximate this by dividing the line into n units of width 4x and consider
the force, say distributed with density ρ(x), between xi− 1

24x and xi+ 1
24x to

be located at xi. We could even allow some upwards pulling force and replace
−mig/c by ρ(xi)4x to find

u (x) =
nX
i=1

ρ(xi)4x G (x, xi) .

Letting n→∞ and this sum, a Riemann-sum, approximates an integral so that
we obtain

u(x) =

Z 1

0

G (x, s) ρ(s) ds. (1.4)

We might also consider the balance of forces for the discretized problem and
see that formula (1.1) gives

u0(xi + 1
24x)− u0(xi − 1

24x) = −ρ(xi) 4x.

By Taylor

u0(xi + 1
24x) = u0(x) + 1

24x u00(xi) +O (4x)
2
,

u0(xi − 1
24x) = u0(x)− 1

24x u00(xi) +O (4x)
2
,

and
4x u00(xi) +O (4x)2 = −ρ(xi) 4x.

After dividing by 4x and taking limits this results in

−u00(x) = ρ(x). (1.5)
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Exercise 1 Show that (1.4) solves (1.5) and satisfies the boundary conditions

u(0) = u(1) = 0.

Definition 1.1.1 The function in (1.3) is called a Green function for the
boundary value problem ½ −u00(x) = ρ(x),

u(0) = u(1) = 0.

1.1.2 A nonlinear model

Consider again a rope tied between two positions on the same height and again
hang a sock on that line at location x0. Now we assume that the tension is
constant throughout the rope.

x0
XXXXXXXXXXXXXXXXXXXXXXX¡

¡
¡
¡
¡
¡

XXX
XXy

¡
¡
¡¡µF2

F1
α β

To balance the forces we assume some sidewards effect of the wind. We find

F1 = F2 = c,
F1 sinα+ F2 sinβ = mg.

Now one has to use that

sinβ =
u0
¡
x+0
¢q

1 +
¡
u0
¡
x+0
¢¢2 and sinα = −u0 ¡x−0 ¢q

1 +
¡
u0
¡
x−0
¢¢2

and the replacement of (1.1) is

u0
¡
x+0
¢q

1 +
¡
u0
¡
x+0
¢¢2 − u0

¡
x−0
¢q

1 +
¡
u0
¡
x−0
¢¢2 = mg

c
.

A formula as in (1.2) still holds but the superposition argument will fail since
the problem is nonlinear. So no Green formula as before.
Nevertheless we may derive a differential equation as before. Proceeding as

before the Taylor-expansion yields

− ∂

∂x

 u0 (x)q
1 + (u0 (x))2

 = ρ(x). (1.6)
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1.1.3 Comparing both models

The first derivation results in a linear equation which directly gives a solution
formula. It is not that this formula is so pleasant but at least we find that
whenever we can give some meaning to this formula (for example if ρ ∈ L1)
there exists a solution:

Lemma 1.1.2 A function u ∈ C2 [0, 1] solves½ −u00(x) = f(x) for 0 < x < 1,
u(0) = u(1) = 0,

if and only if

u(x) =

Z 1

0

G (x, s) f(s)ds

with

G (x, s) =

½
x (1− s) for 0 ≤ x ≤ s ≤ 1,
s (1− x) for 0 ≤ s < x ≤ 1.

The second derivation results in a non-linear equation. We no longer see
immediately if there exists a solution.

Exercise 2 Suppose that we are considering equation (1.6) with a uniformly
distributed force, say g

cρ(x) = M. If possible compute the solution, that is, the
function that satisfies (1.6) and u(0) = u(1) = 0. For which M does a solution
exist? Hint: use that u is symmetric around 1

2 and hence that u
0( 12) = 0.

0.2 0.4 0.6 0.8 1

-0.5

-0.4

-0.3

-0.2

-0.1

Here are some graphs of the solutions from the last exercise.

Remark 1.1.3 If we don’t have a separate weight hanging on the line but are
considering a heavy rope that bends due to its own weight we find:(

−u00(x) = c

q
1 + (u0(x))2 for 0 < x < 1,

u(0) = u(1) = 0;
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1.2 Flow through area and more 2d

Consider the flow through some domain Ω in R2 according to the velocity field
v = (v1, v2) .

Definition 1.2.1 A domain Ω is defined as an open and connected set. The
boundary of the domain is called ∂Ω and its closure Ω̄ = Ω ∪ ∂Ω.

(x, y)r

4x¾ -

4y

6

?

¢¢̧

¢¢̧

¶¶7

¶¶7

¶¶7

¶¶7

¡¡µ

¡¡µ

¡¡µ

¡¡µ

¡¡µ

½½>

½½>

½½>

½½>

½½>

©©*

©©*

©©*

©©*

If we single out a small rectangle with sides of length 4x and 4y with (x, y)
in the middle we find

• flowing out:

Out =
Z y+ 1

24y

y− 1
24y

ρ.v1
¡
x+ 1

24x, s
¢
ds+

Z x+ 1
24x

x− 1
24x

ρ.v2
¡
s, y + 1

24y
¢
ds,

• flowing in:

In =
Z y+ 1

24y

y− 1
24y

ρ.v1
¡
x− 1

24x, s
¢
ds+

Z x+ 1
24x

x− 1
24x

ρ.v2
¡
s, y − 1

24y
¢
ds.

Scaling with the size of the rectangle and assuming that v is sufficiently
differentiable we obtain

lim
4y↓0
4x↓0

Out− In
4x4y

= lim
4y↓0
4x↓0

ρ

4y

Z y+ 1
24y

y− 1
24y

v1
¡
x+ 1

24x, s
¢− v1

¡
x− 1

24x, s
¢

4x
ds+

+ lim
4y↓0
4x↓0

ρ

4x

Z x+ 1
24x

x− 1
24x

v2
¡
s, y + 1

24y
¢− v2

¡
s, y − 1

24y
¢

4y
ds

= lim
4y↓0

ρ

4y

Z y+ 1
24y

y− 1
24y

∂v1
∂x

(x, s) ds+ lim
4x↓0

ρ

4x

Z x+ 1
24x

x− 1
24x

∂v2
∂y

(s, y) ds

= ρ
∂v1 (x, y)

∂x
+ ρ

∂v2 (x, y)

∂y
.
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If there is no concentration of fluid then the difference of these two quantities
should be 0, that is ∇.v = 0. In case of a potential flow we have v = ∇u for
some function u and hence we obtain a harmonic function u:

∆u = ∇.∇u = ∇.v = 0.
A typical problem would be to determine the flow given some boundary data,
for example obtained by measurements:½

∆u = 0 in Ω,
∂
∂nu = ψ on ∂Ω.

(1.7)

The specific problem in (1.7) by the way is only solvable under the compatibility
condition that the amount flowing in equals the amount going out:Z

∂Ω

ψdσ = 0.

This physical condition does also follow ‘mathematically’ from (1.7). Indeed,
by Green’s Theorem:Z

∂Ω

ψdσ =

Z
∂Ω

∂

∂n
udσ =

Z
∂Ω

n ·∇u dσ =

Z
Ω

∇ ·∇u dA =

Z
Ω

∆u dA = 0.

In case that the potential is given at part of the boundary Γ and no flow in or
out at ∂Ω\Γ we find the problem:

∆u = 0 in Ω,
u = φ on Γ.
∂
∂nu = 0 on ∂Ω\Γ.

(1.8)

Such a problem could include local sources, think of external injection or ex-
traction of fluid, and that would lead to ∆u = f.
Instead of a rope or string showing a deviation due to some force applied

one may consider a two-dimensional membrane. Similarly one may derive the
following boundary value problems on a two-dimensional domain Ω.

1. For small forces/deviations we may consider the linear model as a reason-
able model: ½ −∆u(x, y) = f(x, y) for (x, y) ∈ Ω,

u(x, y) = 0 for (x, y) ∈ ∂Ω.

The differential operator ∆ is called the Laplacian and is defined by ∆u =
uxx + uyy.

2. For larger deviations and assuming the tension is uniform throughout the
domain the non-linear model:

−∇ ·
 ∇u(x, y)q

1 + |∇u(x, y)|2

 = f(x, y) for (x, y) ∈ Ω,

u(x, y) = 0 for (x, y) ∈ ∂Ω.

Here ∇ defined by ∇u = (ux, uy) is the gradient and ∇· the divergence
defined by ∇ · (v,w) = vx+wy. For example the deviation u of a soap film
with a pressure f applied is modeled by this boundary value problem.
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3. In case that we do not consider a membrane that is isotropic (meaning
uniform behavior in all directions), for example a stretched piece of cloth
and the tension is distributed in the direction of the threads, the following
nonlinear model might be better suited: − ∂

∂x

µ
ux(x,y)√

1+(ux(x,y))
2

¶
− ∂

∂y

µ
uy(x,y)√

1+(uy(x,y))
2

¶
= f(x, y) for (x, y) ∈ Ω,

u(x, y) = 0 for (x, y) ∈ ∂Ω.
(1.9)

In all of the above cases we have considered so-called zero Dirichlet boundary
conditions. Instead one could also force the deviation u at the boundary by
describing non-zero values.

Exercise 3 Consider the second problem above with a constant right hand side
on Ω =

©
(x, y) ;x2 + y2 < 1

ª
:

−∇ ·
 ∇u(x, y)q

1 + |∇u(x, y)|2

 =M for (x, y) ∈ Ω,

u(x, y) = 0 for (x, y) ∈ ∂Ω.

This would model a soap film attached on a ring with constant force (blowing onto
the soap-film might give a good approximation). Assuming that the solution is
radially symmetric compute the solution. Hint: in polar coordinates (r, ϕ) with
x = r cosϕ and y = r sinϕ we obtain by identifying U(r, ϕ) = u(r cosϕ, r sinϕ) :

∂

∂r
U = cosϕ

∂

∂x
u+ sinϕ

∂

∂y
u,

∂

∂ϕ
U = −r sinϕ ∂

∂x
u+ r cosϕ

∂

∂y
u,

and hence

cosϕ
∂

∂r
U − sinϕ

r

∂

∂ϕ
U =

∂

∂x
u,

sinϕ
∂

∂r
U +

cosϕ

r

∂

∂ϕ
U =

∂

∂y
u.

After some computations one should find for a radially symmetric function, that
is U = U (r), that

∇ ·
 ∇u(x, y)q

1 + |∇u(x, y)|2

 =
∂

∂r

Ã
Urp
1 + U2r

!
+
1

r

Ã
Urp
1 + U2r

!
.

Exercise 4 Next we consider a soap-film without any exterior force that is
spanned between two rings of radius 1 and 2 with the middle one on level −C
for some positive constant C and the outer one at level 0. Mathematically:

−∇ ·
 ∇u(x, y)q

1 + |∇u(x, y)|2

 = 0 for 1 < x2 + y2 < 4,

u(x, y) = 0 for x2 + y2 = 4,
u(x, y) = −C for x2 + y2 = 1.

(1.10)
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Solve this problem assuming that the solution is radial and C is small. What
happens if C increases? Can one define a solution that is no longer a function?
Hint: think of putting a virtual ring somewhere in between and think of two
functions glued together appropriately.

Solution 4 Writing F = Ur√
1+U2

r

we have to solve F 0 + 1
rF = 0. This is a

separable o.d.e.:
F 0

F
= −1

r
and an integration yields

lnF = − ln r + c1

and hence F (r) = c2
r for some c2 > 0. Next solving

Ur√
1+U2

r

= c2
r one finds

Ur =
c2p

r2 − c22
.

Hence

U(r) = c2 log

µ
r +

q
r2 − c22

¶
+ c3

The boundary conditions give

0 = U (2) = c2 log

µ
2 +

q
4− c22

¶
+ c3, (1.11)

−C = U(1) = c2 log

µ
1 +

q
1− c22

¶
+ c3.

Hence

c2 log

Ã
2 +

p
4− c22

1 +
p
1− c22

!
= C.

Note that c2 7→ c2 log

µ
2+
√
4−c22

1+
√
1−c22

¶
is an increasing function that maps [0, 1]

onto
£
0, log

¡
2 +
√
3
¢¤
. Hence we find a function that solves the boundary value

problem for C > 0 if and only if C ≤ log ¡2 +√3¢ ≈ 1.31696. For those C there
is a unique c2 ∈ (0, 1] and with this c2 we find c3 by (1.11) and U :

U(r) = c2 log

Ã
r +

p
r2 − c22

2 +
p
4− c22

!
.

Let us consider more general solutions by putting in a virtual ring with radius
R on level h, necessarily R < 1 and −C < h < 0. To find two smoothly connected
functions we are looking for a combination of the two solutions of −

∂
∂r

Ã
Urp
1 + U2r

!
+

Ã
Urp
1 + U2r

!
= 0 for R < r < 2,

U(2) = 0 and U (R) = h and Ur (R) =∞,

and 
− ∂

∂r

 Ũrq
1 + Ũ2r

+
 Ũrq

1 + Ũ2r

 = 0 for R < r < 1,

Ũ(1) = −C and Ũ (R) = h and Ũr (R) = −∞.

8



Note that in order to connect smoothly we need a nonexistent derivative at R!
We proceed as follows. We know that

U (r) = c2 log

Ã
r +

p
r2 − c22

2 +
p
4− c22

!

is defined on [c2, 2] and Ur(c2) =∞. Hence R = c2 and

U (R) = c2 log

Ã
c2

2 +
p
4− c22

!
.

Then by symmetry
Ũ (r) = 2U (R)− U (r)

and next

Ũ (1) = 2U (R)− U (1) = 2c2 log

Ã
c2

2 +
p
4− c22

!
− c2 log

Ã
1 +

p
1− c22

2 +
p
4− c22

!

= c2 log

 c22³
2 +

p
4− c22

´³
1 +

p
1− c22

´
 = −C

Again this function c2 7→ c2 log

µ
c22³

2+
√
4−c22

´³
1+
√
1−c22

´ ¶ is defined on [0, 1] . The
maximal C one finds is ≈ 1.82617 for c2 ≈ 0.72398. (Use Maple or Mathematica
for this.)

-2-10
1

2

-2
-1

0
1

2

-1.5

-1

-0.5

0

The solution that spans the maximal distance between the two rings.
-2-1012

-2 -1 0 1 2

-1
-0.75
-0.5

-0.25
0

-2-1012

-2 -1 0 1 2

-1
-0.75
-0.5

-0.25
0

Two solutions for the same configuration of rings.

Of the two solutions in the last figure only the left one is physically relevant.
As a soap film the configuration on the right would immediately collapse. This
lack of stability can be formulated in a mathematically sound way but for the
moment we will skip that.

9



Exercise 5 Solve the problem of the previous exercise for the linearized prob-
lem:  −∆u = 0 for 1 < x2 + y2 < 4,

u(x, y) = 0 for x2 + y2 = 4,
u(x, y) = −C for x2 + y2 = 1.

Are there any critical C as for the previous problem? Hint: in polar coordinates
one finds

∆ =

µ
∂

∂r

¶2
+
1

r

∂

∂r
+
1

r2

µ
∂

∂ϕ

¶2
.

Better check this instead of just believing it!

Exercise 6 Find a non-constant function u defined on Ω̄

Ω = {(x, y); 0 < x < 1 and 0 < y < 1}

that satisfies

− ∂

∂x

 ux(x, y)q
1 + (ux(x, y))

2

− ∂

∂y

 uy(x, y)q
1 + (uy(x, y))

2

 = 0 for (x, y) ∈ Ω,

(1.12)
the differential equation for a piece of cloth as in (1.9) now with f = 0. Give
the boundary data u(x, y) = g(x, y) for (x, y) ∈ ∂Ω that your solution satisfies.

Exercise 7 Consider the linear model for a square blanket hanging between two
straight rods when the deviation from the horizontal is due to some force f.

Exercise 8 Consider the non-linear model for a soap film with the following
configuration:

The film is free to move up and down the vertical front and back walls but is
fixed to the rods on the right and left. There is a constant pressure from above.
Give the boundary value problem and compute the solution.

10



1.3 Problems involving time

1.3.1 Wave equation

We have seen that a force due to tension in a string under some assumption is
related to the second order derivative of the deviation from equilibrium. Instead
of balancing this force by an exterior source such a ‘force’ can be neutralized
by a change in the movement of the string. Even if we are considering time
dependent deviations from equilibrium u (x, t) the force-density due the tension
in the (linearized) string is proportional to uxx (x, t) . If this force (Newton’s
law: F = ma) implies a vertical movement we find

c1uxx (x, t) dx = dF = dm utt (x, t) = ρdx utt (x, t) .

Here c depends on the tension in the string and ρ is the mass-density of that
string. We find the 1-dimensional wave equation:

utt − c2uxx = 0.

If we fix the string at its ends, say in 0 and c and describe both the initial position
and the initial velocity in all its points we arrive at the following system with
c, c > 0 and φ and ψ given functions

1d wave equation: utt(x, t)− c2uxx(x, t) = 0 for 0 < x < c and t > 0,
boundary condition: u(0, t) = u(c, t) = 0 for t > 0,

initial position: u(x, 0) = φ(x) for 0 < x < c,
initial velocity: ut(x, 0) = ψ(x) for 0 < x < c.

One may show that this system is well-posed.

Definition 1.3.1 (Hadamard) A system of differential equations with bound-
ary and initial conditions is called well-posed if it satisfies the following proper-
ties:

1. It has a solution (existence).

2. There is at most one solution (uniqueness).

3. Small changes in the problem result in small changes in the solution (sen-
sitivity).

The last item is sometimes translated as ‘the solution is continuously depen-
dent on the boundary data’.

We should remark that the second property may hold locally. Apart from
this, these conditions stated as in this definition sound rather soft. For each
problem we will study we have to specify in which sense these three properties
hold.

Other systems that are well-posed (if we give the right specification of these
three conditions) are the following.
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Example 1.3.2 For Ω a domain in R2 (think of the horizontal lay-out of a
swimming pool of sufficient depth and u models the height of the surface of the
water)

2d wave equation: utt(x, t)− c2∆u(x, t) = 0 for x ∈ Ω and t > 0,
boundary condition: − ∂

∂nu(x, t) + αu (x, t) = 0 for x ∈ ∂Ω and t > 0,
initial position: u(x, 0) = φ(x) for x ∈ Ω,
initial velocity: ut(x, 0) = ψ(x) for x ∈ Ω.

Here n denotes the outer normal, α > 0 and c > 0 are some numbers and

∆ =
³

∂
∂x1

´2
+
³

∂
∂x2

´2
.

Example 1.3.3 For Ω a domain in R3 (think of room with students listening
to some source of noise and u models the deviation of the pressure of the air
compared with complete silence)

inhomogeneous
3d wave equation:

utt(x, t)− c2∆u(x, t) = f (x, t) for x ∈ Ω and t > 0,
boundary condition: − ∂

∂nu(x, t) + α(x)u (x, t) = 0 for x ∈ ∂Ω and t > 0,
initial position: u(x, 0) = 0 for x ∈ Ω,
initial velocity: ut(x, 0) = 0 for x ∈ Ω.

Here n denotes the outer normal and α a positive function defined on ∂Ω. Again
c > 0. On soft surfaces such as curtains α is large and on hard surfaces such
as concrete α is small. The function f is given and usually almost zero except
near some location close to the blackboard. The initial conditions being zero
represents a teacher’s dream.

Exercise 9 Find all functions of the form u (x, t) = α(x)β(t) that satisfy utt(x, t)− c2uxx(x, t) = 0 for 0 < x < c and t > 0,
u(0, t) = u(c, t) = 0 for t > 0,
ut(x, 0) = 0 for 0 < x < c.

Exercise 10 Same question for utt(x, t)− c2uxx(x, t) = 0 for 0 < x < c and t > 0,
u(0, t) = u(c, t) = 0 for t > 0,
u(x, 0) = 0 for 0 < x < c.

1.3.2 Heat equation

In the differential equation that models a temperature profile time also plays a
role. It will appear in a different role as for the wave equation.
Allow us to give a simple explanation for the one-dimensional heat equation.

If we consider a simple three-point model with the left and right point being
kept at constant temperature we expect the middle point to reach the average
temperature after due time. In fact one should expect the speed of convergence
proportional to the difference with the equilibrium as in the following graph.

The temperature distribution in six consecutive steps.

12



For this discrete system with ui for i = 1, 2, 3 the temperature of the middle
node should satisfy:

∂

∂t
u2 (t) = −c (−u1 + 2u2(t)− u3) .

If we would consider not just three nodes but say 43 of which we keep the first
and the last one of fixed temperature we obtain


u1(t) = T1,
∂
∂tui (t) = −c (−ui−1(t) + 2ui(t)− ui+1(t)) for i ∈ {2, ..., 42} ,
u43(t) = T2.

Letting the stepsize between nodes go to zero, but adding more nodes to keep
the total length fixed, and applying the right scaling: u(i4x, t) = ui(t) and
c = c̃(4x)−2 we find for smooth u through

lim
4x↓0

−u(x−4x, t) + 2u(x, t)− u(x+4x, t)

(4x)2
= −uxx(x, t)

the differential equation

∂

∂t
u (x, t) = c̃ uxx(x, t).

For c̃ > 0 this is the 1-d heat equation.

Example 1.3.4 Considering a cylinder of radius d and length c which is iso-
lated around with the bottom in ice and heated from above. One finds the fol-
lowing model which contains a 3d heat equation:

ut(x, t)− c2∆u(x, t) = 0 for x21 + x22 < d2, 0 < x3 < c and t > 0,
∂
∂nu(x, t) = 0 for x21 + x22 = d2, 0 < x3 < c and t > 0,
u(x, t) = 0 for x21 + x22 < d2, x3 = 0 and t > 0,
u(x, t) = φ(x1, x2) for x21 + x22 < d2, x3 = c and t > 0,
u(x, 0) = 0 for x21 + x22 < d2, 0 < x3 < c.

Here ∆ =
³

∂
∂x1

´2
+
³

∂
∂x2

´2
+
³

∂
∂x3

´2
only contains the derivatives with respect

to space.

Until now we have seen several types of boundary conditions. Let us give
the names that belong to them.

Definition 1.3.5 For second order ordinary and partial differential equations
on a domain Ω the following names are given:

• Dirichlet: u(x) = φ (x) on ∂Ω for a given function φ.

• Neumann: ∂
∂nu(x) = ψ (x) on ∂Ω for a given function ψ.

• Robin: α (x) ∂
∂nu(x) = u(x) + χ (x) on ∂Ω for a given function χ.

Here n is the outward normal at the boundary.

13



Exercise 11 Consider the 1d heat equation for (x, t) ∈ (0, c)×R+ :

ut = c2uxx. (1.13)

1. Suppose u (0, t) = u(c, t) = 0 for all t > 0. Compute the only posi-
tive functions satisfying these boundary conditions and (1.13) of the form
u (x, t) = X(x)T (t).

2. Suppose ∂
∂nu (0, t) =

∂
∂nu(c, t) = 0 for all t > 0. Same question.

3. Suppose α ∂
∂nu (0, t) + u (0, t) = ∂

∂nu(c, t) + u (0, t) = 0 for all t > 0. Same
question again. Thinking of physics: what would be a restriction for the
number α?

14



1.4 Differential equations from calculus of vari-
ations

A serious course with the title Calculus of Variations would certainly take more
time then just a few hours. Here we will just borrow some techniques in order
to derive some systems of differential equations.
Instead of trying to find some balance of forces in order to derive a differential

equation and the appropriate boundary conditions one can try to minimize for
example the energy of the system. Going back to the laundry on a line from
(0, 0) to (1, 0) one could think of giving a formula for the energy of the system.
First the energy due to deviation of the equilibrium:

Erope (y) =

Z c

0

1
2(y

0(x))2dx

Also the potential energy due to the laundry pulling the rope down with force
f is present:

Epot (y) = −
Z c

0

y (x) f(x)dx.

So the total energy is

E (y) =

Z c

0

¡
1
2(y

0(x))2 − y (x) f(x)
¢
dx. (1.14)

For the line with constant tension one has

E (y) =

Z c

0

³p
1 + (y0(x))2 − 1− y (x) f(x)

´
dx. (1.15)

Assuming that a solution minimizes the energy implies that for any nice
function η and number τ it should hold that

E (y) ≤ E (y + τη) .

Nice means that the boundary condition also hold for the function y + τη and
that η has some differentiability properties.
If the functional τ 7→ E (y + τη) is differentiable, then y should be a station-

ary point:
∂

∂τ
E (y + τη)τ=0 = 0 for all such η.

Definition 1.4.1 The functional J1 (y; η) := ∂
∂τE (y + τη)τ=0 is called the first

variation of E.

Example 1.4.2 We find for the E in (1.15) that

∂

∂τ
E (y + τη)τ=0 =

Z c

0

Ã
y0(x)η0(x)p
1 + (y0(x))2

− η (x) f(x)

!
dx. (1.16)

If the function y is as we want then this quantity should be 0 for all such η.
With an integration by part we find

0 =

"
y0(x)p

1 + (y0(x))2
η(x)

#c
0

−
Z c

0

ÃÃ
y0(x)p

1 + (y0(x))2

!0
+ f(x)

!
η (x) dx.
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Since y and y+ τη are zero in 0 and c the boundary terms disappear and we are
left with Z c

0

ÃÃ
y0(x)p

1 + (y0(x))2

!0
+ f(x)

!
η (x) dx = 0.

If this holds for all functions η then

−
Ã

y0(x)p
1 + (y0(x))2

!0
= f(x).

Here we have our familiar differential equation.

Definition 1.4.3 The differential equation that follows for y from

∂

∂τ
E (y + τη)τ=0 = 0 for all appropriate η, (1.17)

is called the Euler-Lagrange equation for E.
The extra boundary conditions for y that follow from (1.17) are called the natural
boundary conditions.

Example 1.4.4 Let us consider the minimal surface that connects a ring of
radius 2 on level 0 with a ring of radius 1 on level −1. Assuming the solution is
a function defined between these two rings, Ω =

©
(x, y); 1 < x2 + y2 < 4

ª
is the

domain. If u is the height of the surface then the area is

Area (u) =

Z
Ω

q
1 + |∇u(x, y)|2dxdy.

We find
∂

∂τ
Area (y + τη)τ=0 =

Z
Ω

∇u(x, y) ·∇η(x, y)q
1 + |∇u(x, y)|2

dxdy. (1.18)

Since u and u+ τη are both equal to 0 on the outer ring and equal to −1 on the
inner ring it follows that η = 0 on both parts of the boundary. Then by Green

0 =

Z
Ω

∇u(x, y) ·∇η(x, y)q
1 + |∇u(x, y)|2

dxdy =

=

Z
∂Ω

∂
∂nu(x, y)q

1 + |∇u(x, y)|2
η(x, y)dσ −

Z
Ω

∇ · ∇u(x, y)q
1 + |∇u(x, y)|2

 η(x, y)dxdy

= −
Z
Ω

∇ · ∇u(x, y)q
1 + |∇u(x, y)|2

 η(x, y)dxdy.

If this holds for all functions η then a solution u satisfies

∇ · ∇u(x, y)q
1 + |∇u(x, y)|2

= 0.
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Example 1.4.5 Consider a one-dimensional loaded beam of shape y (x) that is
fixed at its boundaries by y(0) = y(c) = 0. The energy consists of the deformation
energy:

Edef (y) =

Z c

0

1

2
(y00(x))2 dx

and the potential energy due to the weight that pushes:

Epot(y) =

Z c

0

y(x)f(x)dx.

So the total energy E = Edef −Epot equals

E(y) =

Z c

0

µ
1

2
(y00(x))2 − y(x)f(x)

¶
dx

and its first variation

∂

∂τ
E (y + τη)τ=0 =

Z c

0

y00(x)η00(x)− η(x)f(x) dx =

=
h
y00(x)η0(x)− y000(x)η(x)

ic
0
+

Z c

0

y0000(x)η(x)− η(x)f(x) dx. (1.19)

Since y and y + τη equals 0 on the boundary we find that η equals 0 on the
boundary. Using this only part of the boundary terms disappear:

(#1.19) =
h
y00(x)η0(x)

ic
0
+

Z c

0

(y0000(x)− f(x)) η(x) dx.

If this holds for all functions η with η = 0 at the boundary then we may first
consider functions which also disappear in the first derivative at the boundary
and find that y0000(x) = f(x) for all x ∈ (0, c) . Next by choosing η with η0 6= 0
at the boundary we additionally find that a solution y satisfies

y00(0) = y00(c) = 0.

So the solution should satisfy: the d.e.: y0000(x) = f(x),
prescribed b.c.: y(0) = y(c) = 0,
natural b.c.: y00(0) = y00(c) = 0.

Exercise 12 At most swimming pools there is a possibility to jump in from a
springboard. Just standing on it the energy is, supposing it is a 1-d model, as for
the loaded beam but with different boundary conditions, namely y(0) = y0(0) = 0
and no prescribed boundary condition at c. Give the corresponding boundary
value problem.

Consider the problem y0000(x) = f(x), for 0 < x < 1
y(0) = y0(0) = 0,
y00(1) = y000(1) = 0.

(1.20)
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Exercise 13 Show that the problem (1.20) is well-posed (specify your setting).
The solution of (1.20) can be written by means of a Green function: u (x) =R 1
0
G(x, s)f(s)ds. Compute this Green function.

Exercise 14 Consider a bridge that is clamped in −1 and 1 and which is sup-
ported in 0 (and we assume it doesn’t loose contact which the supporting pillar
in 0).

If u is the deviation the prescribed boundary conditions are:

u(−1) = u0(−1) = u(0) = u(1) = u0(1) = 0.

The energy functional is

E(u) =

Z 1

−1

µ
1

2
(u00(x))2 − f(x) u(x)

¶
dx.

Compute the differential equation for the minimizing solution and the remaining
natural boundary conditions that this function should satisfy. Hint: consider uc
on [−1, 0] and ur on [0, 1] . How many conditions are needed?

18



1.5 Mathematical solutions are not always phys-
ically relevant

If we believe physics in the sense that for physically relevant solutions the energy
is minimized we could come back to the two solutions of the soap film between
the two rings as in the last part of Exercise 4. We now do have an energy for
that model, at least when we are discussing functions u of (x, y) :

E (u) =

Z
Ω

q
1 + |∇u(x, y)|2dxdy.

We have seen that if u is a solution then the first variation necessarily is 0 for
all appropriate test functions η :

∂

∂τ
E (u+ τη)τ=0 = 0.

For twice differentiable functions Taylor gives f (a+ τb) = f (a) + τf 0(a) +
1
2τ

2f 00(a) + o(τ2). So in order that the energy-functional has a minimum it will
be necessary that µ

∂

∂τ

¶2
E (u+ τη)τ=0 ≥ 0

whenever E is a ‘nice’ functional.

Definition 1.5.1 The quantity
¡
∂
∂τ

¢2
E (u+ τη)τ=0 is called the second varia-

tion.

Example 1.5.2 Back to the rings connected by the soap film from Exercise
4. We were looking for radially symmetric solutions of (1.10). If we restrict
ourselves to solutions that are functions of r then we found

U(r) = c2 log

Ã
r +

p
r2 − c22

2 +
p
4− c22

!
(1.21)

if and only if C ≤ log ¡2 +√3¢ ≈ 1.31696. Let call these solutions of type I.
If we allowed graphs that are not necessarily represented by one function then

there are two solutions if and only if C ≤ Cmax ≈ 1.82617 :

U (r) = c2 log

µ
r+
√
r2−c22

2+
√
4−c22

¶
and Ũ (r) = c2 log

µ
c22³

2+
√
4−c22

´³
r+
√
r2−c22

´ ¶ .

Let us call these solutions of type II.

type I type II
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On the left are type I and on the right type II solutions. The top two or three
on the right probably do not exist ‘physically’.

The energy of the type I solution U in (1.21) is (skipping the constant 2π)Z
Ω

q
1 + |∇U |2dxdy =

Z 2

1

p
1 + U2r (r)rdr

=

Z 2

1

vuut1 +Ã c2p
r2 − c22

!2
r dr

=

Z 2

1

r2p
r2 − c22

dr =

=

"
r
p
r2 − c22
2

+
c22 log(r +

p
r2 − c22)

2

#2
1

=
q
4− c22 − 1

2

q
1− c22 +

1
2c
2
2 log

Ã
2 +

p
4− c22

1 +
p
1− c22

!
.

The energy of type II solution equalsZ 2

c2

p
1 + U2r (r)rdr +

Z 1

c2

q
1 + Ũ2r (r)rdr =

=

Z 2

1

p
1 + U2r (r)rdr + 2

Z 1

c2

p
1 + U2r (r)rdr

=
q
4− c22 − 1

2

q
1− c22 +

1
2c
2
2 log

Ã
2 +

p
4− c22

1 +
p
1− c22

!
+

+
q
1− c22 + c22 log(1 +

q
1− c22)− c22 log(c2)

=
q
4− c22 +

1
2

q
1− c22 +

1
2c
2
2 log


³
2 +

p
4− c22

´³
1 +

p
1− c22

´
c22

 .

Just like C = C (c2) also E = E(c2) turns out to be an ugly function. But with
the help of Mathematica (or Maple) we may plot these functions.

On the left: CI above CII, on the right: EI below EII.
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Exercise 15 Use these plots of height and energy as functions of c2 to compare
the energy of the two solutions for the same configuration of rings. Can one
conclude instability for one of the solutions? Are physically relevant solutions
necessarily global minimizers or could they be local minimizers of the energy
functional? Hint: think of the surface area of these solutions.

Exercise 16 The approach that uses solutions in the form r 7→ U (r) in Ex-
ercise 4 has the drawback that we have to glue together two functions for one
solution. A formulation without this problem uses u 7→ R (u) (the ‘inverse’
function). Give the energy Ẽ formulation for this R. What is the first variation
for this Ẽ?

Using this new formulation it might be possible to find a connection from
a type II solution RII to a type I solution RI with the same C < log

¡
2 +
√
3
¢

such that the energy decreases along the connecting path. To be more precise:
we should construct a homotopy H ∈ C

¡
[0, 1] ;C2 [−C, 0]¢ with H (0) = RII

and H (1) = RI that is such that t 7→ Ẽ(H(t)) is decreasing. This would prove
that RII is not even a local minimizer.

Claim 1.5.3 A type II solution with c2 < 0.72398 is probably not a local mini-
mizer of the energy and hence not a physically relevant solution.
Volunteers may try to prove this claim.

Exercise 17 Let us consider a glass cylinder with at the top and bottom each
a rod laid out on a diametral line and such that both rods cross perpendicular.
See the left of the three figures:

One can connect these two rods through this cylinder by a soap film as in the
two figures on the right.
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1. The solution depicted in the second cylinder is described by a function.
Setting the cylinder

©
(x, y, z) ;−c ≤ x ≤ c and y2 + z2 = R2

ª
the function

looks as z(x, y) = y tan
¡
π
4
x
c

¢
. Show that for a deviation of this function

by w the area formula is given by

E (w) =

Z c

−c

Z yr,w(x)

yl,w(x)

q
1 + |∇z +∇w|2dydx

where yl,w(x) < 0 < yr,w(x) are in absolute sense smallest solutions of

y2 +
³
y tan

³π
4

x

c

´
+ w(x, y)

´2
= R2.

2. If we restrict ourselves to functions that satisfy w(x, 0) = 0 we may use a
more suitable coordinate system, namely x, r instead of x, y and describe
ϕ(x, r) instead of w(x, y) as follows:

y

z

r

Show that

E (ϕ) =

Z c

−c

Z R

−R

s
1 +

µ
∂ϕ

∂r

¶2
+

µ
r
π

4c
+

∂ϕ

∂x

¶2
drdx.

3. Derive the Euler-Lagrange equation for E(ϕ) and state the boundary value
problem.

4. Show that ‘the constant turning plane’ is indeed a solution in the sense
that it yields a stationary point of the energy functional.

5. It is not obvious to me if the first depicted solution is indeed a mini-
mizer. If you ask me for a guess: for R >> c it is the minimizer
(R > 1.535777884999 c?). For the second depicted solution of the bound-
ary value problem one can find a geometrical argument that shows it is not
even a local minimizer. (Im)prove these guesses.
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Week 2

Spaces, Traces and
Imbeddings

2.1 Function spaces

2.1.1 Hölder spaces

Before we will start ‘solving problems’ we have to fix the type of function we are
looking for. For mathematics that means that we have to decide which function
space will be used. The classical spaces that are often used for solutions of
p.d.e. (and o.d.e.) are Ck(Ω̄) and the Hölder spaces Ck,α(Ω̄) with k ∈ N and
α ∈ (0, 1] . Here is a short reminder of those spaces.
Definition 2.1.1 Let Ω ⊂ Rn be a domain.
• C(Ω̄) with k·k∞ defined by kuk∞ = supx∈Ω̄ |u(x)| is the space of continu-
ous functions.

• Let α ∈ (0, 1] . Then Cα(Ω̄) with k·kα defined by

kukα = kuk∞ + sup
x,y∈Ω̄

|u(x)− u(y)|
|x− y|α ,

consists of all functions u ∈ C(Ω̄) such that kukα <∞. It is the space of
functions which are Hölder-continuous with coefficient α.

If we want higher order derivatives to be continuous up to the boundary
we should explain how these are defined on the boundary or to consider just
derivatives in the interior and extend these. We choose this second option.

Definition 2.1.2 Let Ω ⊂ Rn be a domain and k ∈ N+.
• Ck(Ω̄) with k·kCk(Ω̄) consists of all functions u that are k-times differ-
entiable in Ω and which are such that for each multiindex β ∈ Nn with
1 ≤ |β| ≤ k there exists gβ ∈ C(Ω̄) with gβ =

¡
∂
∂x

¢β
u in Ω. The norm

k·kCk(Ω̄) is defined by

kukCk(Ω̄) = kukC(Ω̄) +
X

1≤|β|≤k
kgβkC(Ω̄) .
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• Ck,α(Ω̄) with k·kCk,α(Ω̄) consists of all functions u that are k times α-
Hölder-continuously differentiable in Ω and which are such that for each
multiindex β ∈ Nn with 1 ≤ |β| ≤ k there exists gβ ∈ Cα(Ω̄) with gβ =¡
∂
∂x

¢β
u in Ω. The norm k·kCk,α(Ω̄) is defined by

kukCk,α(Ω̄) = kukC(Ω̄) +
X

1≤|β|<k
kgβkC(Ω̄) +

X
|β|=k

kgβkCα(Ω̄) .

Remark 2.1.3 Adding an index 0 at the bottom in Ck,α
0 (Ω̄) means that u and

all of its derivatives (read gβ) up to order k are 0 at the boundary. For example,

C4(Ω̄) ∩ C20 (Ω̄) =
(
u ∈ C4(Ω̄);u|∂Ω =

µ
∂

∂xi
u

¶
|∂Ω

=

µ
∂2

∂xi∂xj
u

¶
|∂Ω

= 0

)

is a subspace of C4(Ω̄).

Remark 2.1.4 Some other cases where we will use the notation C·(·) are the
following. For those cases we are not defining a norm but just consider the
collection of functions.
The set C∞(Ω̄) consists of the functions that belong to Ck(Ω̄) for every

k ∈ N.
If we write Cm(Ω), without the closure of Ω, we mean all functions which

are m-times differentiable inside Ω.
By C∞0 (Ω) we will mean all functions with compact support in Ω and which

are infinitely differentiable on Ω.

For bounded domains Ω the spaces Ck(Ω̄) and Ck,α(Ω̄) are Banach spaces.

Although often well equipped for solving differential equations these spaces
are in general not very convenient in variational settings. Spaces that are better
suited are the...

2.1.2 Sobolev spaces

Let us first recall that Lp (Ω) is the space of all measurable functions u : Ω→ R
with

R
Ω
|u(x)|p dx <∞.

Definition 2.1.5 Let Ω ⊂ Rn be a domain and k ∈ N and p ∈ (1,∞) .
• W k,p(Ω) are the functions u such that

¡
∂
∂x

¢α
u ∈ Lp(Ω) for all α ∈ Nn

with |α| ≤ k. Its norm k·kWk,p(Ω) is defined by

kukWk,p(Ω) =
X
α∈Nn
|α|≤k

°°°°µ ∂

∂x

¶α
u

°°°°
Lp(Ω)

.

Remark 2.1.6 When is a derivative in Lp(Ω)? For the moment we just recall
that ∂

∂x1
u ∈ Lp(Ω) if there is g ∈ Lp(Ω) such thatZ

Ω

g ϕ dx = −
Z
Ω

u ∂
∂x1

ϕ dx for all ϕ ∈ C∞0 (Ω).
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For u ∈ C1(Ω) ∩ Lp(Ω) one takes g = ∂
∂x1

u ∈ C(Ω), checks if g ∈ Lp(Ω), and
the formula follows from an integration by parts since each ϕ has a compact
support in Ω.

A closely related space is used in case of Dirichlet boundary conditions.
Then we would like to restrict ourselves to all functions u ∈ W k,p (Ω) that
satisfy

¡
∂
∂x

¢α
u = 0 on ∂Ω for α with 0 ≤ |α| ≤ m for some m. Since the

functions in W k,p (Ω) are not necessarily continuous we cannot assume that a
condition like

¡
∂
∂x

¢α
u = 0 on ∂Ω to hold pointwise. One way out is through

the following definition.

Definition 2.1.7 Let Ω ⊂ Rn be a domain, k ∈ N and p ∈ (1,∞) .

• Set W k,p
0 (Ω) = C∞0 (Ω)

k·k
Wk,p(Ω) , the closure in the k·kWk,p(Ω)-norm of the

set of infinitely differentiable functions with compact support in Ω. The
standard norm on W k,p

0 (Ω) is k·kWk,p(Ω) .

Instead of the norm k·kWk,p(Ω) one might also encounter some other norm

forW k,p
0 (Ω) namely |||·|||Wk,p

0 (Ω) defined by taking only the highest order deriva-
tives:

|||u|||Wk,p
0 (Ω) =

X
α∈Nn
|α|=k

°°°°µ ∂

∂x

¶α
u

°°°°
Lp(Ω)

,

Clearly this cannot be a norm on W k,p(Ω) for k ≥ 1 since |||1|||Wk,p
0 (Ω) = 0.

Nevertheless, a result of Poincaré saves our day. Let us first fix the meaning of
C1-boundary or manifold.

Definition 2.1.8 We will call a bounded (n− 1)-dimensional manifold M a
C1-manifold if there are finitely many C1-maps fi : Āi → R with Ai an open

set in Rn−1 and corresponding Cartesian coordinates
n
y
(i)
1 , . . . , y

(i)
n

o
, say i ∈

{1,m} , such that

M =
m[
i=1

n
y(i)n = fi(y

(i)
1 , . . . , y

(i)
n−1); (y

(i)
1 , . . . , y

(i)
n−1) ∈ Āi

o
.

We may assume there are open blocks Bi := Ai × (ai, bi) that coverM and are
such that

Bi ∩M =
n
y(i)n = fi(y

(i)
1 , . . . , y

(i)
n−1); (y

(i)
1 , . . . , y

(i)
n−1) ∈ Āi

o
.

Three blocks with local cartesian coordinates
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Theorem 2.1.9 (A Poincaré type inequality) Let Ω ⊂ Rn be a domain
and c ∈ R+. Suppose that there is a bounded (n− 1)-dimensional C1-manifold
M ⊂ Ω̄ such that for every point x ∈ Ω there is a point x∗ ∈M connected by a
smooth curve within Ω with length and curvature uniformly bounded, say by c.
Then there is a constant c such that for all u ∈ C1(Ω̄) with u = 0 onM

Z
Ω

|u|p dx ≤ c

Z
Ω

|∇u|p dx.

Ω M

Proof. First let us consider the one-dimensional problem. Taking u ∈ C1 (0, c)
with u (0) = 0 we find with 1

p +
1
q = 1:

Z c

0

|u(x)|p dx =

Z c

0

¯̄̄̄Z x

0

u0(s)ds
¯̄̄̄p
dx

≤
Z c

0

µZ x

0

|u0(s)|p ds
¶µZ x

0

1ds

¶ p
q

dx

≤
ÃZ c

0

|u0(s)|p ds
!Z c

0

x
p
q dx =

1

p
cp
Z c

0

|u0(s)|p ds.

For the higher dimensional problem we go over to new coordinates. Let ỹ
denote a system of coordinates on (part) of the manifoldM and let yn fill up
the remaining direction. We may choose several systems of coordinates to fill
up Ω. SinceM is C1 and (n− 1)-dimensional we may assume that the Jacobian
of each of these transformations is bounded from above and away from zero, let
us assume 0 < c−11 < J < c1.
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By these curvilinear coordinates we find for any number κ > cZ
shaded area

|u(x)|p dx ≤ c1

Z
part of M

µZ κ

0

|u(y)|p dyn
¶
dỹ ≤

≤ c1

Z
part of M

1

p
κp
µZ κ

0

¯̄̄̄
∂

∂yn
u(y)

¯̄̄̄p
dyn

¶
dỹ ≤

≤ c1

Z
part of M

1

p
κp
µZ κ

0

|(∇u) (y)|p dyn
¶
dỹ ≤

≤ c21
1

p
κp
Z
shaded area

|(∇u) (x)|p dx.

Filling up Ω appropriately yields the result.

Exercise 18 Show that the result of Theorem 2.1.9 indeed implies that there
are constants c1, c2 ∈ R+ such that

c1 |||u|||W 1,2
0 (Ω) ≤ kukW 1,2(Ω) ≤ c2 |||u|||W1,2

0 (Ω) .

Exercise 19 Suppose that u ∈ C2([0, 1]2) with u = 0 on ∂((0, 1)2). Show the
following:
there exists c1 > 0 such thatZ

[0,1]2
u2 dx ≤ c1

Z
[0,1]2

¡
u2xx + u2yy

¢
dx.

Exercise 20 Suppose that u ∈ C2([0, 1]
2
) with u = 0 on ∂((0, 1)

2
). Show the

following:
there exists c2 > 0 such thatZ

[0,1]2
u2 dx ≤ c2

Z
[0,1]2

(∆u)
2
dx.

Hint: show that for these functions u the following holds:Z
[0,1]2

uxxuyy dx =

Z
[0,1]2

(uxy)
2 dx ≥ 0.

Exercise 21 Suppose that u ∈ C2([0, 1]
2
) with u(0, x2) = u(1, x2) = 0 for

x2 ∈ [0, 1] . Show the following:
there exists c3 > 0 such thatZ

[0,1]2
u2 dxdy ≤ c3

Z
[0,1]2

¡
u2xx + u2yy

¢
dx.

Exercise 22 Suppose that u ∈ C2([0, 1]2) with u(0, x2) = u(1, x2) = 0 for
x2 ∈ [0, 1] . Prove or give a counterexample to:
there exists c4 > 0 such thatZ

[0,1]2
u2 dxdy ≤ c4

Z
[0,1]2

(∆u)2 dx.
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Exercise 23 Here are three spaces: W 2,2 (0, 1) , W 2,2 (0, 1) ∩ W 1,2
0 (0, 1) and

W 2,2
0 (0, 1) , which are all equipped with the norm k·kW 2,2(0,1) . Consider the

functions fα(x) = xα (1− x)α for α ∈ R. Complete the next sentences:

1. If α ....., then fα ∈W 2,2 (0, 1) .

2. If α ....., then fα ∈W 2,2 (0, 1) ∩W 1,2
0 (0, 1) .

3. If α ....., then fα ∈W 2,2
0 (0, 1) .
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2.2 Restricting and extending
If Ω ⊂ Rn is bounded and ∂Ω ∈ C1 then by assumption we may split the
boundary in finitely many pieces, i = 1, . . . ,m, and we may describe each of
these by n

y(i)n = fi(y
(i)
1 , . . . , y

(i)
n−1); (y

(i)
1 , . . . , y

(i)
n−1) ∈ Ai

o
for some bounded open set Ai ∈ Rn−1. We may even impose higher regularity
of the boundary:

Definition 2.2.1 For a bounded domain Ω we say ∂Ω ∈ Cm,α if there is a
finite set of functions fi, open sets Ai and Cartesian coordinate systems as in
Definition 2.1.8, and if moreover fi ∈ Cm,α(Āi).

First let us consider multiplication operators.

Lemma 2.2.2 Fix Ω ⊂ Rn bounded and ζ ∈ C∞0 (Rn). Consider the multipli-
cation operator M(u) = ζu . This operator M is bounded in any of the spaces
Cm(Ω̄), Cm,α(Ω̄) with m ∈ N and α ∈ (0, 1] , Wm,p(Ω) and Wm,p

0 (Ω) with
m ∈ N and p ∈ (1,∞) .
Exercise 24 Prove this lemma.

Often it is convenient to study the behaviour of some function locally. One
of the tools is the so-called partition of unity.

Definition 2.2.3 A set of functions {ζi}ci=1 is called a C∞-partition of unity
for Ω if the following holds:

1. ζi ∈ C∞0 (Rn) for all i;

2. 0 ≤ ζi(x) ≤ 1 for all i and x ∈ Ω;
3.
Pc

i=1 ζi(x) = 1 for x ∈ Ω.
Sometimes it is useful to work with a partition of unity of Ω that coincides

with the coordinate systems mentioned in Definition 2.1.8 and 2.2.1. In fact it
is possible to find a partition of unity {ζi}c+1i=1 such that(

support(ζi) ⊂ Bi for i = 1, . . . , c,

support(ζc+1) ⊂ Ω.
(2.1)

Any function u defined on Ω can now be written as

u =
cX

i=1

ζiu

and by Lemma 2.2.2 the functions ui := ζiu have the same regularity as u but
are now restricted to an area where we can deal with them. Indeed we find
support(ui) ⊂ support(ζi).
Definition 2.2.4 A mollifier on Rn is a function J1 with the following proper-
ties:
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1. J1 ∈ C∞(Rn);

2. J1(x) ≥ 0 for all x ∈ Rn;
3. support(J1) ⊂ {x ∈ Rn; |x| ≤ 1} ;
4.
R
Rn J1(x)dx = 1.

By rescaling one arrives at the family of functions Jε (x) = ε−nJ1(ε−1x) that
goes in some sense to the δ-function in 0. The nice property is the following.
If u has compact support in Ω we may extend u by 0 outside of Ω. Then, for
u ∈ Cm,α(Ω̄) respectively u ∈Wm,p(Ω) we may define

uε(x) := (Jε ∗ u) (x) =
Z
y∈Rn

Jε(x− y)u(y)dy,

to find a family of C∞-functions that approximates u when ε ↓ 0 in k·kCm,α(Ω)

respectively in k·kWm,p(Ω)-norm.

-2 -1 1 2 3

-0.5

0.5

1

Mollyfying a jump in u, u0 and u00.

Example 2.2.5 The standard example of a mollifier is the function

ρ(x) =

(
c exp

³
−1

1−|x|2
´

for |x| < 1,
0 for |x| ≥ 1,

where the c is fixed by condition 4 in Definition 2.2.4.

There are other ways of restricting but let us now focus on extending a func-
tion. Without any assumption on the boundary this can become very involved.
For bounded Ω with at least ∂Ω ∈ C1 we may define a bounded extension oper-
ator. But first let us consider extension operators from Cm [0, 1] to Cm [−1, 1] .
For m = 0 one proceeds by a simple reflection. Set

E0(u)(x) =

½
u(x) for 0 ≤ x ≤ 1,
u(−x) for − 1 ≤ x < 0,

and one directly checks that E0(u) ∈ C [−1, 1] for u ∈ C [0, 1] and moreover

kE0(u)kC[−1,1] ≤ kukC[0,1] .
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A simple and elegant procedure does it for m > 0. Set

Em(u)(x) =

½
u(x) for 0 ≤ x ≤ 1,Pm+1

k=1 αm,ku(− 1
kx) for − 1 ≤ x < 0,

and compute the coefficients αm,k from the equations coming out of

(Em(u))
(j) ¡0+¢ = (Em(u))

(j) ¡0−¢ ,
namely

1 =
m+1X
k=1

αm,k

µ
−1
k

¶j
for j = 0, 1, . . . ,m. (2.2)

Then Em(u) ∈ Cm [−1, 1] for u ∈ Cm [0, 1] and moreover with cm =
m+1P
k=1

|αm,k| :

kEm(u)kCm[−1,1] ≤ cm kukCm[0,1] .

Exercise 25 Show that there is cp,m ∈ R+ such that for all u ∈ Cm [0, 1] :

kEm(u)kWm,p(−1,1) ≤ cp,m kukWm,p(0,1) .

Exercise 26 Let Ω ⊂ Rn−1 be a bounded domain. Convince yourself that

Em(u)(x
0, xn) =

½
u(x0, xn) for 0 ≤ xn ≤ 1,Pm+1

k=1 αm,ku(x
0,− 1

kxn) for − 1 ≤ xn < 0,

is a bounded extension operator from Cm(Ω× [0, 1]) to Cm(Ω× [−1, 1]).
Lemma 2.2.6 Let Ω and Ω0 be bounded domains in Rn and ∂Ω ∈ Cm with
m ∈ N+. Suppose that Ω̄ ⊂ Ω0.Then there exists a linear extension operator Em

from Cm(Ω̄) to Cm
0 (Ω̄

0) such that:

1. (Emu)|Ω = u,

2. (Emu)|Rn\Ω0 = 0

3. there is cΩ,Ω0,m and cΩ,Ω0,m,p ∈ R+ such that for all u ∈ Cm(Ω̄)

kEmukCm(Ω̄0) ≤ cΩ,Ω0,m kukCm(Ω̄) , (2.3)

kEmukWm,p(Ω0) ≤ cΩ,Ω0,m,p kukWm,p(Ω) . (2.4)

Proof. Let the Ai, fi, Bi and ζi be as in Definition 2.1.8 and (2.1). Let
us consider ui = ζiu in the coordinates {y(i)1 , . . . , y

(i)
n }. First we will flatten

this part of the boundary by replacing the last coordinate by y
(i)
n = ỹ

(i)
n +

fi(y
(i)
1 , . . . , y

(i)
n−1). Writing ui in these new coordinates {y(i)∗ , ỹ

(i)
n }, with y

(i)
∗ =

(y
(i)
1 , . . . , y

(i)
n−1) and setting B∗i the transformed box, we will first assume that

ui is extended by zero for ỹ
(i)
n > 0 and large. Now we may define the extension

of ui by

ūi(y
(i)
∗ , ỹ(i)n ) =

 ui(y
(i)
∗ , ỹ

(i)
n ) if ỹ(i)n ≥ 0,

m+1P
k=1

αkui(y
(i)
∗ ,− 1

k ỹ
(i)
n ) if ỹ(i)n < 0,
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where the αk are defined by the equations in (2.2). Assuming that u ∈ Cm(Ω̄) we
find that with the coefficients chosen this way the function ūi ∈ Cm(B̄∗i ) and
its derivatives of order ≤ m are continuous. Moreover, also after the reverse
transformation the function ūi ∈ Cm(B̄i). Indeed this fact remains due to the
assumptions on fi. It is even true that there is a constant Ci,∂Ω, which just
depend on the properties of the ith local coordinate system and ζi, such that

kūikWm,p(Bi)
≤ Ci,∂Ω kuikWm,p(Bi∩Ω) . (2.5)

An approximation argument show that (2.5) even holds for all u ∈Wm,p(Ω). Up
to now we have constructed an extension operator Ẽm :W

m,p(Ω)→Wm,p(Rn)
by

Ẽm (u) =
cX

i=1

ūi + ζc+1u. (2.6)

As a last step let χ be a C∞0 -function with such that χ(x) = 1 for x ∈ Ω̄ and
support(χ) ⊂ Ω0. We define the extension operator Em by

Em (u) = χ
cX

i=1

ūi + ζc+1u.

Notice that we repeatedly used Lemma 2.2.2 in order to obtain the estimate in
(2.4).
It remains to show that Em(u) ∈ Wm,p

0 (Ω0). Due to the assumption that
support(χ) ⊂ Ω0 we find that support(Jε ∗Em(u)) ⊂ Ω0 for ε small enough
where Jε is a mollifier. Hence (Jε ∗Em(u)) ∈ C∞0 (Ω0) and since Jε ∗ Em(u)
approaches Emu in Wm,p(Ω0)-norm for ε ↓ 0 one finds Emu ∈Wm,p

0 (Ω0).

Exercise 27 A square inside a disk: Ω1 = (−1, 1)2 and Ω0
1 =

©
x ∈ R2; |x| < 2ª.

Construct a bounded extension operator E :W 2,2(Ω1)→W 2,2
0 (Ω01).

Exercise 28 Think about the similar question in case of

an equilateral triangle: Ω2 =
©
(x, y) ;−12 < y < 1−√3 |x|ª ,

a regular pentagon: Ω3 = co {(cos(2kπ/5), sin(2kπ/5)); k = 0, 1, . . . , 4}o .
a US-army star Ω4 = ....

co(A) is the convex hull of A; the small o means the open interior.

Hint for the triangle.
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Above we have defined a mollifier on Rn. If we want to use such a mollifier
on a bounded domain a difficulty arises when u doesn’t have a compact support
in Ω. In that case we have to use the last lemma first and extend the function.
Notice that we don’t need the last part of the proof of that lemma but may use
Ẽm defined in (2.6).

Exercise 29 Let Ω and Ω0 be bounded domains in Rn with Ω̄ ⊂ Ω0 and let
ε > 0.

1. Suppose that u ∈ C(Ω̄0). Prove that uε (x) :=
R
y∈Ω0 Jε(x−y)u(y)dy is such

that uε → u in C(Ω̄) for ε ↓ 0.
2. Let γ ∈ (0, 1] and suppose that u ∈ Cγ(Ω̄0). Prove that uε → u in Cγ(Ω̄)
for ε ↓ 0.

3. Let u ∈ Ck(Ω̄0) and α ∈ Nn with |α| ≤ k. Show that
¡
∂
∂x

¢α
uε =

³¡
∂
∂x

¢α
u
´
ε

in Ω if ε < inf {|x− x0| ;x ∈ ∂Ω, x0 ∈ ∂Ω0} .

Exercise 30 Let Ω be bounded domains in Rn and let ε > 0.

1. Derive from Hölder’s inequality thatZ
ab dx ≤

µZ
|a| dx

¶ 1
q
µZ

|a| |b|p dx
¶ 1

p

for p, q ∈ (1,∞) with 1
p
+
1

q
= 1.

2. Suppose that u ∈ Lp(Ω) with p < ∞. Set ū(x) = u (x) for x ∈ Ω and
ū(x) = 0 elsewhere. Prove that uε (x) :=

R
y∈Rn0 Jε(x− y)ū(y)dy satisfies

kuεkLp(Ω) ≤ kukLp(Ω) .

3. Use that C(Ω̄0) is dense in Lp(Ω0) and the previous exercise to conclude
that uε → u in Lp(Ω).
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2.3 Traces
We have seen that u ∈W 1,2

0 (Ω) means u = 0 on ∂Ω in some sense, but not ∂
∂nu

being zero on the boundary although we defined W 1,2
0 (Ω) by approximation

through functions in C∞0 (Ω). What can we do if the boundary data we are
interested in are nonhomogeneous? The trace operator solves that problem.

Theorem 2.3.1 Let p ∈ (1,∞) and assume that Ω is bounded and ∂Ω ∈ C1.

A. For u ∈ W 1,p (Ω) let {um}∞m=1 ⊂ C1(Ω̄) be such that ku− umkW 1,p(Ω) →
0. Then um|∂Ω converges in Lp(∂Ω), say to v ∈ Lp(∂Ω), and the limit v
only depends on u.

So T :W 1,p (Ω)→ Lp (∂Ω) with Tu = v is well defined.

B. The following holds:

1. T is a bounded linear operator from W 1,p (Ω) to Lp (∂Ω) ;

2. if u ∈W 1,p (Ω) ∩ C ¡Ω̄¢ , then Tu = u|∂Ω.

Remark 2.3.2 This T is called the trace operator. Bounded means there is
Cp,Ω such that

kTukLp(∂Ω) ≤ Cp,Ω kukW1,p(Ω) . (2.7)

Proof. We may assume that there are finitely many maps and sets of Cartesian
coordinate systems as in Defintion 2.1.8. Let {ζi}mi=1 be a C∞ partition of unity
for Ω, that fits with the finitely many boundary maps:

∂Ω ∩ support(ζi) ⊂ ∂Ω ∩
n
y(i)n = fi(y

(i)
1 , . . . , y

(i)
n−1); (y

(i)
1 , . . . , y

(i)
n−1) ∈ Ai

o
.

We may choose such a partition since these local coordinate systems do overlap;
the Ai are open. Now for the sake of simpler notation let us assume these
boundary parts are even flat. For this assumption one will pay by a factor
(1 + |∇fi|2)1/2 in the integrals but by the C1-assumption for ∂Ω the values of
|∇fi|2 are uniformly bounded.
First let us suppose that u ∈ C1

¡
Ω̄
¢
and derive an estimate as in (2.7).

Integrating inwards from the (flat) boundary part Ai ⊂ Rn−1 gives, with c
‘outside the support of ζi’, thatZ

Ai

ζi |u|p dx0 = −
Z
Ai

Z c

0

∂

∂xn
(ζi |u|p) dxndx0

= −
Z
Ai×(0,c)

µ
∂ζi
∂xn

|u|p + pζi |u|p−2 u
∂u

∂xn

¶
dx

≤ C

Z
Ai×(0,c)

µ
|u|p + |u|p−1

¯̄̄̄
∂u

∂xn

¯̄̄̄¶
dx

≤ C 2p−1
p

Z
Ai×(0,c)

|u|p dx+ C 1
p

Z
Ai×(0,c)

¯̄̄̄
∂u

∂xn

¯̄̄̄p
dx

≤ C̃

Z
Ai×(0,c)

(|u|p + |∇u|p) dx.
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In the one but last step we used Young’s inequality:

ab ≤ 1
p
|a|p + 1

q
|b|q for p, q > 0 with 1

p
+
1

q
= 1. (2.8)

Combining such an estimate for all boundary parts we find, adding finitely
many constants, thatZ

∂Ω

|u|p dx0 ≤ C

Z
Ω

(|u|p + |∇u|p) dx.

So °°u|∂Ω°°Lp(∂Ω) ≤ C kukW1,p(Ω) for u ∈ C1
¡
Ω̄
¢
, (2.9)

and if um ∈ C1(Ω) with um → u in W 1,p(u) then
°°u|∂Ω − um|∂Ω

°°
Lp(∂Ω)

≤
C ku− umkW 1,p(Ω) → 0. So for u ∈ C1(Ω̄) the operator T is well-defined and
Tu = u|∂Ω.
Now assume that u ∈ W 1,p(Ω) without the C1

¡
Ω̄
¢
restriction. Then there

are C∞(Ω̄) functions um converging to u and

kTum − TukkLp(∂Ω) ≤ C kum − ukkW 1,p(Ω) . (2.10)

So {Tum}∞m=1 is a Cauchy sequence in Lp(∂Ω) and hence converges. By (2.9)
one also finds that the limit does not depend on the chosen sequence: if um → u
and vm → u inW 1,p(Ω), then kTum − TvmkLp(∂Ω) ≤ C kum − vmkW 1,p(Ω) → 0.

So Tu := limm→∞ Tum is well defined in Lp(∂Ω) for all u ∈W 1,p(Ω).
The fact that T is bounded also follows from (2.9):

kTukLp(∂Ω) = lim
m→∞ kTumkLp(∂Ω) ≤ C lim

m→∞ kumkW 1,p(Ω) = C kukW 1,p(Ω) .

It remains to show that if u ∈W 1,p(Ω)∩C ¡Ω̄¢ then Tu = u|∂Ω. To complete
that argument we use that functions in W 1,p(Ω) ∩ C ¡Ω̄¢ can be approximated
by a sequence of C1(Ω̄)-functions {um}∞m=1 in W 1,p(Ω)-sense and such that
um → u uniformly in Ω̄. For example, since ∂Ω ∈ C1 one may extend functions
in a small ε1-neighborhood outside of Ω̄ by a local reflection as in Lemma 2.2.6.
Setting ũ = E(u) and one finds ũ ∈ W 1,p(Ωε) ∩ C

¡
Ωε
¢
and kũkW 1,p(Ωε)

≤
C kukW 1,p(Ω) . A mollifier allows us to construct a sequence {um}∞m=1 in C∞(Ω̄)
that approximates both u in W 1,p(Ω) as well as uniformly on Ω̄.
So °°u|∂Ω − um|∂Ω

°°
Lp(∂Ω)

≤ |∂Ω|1/p °°u|∂Ω − um|∂Ω
°°
C(∂Ω)

≤
≤ |∂Ω|1/p ku− umkC(Ω̄) → 0

and
°°Tu− um|∂Ω

°°
Lp(∂Ω)

→ 0 implying that Tu = u|∂Ω.

Exercise 31 Prove Young’s inequality (2.8).
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2.4 Zero trace and W 1,p
0 (Ω)

So by now there are two ways of considering boundary conditions. First there is
W 1,p
0 (Ω) as the closure of C∞0 (Ω) in the k·kW1,p(Ω)-norm and secondly the trace

operator. It would be rather nice if for zero boundary conditions these would
coincide.

Theorem 2.4.1 Fix p ∈ (1,∞) and suppose that Ω is bounded with ∂Ω ∈ C1.
Suppose that T is the trace operator from Theorem 2.3.1. Let u ∈ W 1,p(Ω).
Then

u ∈W 1,p
0 (Ω) if and only if Tu = 0 on ∂Ω.

Proof. (⇒) If u ∈ W 1,p
0 (Ω) then we may approximate u by um ∈ C∞0 (Ω) and

since T is a bounded linear operator:

kTukLp(Ω) = kTu− TumkLp(Ω) ≤ c ku− umkW 1,p(Ω) → 0.

(⇐) Assuming that Tu = 0 on ∂Ω we have to construct a sequence in C∞0 (Ω)
that converges to u in the k·kW 1,p(Ω)-norm. Since ∂Ω ∈ C1 we again may work
on the finitely many local coordinate systems as in Definition 2.2.1. We start by
fixing a partition of unity {ζi}mi=1 as in the proof of the previous theorem and
which again corresponds with the local coordinate systems. Next we assume
the boundary sets are flat, say ∂Ω ∩ Bi = ΓBi ⊂ Rn−1 and set Ω ∩ Bi = ΩBi
where Bi is a box.
Since Tu = 0 we may take any sequence {uk}∞k=1 ∈ C1(Ω̄) such that

kuk − ukW1,p(Ω) → 0 and it follows from the definition of T that um|∂Ω =

Tum → 0. Now we proceed in three steps. From v(t) = v(0) +
R t
0
v0(s)ds one

gets

|v(t)| ≤ |v(0)|+
Z t

0

|v0(s)| ds

and hence by Minkowski’s and Young’s inequality

|v(t)|p ≤ cp |v(0)|p + cp

µZ t

0

|v0(s)| ds
¶p
≤ cp |v(0)|p + cpt

p−1
Z t

0

|v0(s)|p ds.

It implies thatZ
ΓB

|um(x0, xn)|p dx0 ≤

≤ cp

Z
ΓB

|um(x0, 0)|p dx0 + cpx
p−1
n

Z
ΓB×[0,xn]

¯̄̄̄
∂

∂xn
um(x

0, s)
¯̄̄̄p
dx0ds,

and since um|∂Ω → 0 in Lp(∂Ω) and um → u in W 1,p(Ω) we find thatZ
ΓB

|u(x0, xn)|p dx0 ≤ cpx
p−1
n

Z
ΓB×[0,xn]

¯̄̄̄
∂

∂xn
u(x0, s)

¯̄̄̄p
dx0ds. (2.11)

Taking ζ ∈ C∞0 (R) such that

ζ (x) = 1 for x ∈ [0, 1] ,
ζ (x) = 0 for x /∈ [−1, 2] ,
0 ≤ ζ ≤ 1 in R,
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we set
wm (x

0, xn) = (1− ζ (mxn))u(x
0, xn).

One directly finds for m→∞ thatZ
ΩB

|u− wm|p dx ≤
Z
ΓB×[0,2m−1]

|u(x)|p dx→ 0.

For the gradient part of the k·k-norm we findZ
ΩB

|∇u−∇wm|p dx =
Z
ΩB

|∇ (ζ (mxn)u(x))|p dx

≤ 2p−1
Z
ΩB

¡
ζ (mxn)

p |∇u(x)|p +mp
¯̄
ζ 0 (mxn)

¯̄p |u(x)|p¢ dx. (2.12)
For the first term of (2.12) when m→∞ we obtainZ

ΩB

ζ (mxn)
p |∇u(x)|p dx ≤

Z
ΓB×[0,2m−1]

|∇u(x)|p dx→ 0

and from (2.11) for the second term of (2.12) when m→∞Z
ΩB

mp
¯̄
ζ 0 (mxn)

¯̄p |u(x)|p dx = Z 2m−1

0

Z
ΓB

mp
¯̄
ζ0 (mxn)

¯̄p |u(x)|p dx0dxn
≤ Cp,ζm

p

Z 2m−1

0

xp−1n

ÃZ
ΓB×[0,2m−1]

¯̄̄̄
∂

∂xn
u(x0, t)

¯̄̄̄p
dx0dt

!
dxn

≤ C 0p,ζ

Z
ΓB×[0,2m−1]

¯̄̄̄
∂

∂xn
u(x0, t)

¯̄̄̄p
dx0dt→ 0.

So wm → u in k·kW1,p(Ω)-norm and moreover support(wn) lies compactly

in ‘Ω’. (Here we have to go back to the curved boundaries and glue the w(i)m
together). Now there is room for using a mollifier. With J1 as before we may
find that for all ε < 1

2m (in Ω this becomes ε < 1
cm for some uniform constant

depending on ∂Ω) that vε,m = Jε ∗ wm is a C∞0 (Ω)-function. We may choose
a sequence of εm such that kvεm,m − wmkW 1,p(Ω) ≤ 1

m and hence vε,m → u in
W 1,p(Ω).

Exercise 32 Prove Minkowski’s inequality: for all ε > 0, p ∈ (1,∞) and a, b ∈
R:

|a+ b|p ≤ (1 + ε)p−1 |a|p +
µ
1 +

1

ε

¶p−1
|b|p .
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2.5 Gagliardo, Nirenberg, Sobolev and Morrey
In the previous sections we have (re)visited some different function spaces. For
bounded (smooth) domains there are the more obvious relations thatWm,p(Ω) ⊂
W k,p(Ω) when m > k and Wm,p(Ω) ⊂ Wm,q(Ω) when p > q, not to mention
Cm,α(Ω̄) ⊂ Cm,β(Ω̄) when α > β or Cm(Ω̄) ⊂ Wm,p(Ω). But what about the
less obvious relations? Are there conditions such that a Sobolev space is con-
tained in some Hölder space? Or is it possible that Wm,p(Ω) ⊂ W k,q(Ω) with
m > k but p < q? Here we will only recall two of the most famous estimates
that imply an answer to some of these questions.

Theorem 2.5.1 (Gagliardo-Nirenberg-Sobolev inequality) Fix n ∈ N+
and suppose that 1 ≤ p < n. Then there exists a constant C = Cp,n such that

kuk
L

pn
n−p (Rn)

≤ C k∇ukLp(Rn)

for all u ∈ C10(Rn).

Theorem 2.5.2 (Morrey’s inequality) Fix n ∈ N+ and suppose that n <
p <∞. Then there exists a constant C = Cp,n such that

kuk
C
0,1−n

p (Rn)
≤ C kukW 1,p(Rn)

for all u ∈ C1(Rn).

Remark 2.5.3 These two estimates form a basis for most of the Sobolev imbed-
ding Theorems. Let us try to supply you with a way to remember the correct
coefficients. Obviously for W k,p(Ω) ⊂ Cc,α(Ω̄) and W k,p(Ω) ⊂ W c,q(Ω) (with
q > p) one needs k > c. Let us introduce some number κ for the quality of the
continuity. For the Hölder spaces Cm,α(Ω̄) this is ‘just’ the coefficient:

κCm,α = m+ α.

For the Sobolev spaces Wm,p(Ω) with Ω ∈ Rn, which functions have ‘less dif-
ferentiability’ than the ones in Cm

¡
Ω̄
¢
, this less corresponds with − 1p for each

dimension and we set
κWm,p = m− n

p
.

For X1 ⊂ X2 it should hold that κX1
≥ κX2

. The optimal estimates appear in
the theorems above; so comparing W 1,p and Lq, respectively W 1,p and Cα, one
finds ½

1− n
p ≥ −n

q if q ≤ pn
n−p and n > p,

1− n
p ≥ α if n < p.

This is just a way of remembering the constants. In case of equality of the κ’s
an imbedding might hold or just fail.

Exercise 33 Show that u defined on B1 = {x ∈ Rn; |x| < 1} with n > 1 by
u(x) = log(log(1 + 1

|x|)) belongs to W 1,n (B1) . It does not belong to L∞(B1).

Exercise 34 Set Ω = {x ∈ Rn; |x| < 1} and define uβ (x) = |x|β for x ∈ Ω.
Compute for which β it holds that:
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1. uβ ∈ C0,α(Ω̄);

2. uβ ∈W 1,p(Ω);

3. uβ ∈ Lq(Ω).

Exercise 35 Set Ω = {x ∈ Rn; |x− (1, 0, . . . , 0)| < 1} and define uβ (x) = |x|β
for x ∈ Ω. Compute for which β it holds that:

1. uβ ∈ C0,α(∂Ω);

2. uβ ∈W 1,p(∂Ω);

3. uβ ∈ Lq(∂Ω).

Proof of Theorem 2.5.1. Since u has a compact support we have (using
f(t) = f(a) +

R t
a
f 0(s)ds)

|u(x)| =
¯̄̄̄Z xi

−∞

∂u

∂xi
(x1, . . . xi−1, yi, xi+1, . . . xn)dyi

¯̄̄̄
≤
Z ∞
−∞

¯̄̄̄
∂u

∂xi

¯̄̄̄
dyi,

so that

|u(x)| n
n−1 ≤

nY
i=1

µZ ∞
−∞

¯̄̄̄
∂u

∂xi

¯̄̄̄
dyi

¶ 1
n−1

. (2.13)

When integrating with respect to x1 one finds that on the right side there are
n− 1 integrals that are x1-dependent and one integral that does not depend on
x1. So we can get out one factor for free and use a generalized Hölder inequality
for the n− 1 remaining ones:Z

|c1|
1

n−1 |a2|
1

n−1 . . . |an|
1

n−1 dt ≤
µ
|c1|

Z
|a2| dt . . .

Z
|a2| dt

¶ 1
n−1

.

For (2.13) it gives usZ ∞
−∞

|u(x)| n
n−1 dx1 ≤

µZ ∞
−∞

¯̄̄̄
∂u

∂x1

¯̄̄̄
dy1

¶ 1
n−1 Z ∞

−∞

nY
i=2

µZ ∞
−∞

¯̄̄̄
∂u

∂xi

¯̄̄̄
dyi

¶ 1
n−1

dx1

≤
µZ ∞
−∞

¯̄̄̄
∂u

∂x1

¯̄̄̄
dy1

¶ 1
n−1 nY

i=2

µZ ∞
−∞

Z ∞
−∞

¯̄̄̄
∂u

∂xi

¯̄̄̄
dyidx1

¶ 1
n−1

=

ÃZ ∞
−∞

¯̄̄̄
∂u

∂x1

¯̄̄̄
dy1

nY
i=2

Z ∞
−∞

Z ∞
−∞

¯̄̄̄
∂u

∂xi

¯̄̄̄
dyidx1

! 1
n−1

.

Repeating this argument one findsZ ∞
−∞

Z ∞
−∞

|u(x)| n
n−1 dx1dx2 ≤

µZ ∞
−∞

Z ∞
−∞

¯̄̄̄
∂u

∂x1

¯̄̄̄
dy1dx2

¶ 1
n−1

×

×
µZ ∞
−∞

Z ∞
−∞

¯̄̄̄
∂u

∂x2

¯̄̄̄
dy2dx1

¶ 1
n−1 nY

i=3

µZ ∞
−∞

Z ∞
−∞

Z ∞
−∞

¯̄̄̄
∂u

∂xi

¯̄̄̄
dyidx1dx2

¶ 1
n−1
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and after n steps

kuk
n

n−1
L

n
n−1
≤

nY
i=1

°°°° ∂u∂xi
°°°° 1
n−1

L1
≤ k∇uk

n
n−1
L1 (2.14)

which completes the proof of Theorem 2.5.1 for p = 1. For p ∈ (1, n) one uses
(2.14) with u replaced by |u|α for appropriate α > 1. Indeed, again with Hölder
and 1

p +
1
q = 1

kukα
L
α n
n−1 = k|u|αk

L
n

n−1 ≤ k∇ |u|αkL1 = α
°°°|u|α−1 |∇u|°°°

L1

≤ α
°°°|u|α−1°°°

Lq
k∇ukLp = α kukα−1L(α−1)q k∇ukLp .

If we take α > 1 such that α n
n−1 = (α − 1)q, in other words α = q

q− n
n−1

and

q > n
n−1 should hold, we find kukLα n

n−1 ≤ |α| k∇ukLp . Since q > n
n−1 coincides

with p < n and α n
n−1 =

np
n−p the claim follows.

Proof of Theorem 2.5.2. Let us fix 0 < s ≤ r and we first will derive an
estimate in Br(0). Starting again with

u(y)− u(0) =

Z 1

0

y · (∇u)(ry))dr

one finds Z
|y|=s

|u(y)− u(0)| dσy ≤
Z
|y|=s

Z 1

0

|y · (∇u)(ry))| drdσy

≤
Z
|y|=s

Z 1

0

s |(∇u)(ry))| drdσy

= sn−1
Z
|w|=1

Z s

0

|∇u(tw))| dtdσw

= sn−1
Z
|w|=1

Z s

0

|∇u(tw))|
|tw|n−1 tn−1dtdσw

= sn−1
Z
|y|<s

|∇u(y))|
|y|n−1 dy ≤ sn−1

Z
|y|<r

|∇u(y))|
|y|n−1 dy

and an integration with respect to s gives:Z
|y|<r

|u(y)− u(0)| dy ≤ 1

n
rn
Z
|y|<r

|∇u(y))|
|y|n−1 dy. (2.15)

So with ωn is the surface area of the unit ball in Rn

ωn
n
rnu (0) ≤

Z
|y|<r

|u(y)− u(0)| dy +
Z
|y|<r

|u(y)| dy (2.16)

≤ 1

n
rn
Z
|y|<r

|∇u(y))|
|y|n−1 dy + kukL1(Br(0))

≤ 1

n
rn k∇ukLp(Br(0))

°°°|·|1−n°°°
L

p
p−1 (Br(0))

+ (2.17)

+ rn−
n
p

³ωn
n

´1− 1
p kukLp(Br(0))
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For p > n one finds

°°°|·|1−n°°°
L

p
p−1 (Br(0))

=

µ
ωn

Z r

0

s(1−n)
p

p−1+n−1ds
¶ p−1

p

=

Ã
ωn

1

1− n−1
p−1

! p−1
p

r
p−n
p .

Since 0 is an arbitrary point and taking r = 1 we may conclude that there is
C = Cn,p such that for p > n

sup
x∈Rn

|u (x)| ≤ C kukW 1,p(Rn) .

A bound for the Hölder-part of the norm remains to be proven. Let x and
z be two points and fix m = 1

2x+
1
2z and r = 1

2 |x− z| . As in (2.16) and using
Br(m) ⊂ B2r(x) ∩B2r(z) :

ωn
n
rn |u (x)− u(z)| =

Z
|y−m|<r

|u(x)− u(z)| dy ≤

≤
Z
|y−m|<r

|u(y)− u(x)| dy +
Z
|y−m|<r

|u(y)− u(z)| dy

≤
Z
|y−x|<2r

|u(y)− u(x)| dy +
Z
|y−z|<2r

|u(y)− u(z)| dy

≤ 1

n
2nrn

ÃZ
|y−x|<2r

|∇u(y))|
|y − x|n−1 dy +

Z
|y−z|<2r

|∇u(y))|
|y − z|n−1 dy

!

and reasoning as in (2.17)

|u (x)− u(z)| ≤ Cn,pr
p−n
p k∇ukLp(Br(0)) .

So |u (x)− u(z)|
|x− z|α ≤ 2αCn,pr

1−n
p−α k∇ukLp(Br(0)) ,

which is bounded when x→ z if α < 1− n
p .
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Week 3

Some new and old solution
methods I

3.1 Direct methods in the calculus of variations

Whenever the problem is formulated in terms of an energy or some other quan-
tity that should be minimized one could try to skip the derivation of the Euler-
Lagrange equation. Instead of trying to solve the corresponding boundary value
problem one could try to minimize the functional directly.
Let E be the functional that we want to minimize. In order to do so we need

the following:

A. There is some open bounded set K of functions and num-
bers E0 < E1 such that:

(a) the functional on K is bounded from below by E0 :

for all u ∈ K : E (u) ≥ E0,

(b) on the boundary of K the functional is bounded from
below by E1:

for all u ∈ ∂K : E (u) ≥ E1,

(c) somewhere inside K the functional has a value in be-
tween:

there is u0 ∈ K : E (u0) < E1.

Then Ẽ := infu∈K E (u) exists and hence we may assume that there is a
minimizing sequence {un}∞n=1 ⊂ K, that is, a sequence such that

E(u1) ≥ E(u2) ≥ E(u3) ≥ · · · ≥ Ẽ and lim
n→∞E(un) = Ẽ.

This does not yet imply that there is a function ũ such that E (ũ) =
infu∈K E (u) .
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Definition 3.1.1 A function ũ ∈ K such that E (ũ) = infu∈K E (u) is
called a minimizer for E on K.

Sometimes there is just a local minimizer.

B. In order that un leads us to a minimizer the following three properties
would be helpful:

(a) the function space should be a Banach-space that fits with the func-
tional; there should be enough functions such that a minimizer is
among them

(b) the sequence {un}∞n=1 converges or at least has a convergent subse-
quence in some topology (compactness of the set K), and

(c) if a sequence {un}∞n=1 converges to u∞ in this topology, then it
should also hold that limn→∞E(un) = E (u∞) or, which is sufficient:
limn→∞E(un) ≥ E (u∞) .

After this heuristic introduction let us try to give some sufficient conditions.
First let us remark that the properties mentioned under A all follow from

coercivity.

Definition 3.1.2 Let (X, k·k) be a function space and suppose that E : X → R
is such that for some f ∈ C

¡
R+0 ;R

¢
with lim

t→∞ f (t) =∞ it holds that

E(u) ≥ f(kuk), (3.1)

then E is called coercive.

So let (X, k·k) be a function space such that (3.1) holds. Notice that this
condition implies that we cannot use a norm with higher order derivatives than
the ones appearing in the functional.
Now let us see how the conditions in A follow. The function f has a lower

bound which we may use as E0. Next take any function u0 ∈ X and take any
E1 > E (u0) . Since limt→∞ f (t) =∞ we may take M such that f (t) ≥ E1 for
all t ≥M and set K = {u ∈ X; kuk < M} . The assumptions in A are satisfied.
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Now let us assume that (X, k·k) is some Sobolev space Wm,p (Ω) with 1 <
p <∞ and that

K =
n
u ∈Wm,p(Ω); ‘boundary conditions’ and kukWm,p(Ω) < M

o
.

Obviously Wm,p (Ω) is not finite dimensional so that bounded sets are not
precompact. So the minimizing sequence inK that we have is, although bounded,
has no reason to be convergent in the norm of Wm,p(Ω). The result that saves
us is the following.

Theorem 3.1.3 A bounded sequence {uk}∞k=1 in a reflexive Banach space has
a weakly convergent subsequence.

N.B. The sequence uk converges weakly to u in the spaceX, in symbols uk -
u in X, means φ(uk) → φ(u) for all φ ∈ X 0, the bounded linear functionals on
X. This theorem can be found for example in H. Brezis: Analyse Fonctionnelle
(Théorème III.27). And yes, the Sobolev spaces such asWm,p (Ω) andWm,p

0 (Ω)
with 1 < p <∞ are reflexive.

So although the minimizing sequence {un}∞n=1 is not strongly convergent it
has at least a subsequence {unk}∞k=1 that weakly converges. Let us call u∞ this
weak limit in Wm,p (Ω) . So

unk - u∞ weakly in Wm,p (Ω) . (3.2)

For the Sobolev space Wm,p (Ω) the statement in (3.2) coincides withµ
∂

∂x

¶α
unk -

µ
∂

∂x

¶α
u∞

weakly in Lp (Ω) for all multi-index α = (α1, . . . , αn) ∈ Nn with |α| = α1+ · · ·+
αn ≤ m and

¡
∂
∂x

¢α
=
³

∂
∂x1

´α1
. . .
³

∂
∂x2

´α2
.

The final touch comes from the assumption that E is ‘sequentially weakly
lower semi-continuous’.

Definition 3.1.4 Let (X, k·k) be a Banach space. The functional E : X → R
is called sequentially weakly lower semi-continuous, if

uk - u weakly in X

implies
E(u) ≤ lim inf

n→∞ E(un).

We will collect the result discussed above in a theorem. Indeed, the coerciv-
ity condition gives us an open bounded set of functions K, numbers E0, E1, a
function u0 ∈ Ko and hence a minimizing sequence in K. Theorem 3.1.3 sup-
plies us with a weak limit u∞ ∈ K of a subsequence of the minimizing sequence
which is also a minimizing sequence itself (so infu∈K E(u) ≤ E(u∞)). And the
sequentially weakly lower semi-continuity yields E(u∞) ≤ infu∈K E(u).

Theorem 3.1.5 Let E be a functional on Wm,p (Ω) (or Wm,p
0 (Ω)) with 1 <

p <∞ which is:
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1. coercive;

2. sequentially weakly lower semicontinuous.

Then there exists a minimizer u of E.

Remark 3.1.6 These 2 conditions are sufficient but neither of them are nec-
essary and most of the time too restrictive. Often one is only concerned with a
minimizing a functional E on some subset of X. If you are interested in varia-
tional methods please have a look at Chapter 8 in Evans’ book or any other book
concerned with direct methods in the Calculus of Variations.

Example 3.1.7 Let Ω be a bounded domain in Rn and suppose we want to
minimize E (u) =

R
Ω

³
1
2 |∇u|2 − f u

´
dx for functions u that satisfy u = 0 on

∂Ω. The candidate for the reflexive Banach space is W 1,2
0 (Ω) with the norm k·k

defined by

kukW 1,2
0
:=

µZ
Ω

|∇u|2 dx
¶ 1

2

.

Indeed this is a norm by Poincaré’s inequality: there is C ∈ R+ such thatZ
Ω

u2dx ≤ C

Z
Ω

|∇u|2 dx

and hence
1√
1+C

kukW1,2 ≤ kukW1,2
0
≤ kukW 1,2 .

Since W 1,2
0 (Ω) with hu, vi = R

Ω
∇u · ∇v dx is even a Hilbert space we may

identify
³
W 1,2
0 (Ω)

´0
and W 1,2

0 (Ω) .

The functional E is coercive: using the inequality of Cauchy-Schwarz

E (u) =

Z
Ω

³
1
2 |∇u|2 − f u

´
dx

≥ 1
2

Z
Ω

|∇u|2 dx−
µZ
Ω

u2dx

¶ 1
2
µZ
Ω

f2dx

¶ 1
2

≥ 1
2 kuk2W 1,2

0
− kukW 1,2

0
kfkL2

≥ 1
2 kuk2W 1,2

0
−
³
1
4 kuk2W1,2

0
+ kfk2L2

´
≥ 1

4 kuk2W 1,2
0
− kfk2L2 .

The sequentially weakly lower semi-continuity goes as follows. If un - u weakly
in W 1,2

0 (Ω), then

E(un)−E(u) =

Z
Ω

³
1
2 |∇un|2 − 1

2 |∇u|2 − f (un − u)
´
dx

=

Z
Ω

³
1
2 |∇un −∇u|2 + (∇un −∇u) ·∇u− f (un − u)

´
dx

≥
Z
Ω

((∇un −∇u) ·∇u− f (un − u)) dx→ 0.

Here we also used that
¡
v 7→ R

Ω
fvdx

¢ ∈ ³
W 1,2
0 (Ω)

´0
. Hence the minimizer

exists.
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In this example we have used zero Dirichlet boundary conditions which al-
lowed us to use the well-known function space W 1,2

0 (Ω). For nonzero boundary
conditions a way out is to considerW 1,p

0 (Ω)+g where g is an arbitraryW 1,p(Ω)-
function that satisfies the boundary conditions.
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3.2 Solutions in flavours
In Example 3.1.7 we have seen that we found a minimizer u ∈W 1,2

0 (Ω) and since
it is the minimizer of a differentiable functional it follows that this minimizer
satisfies Z

(∇u ·∇η − f η) dx = 0 for all η ∈W 1,2
0 (Ω).

If we knew that u ∈W 1,2
0 (Ω) ∩W 2,2(Ω) an integration by parts would showZ
(−∆u− f) ηdx = 0 for all η ∈W 1,2

0 (Ω)

and hence −∆u = f in L2 (Ω)-sense.
Let us fix for the moment the problem½ −∆u = f in Ω,

u = 0 on ∂Ω.
(3.3)

Definition 3.2.1 If u ∈W 1,2
0 (Ω) is such thatZ

(∇u ·∇η − f η) dx = 0 for all η ∈W 1,2
0 (Ω)

holds, then u is called a weak solution of (3.3).

Definition 3.2.2 If u ∈ W 1,2
0 (Ω) ∩W 2,2(Ω) is such that −∆u = f in L2 (Ω)-

sense, then u is called a strong solution of (3.3).

Remark 3.2.3 If a strong solution even satisfies u ∈ C2(Ω̄) and hence the
equations in (3.3) hold pointwise u is called a classical solution.

Often one obtains a weak solution and then one has to do some work in order
to show that the solution has more regularity properties, that is, it is a solution
in the strong sense, a classical solution or even a C∞-solution. In the remainder
we will consider an example that shows such upgrading is not an automated
process.

Example 3.2.4 Suppose that we want to minimize

E (y) =

Z 1

0

³
(1− (y0(x))2

´2
dx

with y(0) = y(1) = 0. The appropriate Sobolev space should be W 1,4
0 (0, 1) and

indeed E is coercive:

E (y) =

Z 1

0

¡
1− 2(y0)2 + (y0)4¢ dx

≥
Z 1

0

¡−1 + 1
2(y

0)4
¢
dx = 1

2 kyk4W 1,4
0
− 1.

Here we used 2a2 ≤ 1
2a
4+2 (indeed 0 ≤ (ε− 1

2 a−ε 12 b)2 implies 2ab ≤ ε−1a2+εb2).
We will skip the sequentially weakly lower semicontinuity and just assume that
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there is a minimizer u in W 1,4
0 (0, 1). For such a minimizer we’ll find through

∂
∂τE (y + τη)|τ=0 = 0 thatZ 1

0

³
−4y0 + 4 (y0)3

´
η0 dx = 0 for all η ∈W 1,4

0 (0, 1).

Assuming that such a minimizer is a strong solution, y ∈W 2,4(0, 1) we may
integrate by part to find the Euler-Lagrange equation:

4
³
1− 3 (y0)2

´
y00 = 0.

So y00 = 0 or (y0)2 = 1
3 . A closer inspection gives y(x) = ax+ b and plugging in

the boundary conditions y(0) = y(1) = 0 we come to y(x) = 0.
Next let us compute some energies:

E(0) =

Z 1

0

(1− 0)2 dx = 1,

and E(y) for a special function y in the next exercise.

Exercise 36 Let E be as in the previous example and compute E(y) for y(x) =
sinπx
π . If you did get that E (y) = 3

8 < 1 = E(0) then 0 is not the minimizer.
What is wrong here?

Notice that E (y) ≥ 0 for any y ∈ W 1,4
0 (0, 1), so if we would find a function

y such that E (y) = 0 we would have a minimizer. Here are the graphs of a few
candidates:

0.5 1

-0.5

0.5

0.5 1

-0.5

0.5

0.5 1

-0.5

0.5

0.5 1

-0.5

0.5

0.5 1

-0.5

0.5

Exercise 37 Check that the function y defined by y(x) = 1
2 −

¯̄
x− 1

2

¯̄
is indeed

in W 1,4
0 (0, 1).

And why is y not in W 2,4(0, 1)? For those unfamiliar with derivatives in a
weaker sense see the following remark.

Remark 3.2.5 If a function y is in C2 (0, 1) then we know y0 and y00 pointwise
in (0, 1) and we compute the integral

°°y(i)°°
L4(0,1)

, i ∈ {0, 1, 2} in order to find
whether or not y ∈ W 2,4(0, 1). But if y is not in C2(0, 1) we cannot directly
compute

R 1
0
(y00)4 dx. So how is y00 defined?

Remember that for differentiable functions y and φ an integration by parts
show that Z 1

0

y0φ dx = −
Z 1

0

y φ0 dx.

One uses this result to define derivatives in the sense of distributions. The
distributions that we consider are bounded linear operators from C∞0 (Rn) to R.
Remember that we wrote C∞0 (Rn) for the infinitely differentiable functions with
compact support in Rn.
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Definition 3.2.6 If y is some function defined on Rn then
¡
∂
∂x

¢α
y in C∞0 (Rn)0

is the distribution V such that

V (φ) = (−1)|α|
Z
Rn

y(x)

µ
∂

∂x

¶α
φ(x) dx.

Example 3.2.7 The derivative of the signum function is twice the Dirac-delta
function. This Dirac-delta function is not a true function but a distribution:
δ(φ) = φ(0) for all φ ∈ C0 (R) .
The signum function is defined by

sign(x) =

 1 if x > 0,
0 if x = 0,
−1 if x < 0.

We find, calling ‘sign0 = V ’, that for φ with compact support:

V (φ) = −
Z ∞
−∞

sign(x) φ0(x) dx =

=

Z 0

−∞
φ0(x) dx−

Z ∞
0

φ0(x) dx = 2φ(0) = 2δ(φ).

Exercise 38 A functional for the energy that belongs to a rectangular plate
lying on three supporting walls, clamped on one side and being pushed down by
some weight is

E (u) =

Z
R

³
1
2 (∆u)

2 − f u
´
dxdy.

Here R = (0, c)× (0, b) and supported means the deviation u satisfies

u (x, 0) = u(x, b) = u(c, y) = 0,

and clamped means

u (0, y) =
∂

∂x
u(0, y) = 0.

Compute the boundary value problem that comes out.

Exercise 39 Let us consider the following functional for the energy of a rectan-
gular plate lying on two supporting walls and being pushed down by some weight
is

E (u) =

Z
R

³
1
2 (∆u)

2 − f u
´
dxdy.

Here R = (0, c)× (0, b) and supported means the deviation u satisfies u (0, y) =
u (c, y) = 0.
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Compute the boundary value problem that comes out.

Exercise 40 Consider both for Exercise 38 and for Exercise 39 the variational
problem

E : Wbc(R) :=
©
u ∈ C∞

¡
R̄
¢
; + boundary conditions

ªk·kW(R) → R
with kukW (R) = kukL2(R) + k∆ukL2(R) .

For the source term we assume f ∈ L2 (R).

1. Is the functional E coercive?

2. Is E is sequentially weakly lower semi-continuous?

Exercise 41 Show that the equation for Exercise 39 can be written as a system
of two second order problems, one for u and one for v = −∆u. For those who
have seen Hopf’s boundary Point Lemma: can this system be solved for positive
f?

Exercise 42 Suppose that we replace both in Exercise 38 and 39 the energy by

E (u) =

Z
R

³
1
2 (∆u)

2
+ δ 12 |∇u|2 − f u

´
dxdy.

Compute the boundary conditions for both problems. Can you comment on the
changes that appear?

Exercise 43 What about uniqueness for the problem in Exercises 38 and 39?

Exercise 44 Is it true that Wbr(R) ⊂ W 2,2 (R) both for Exercise 38 and for
Exercise 39?

Exercise 45 Let u ∈ W 4,2 (R) ∩Wbr (R) be a solution for Exercise 39. Show
that for all nonzero η ∈ Wbc(R) the second variation

¡
∂
∂τ

¢2
E (u+ τη)τ=0 is

positive but not necessarily strictly positive.

In the last exercises we came up with a weak solution, that is u ∈W 2,2
bc (R)

satisfying Z
R

(∆u∆η − fη) dxdy = 0 for all η ∈W 2,2
bc (R) .

Starting from such a weak solution one may try to use ‘regularity results’ in
order to find that the u satisfying the weak formulation is in fact is a strong
solution: for f ∈ L2 (R) it holds that u ∈W 4,2 (R) ∩W 2,2

bc (R) .
In the case that f has a stronger regularity, say f ∈ Cα (R) , it may even be

possible that the solution satisfies u ∈ C4,α (R) . Although since the problems
above are linear one might expect that such regularity results are standard
available in the literature. On the contrary, these are by no means easy to
find. Especially higher order problems and corners form a research area by
themselves. A good starting point would be the publications of P. Grisvard.
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3.3 Preliminaries for Cauchy-Kowalevski

3.3.1 Ordinary differential equations

One equation

One of the classical ways of finding solutions for an o.d.e. is by trying to find
solutions in the form of a power series. The advantage of such an approach
is that the computation of the Taylor series is almost automatical. For the
nth-order o.d.e.

y(n)(x) = f(x, y(x), . . . , y(n−1)(x)) (3.4)

with initial values y(x0) = y0, y
0(x0) = y1, . . . , y

(n−1)(x0) = yn−1 the higher
order coefficients follow by differentiation and filling in the values already known:

y(n)(x0) = yn := f(x0, y0, . . . yn−1)

y(n+1)(x0) = yn+1 :=
∂f

∂x
(x0, y0, . . . yn−1) +

n−1X
k=0

yk+1
∂f

∂yi
(x0, y0, . . . yn−1)

etc.

It is well known that such an approach has severe shortcomings. First of all
the problem itself needs to fit the form of a power series: f needs to be a real
analytic function. Secondly, a power series usually has a rather restricted area
of convergence. But if f is appropriate, and if we can show the convergence, we
find a solution by its Taylor series

y (x) =
∞X
k=0

(x− x0)
k

k!
y(k)(x0). (3.5)

Remark 3.3.1 For those who are not to familiar with ordinary differential
equations. A sufficient condition for existence and uniqueness of a solution
for (3.4) with prescribed initial conditions is (x, p) 7→ f(x, p) being continuous
and p 7→ f (x, p) Lipschitz-continuous.

Multiple equations

A similar result holds for systems of o.d.e.:

y(n)(x) = f(x,y(x), . . . ,y(n−1)(x)) (3.6)

where y : R→ Rm and f is a vectorfunction. The computation of the coefficients
will be more involved but one may convince oneself that given the (vector)values
of y(x0), y0(x0) up to y(n−1)(x0) the higher values will follow as before and the
Taylor series in (3.5) will be the same with y instead of y. To have at most one
solution by the Taylor series near x = x0 one needs to fix y(x0), . . . ,y(n−1)(x0).
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From higher order to first order autonomous

The trick to go from higher order to first order is well known. Setting u =
(y, y0, . . . , y(n−1)) the nth-order equation in (3.4) or system in (3.6) changes in

u0 =


0 1 · · · 0

0 0
. . .

...
. . .

. . . 1
0 · · · 0 0

u+


0
0
...

f(x,u)

 with u(x0) =


y0
y1
...

yn−1


Finally a simpel addition will make the system autonomous. Just add the equa-
tion u0n+1(x) = 1 with un+1(x0) = x0. We find un+1(x) = x and by replacing
x by un+1 in the o.d.e. or in the system of o.d.e.’s the system becomes au-
tonomous.

So we have found an initial value problem for an autonomous first order
system ½

u0(x) = g(u(x)),
u(x0) = u0.

(3.7)

Remark 3.3.2 If we include some parameter dependance in (3.7) we would
find the problem ½

u0(x) = g(u(x),p),
u(x0) = u0(p).

(3.8)

Such a problem would give a solution of the type

u(x,p) =
∞X
i=0

u(k)(x0,p)

k!
(x− x0)

k

and the u(k)(x0,p) itself could be power series in p if the dependance of p in
(3.8) would allow. One could think of p as the remaining coordinates in Rn.
Note that u0(p) would prescribe the values for u on a hypersurface of dimension
n− 1.
Exercise 46 Compute u(k)(x0) from (3.7) for k = 0, 1, 2, 3 in terms of g and
the initial conditions.

3.3.2 Partial differential equations

The idea of Cauchy-Kowalevski could be phrased as: let us compute the solution
of the p.d.e. by a Taylor-series. The complicating factor becomes that it is not
so clear what initial values one should impose.

Taylor series with multiple variables

Before we consider partial differential equations let us recall the Taylor series in
multiple dimensions. For an analytic function v : Rn → R it reads as

v (x) =
∞X
k=0

|α|=kX
α∈Nn

¡
∂
∂x

¢α
v (x0)

α!
(x− x0)

α
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where

α! = α1!α2! . . . αn!,µ
∂

∂x

¶α
=

∂α1

∂xα11

∂α2

∂xα22
. . .

∂αn

∂xαnn
,

(x− x0)
α = (x1 − x1,0)

α1(x2 − x2,0)
α2 . . . (xn − xn,0)

αn .

The α ∈ Nn that appears here is called a multiindex.
Exercise 47 Take your favourite function f of two variables and compute the
Taylor polynomial of degree 3 in (0, 0):

3X
k=0

|α|=kX
α∈N2

³¡
∂
∂x

¢α
f
´
(0, 0)

α!
xα.

Several flavours of nonlinearities

A linear partial differential equation is of order m if it is of the form

|α|≤mX
α∈Nn

Aα(x)

µ
∂

∂x

¶α
u (x) = f (x) , (3.9)

and the aα(x) with |α| = m should not disappear.
Every p.d.e. that cannot be written as in (3.9) is not linear (= nonlinear?).

Nevertheless one sometimes makes a distinction.

Definition 3.3.3 1. A mth order semilinear p.d.e. is as follows:

|α|=mX
α∈Nn

Aα(x)

µ
∂

∂x

¶α
u (x) = f

µ
x,

∂u

∂x1
, . . . ,

∂m−1u
∂xm−1n

¶
.

2. A mth order quasilinear p.d.e. is as follows:

|α|=mX
α∈Nn

Aα(x,
∂u

∂x1
, . . . ,

∂m−1u
∂xm−1n

)

µ
∂

∂x

¶α
u (x) = f

µ
x,

∂u

∂x1
, . . . ,

∂m−1u
∂xm−1n

¶
.

3. The remaining nonlinear equations are the genuine nonlinear ones.

Example 3.3.4 Here are some nonlinear equations:

• The Korteweg-de Vries equation: ut + uux + uxxx = 0.

• The minimal surface equation: ∇ · ∇uq
1 + |∇u|2

= 0.

• The Monge-Ampère equation: uxxuyy − u2xy = f.

One could call them respectively semilinear, quasilinear and ‘strictly’ non-
linear.
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3.3.3 The Cauchy problem

As we have seen for o.d.e.’s an mth-order ordinary differential equation needs
m initial conditions in order to have a unique solution. A standard set of
such initial conditions consists of giving y, y0, . . . , y(m−1) a fixed value. The
analogon of such an ‘initial value’ problem for an mth-order partial differential
equation in Rn would be to describe all derivatives up to order m− 1 on some
(n− 1)-dimensional manifold. This is a bit too much. Indeed if one prescribes
y on a smooth manifoldM, then also all tangential derivatives are determined.
Similar, if ∂

∂ν y, the normal derivative on M is given then also all tangential
derivatives of ∂

∂ν y are determined. Etcetera. So it will be sufficient to fix all
normal derivatives from order 0 up to order m− 1.

Definition 3.3.5 The Cauchy problem for the mth-order partial differential

equation F
³
x, y, ∂

∂x1
y, . . . , ∂m

∂xmn
y
´
= 0 on Rn with respect to the smooth (n−1)-

dimensional manifoldM is the following:

F
³
x, y, ∂

∂x1
y, . . . , ∂m

∂xmn
y
´
= 0 in Rn,

y = φ0
∂
∂ν y = φ1

...
∂m−1
∂νm−1 y = φm−1

onM,
(3.10)

where ν is the normal onM and where the φi are given.

Exercise 48 Consider M = {(x1, x2); x21 + x22 = 1} with φ0(x1, x2) = x1 and
φ1(x1, x2) = x2. Let ν be the outside normal direction on M. Suppose u is a
solution of ∂2

∂x21
u+ ∂2

∂x22
u = 1 in a neighborhood ofM, say for 1− ε < x21+x22 <

1 + ε that satisfies ½
u = φ0 for x ∈M,
∂
∂νu = φ1 for x ∈M.

Compute ∂2

∂ν2u onM for such a solution.

Exercise 49 The same question but with the differential equation replaced by
∂2

∂x21
u− ∂2

∂x22
u = 1.
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3.4 Characteristics I
So the Cauchy problem consists of an mth-order partial differential equation
for say u in (a subset of) Rn, an (n− 1)-dimensional manifoldM, the normal
direction ν on M and with u, ∂

∂νu, . . .
∂n−1
∂νn−1u given on M. One may guess

that the differential equation should be of order m in the ν-direction.

Example 3.4.1 Consider ∂
∂x1

u+ ∂
∂x2

u = g(x1, x2) for a given function g. This
is a first order p.d.e. but if we take new coordinates y1 = x1 + x2 and y2 =
x1−x2, and set g̃(x1+x2, x1−x2) = g(x1, x2) and ũ(x1+x2, x1−x2) = u(x1, x2),
we find

∂

∂x1
u+

∂

∂x2
u = 2

∂

∂y1
ũ.

The y2-derivative dissappeared. So we have to solve the o.d.e.

2
∂

∂y1
ũ = g̃. (3.11)

If for example u (x1, 0) = ϕ(x1) is given for x1 ∈ R, then

ũ (y1, y2) = ũ (x1, x1) +
1
2

Z y1

x1

g̃(s, y2)ds,

which can be rewritten to a formula for u.
But if u(x1, x1) = ϕ(x1) is given for x1 ∈ R, then ũ(y1, 0) = ϕ(12y1) and this

is in general not compatible with (3.11). One finds that the solution is constant
on each line y2 = c. That means we are not allowed to prescribe the function
u on such a line and if we want the Cauchy-problem to be well-posed for a
1-d-manifold (curve) we better take a curve with no tangential in that direction.
The line (or curve) along which the p.d.e. takes the form of an o.d.e. is

called a characteristic curve.

In higher dimensions and for higher order equations the notion of character-
istic manifold becomes somewhat involved. For quasilinear differential equations
a characteristic curve or manifold in general will even depend on the solution
itself. So we will use a more usefull concept that is found in the book of Evans.
Instead of giving a definition of characteristic curve or characteristic manifold
we will give a definition of noncharacteristic manifolds.

Definition 3.4.2 A manifoldM is called noncharacteristic for the differential
equation

|α|=mX
α∈Nn

Aα(x)

µ
∂

∂x

¶α
u(x) = B

µ
x, u,

∂

∂x1
u, . . . ,

∂m

∂xmn
u

¶
. (3.12)

if for x ∈M and every normal direction ν toM in x:

|α|=mX
α∈Nn

Aα(x)ν
α 6= 0. (3.13)

We say ν is a singular direction for (3.12) if
P|α|=m

α∈Nn Aα(x)ν
α = 0.
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Remark 3.4.3 The condition in (3.13) means that the coefficient of the differ-
ential equation of the mth-order in the ν-direction does not disappear. In case
that (3.12) would be an o.d.e. in the ν direction we would ‘loose’ one order in
the differential equation.

Remark 3.4.4 Sobolev defines a surface given by F (x1, . . . , xn) = 0 to be char-
acteristic if the (2nd order) differential equation, on changing from the variables
x1, . . . , xn to new variables y1 = F (x1, . . . , xn), y2, . . . , yn with y2 to yn arbitrary
functions of x1 to xn, such that all the yi are continuous and have first order
derivatives and a non-zero Jacobian in a neighbourhood of the surface under
consideration, it happens that the coefficient Ā11 of ∂2

∂y21
vanishes on this sur-

face.
The definition of noncharacteristic gives a condition for each point on the man-
ifold. Also Sobolev’s definition of characteristic does. So not characteristic and
noncharacteristic are not identical.

3.4.1 First order p.d.e.

Consider the first order semilinear partial differential equation

nX
i=1

Ai(x)
∂

∂xi
y(x) = B (x, y) . (3.14)

A solution is a function y : Rn → R. The Cauchy problem for such a first
order p.d.e. consist of prescribing initial data on a (smooth) n− 1-dimensional
surface. We will see that we cannot choose just any surface. If we consider a
curve t 7→ x(t) that satisfies x0(t) = A (x(t)) then one finds for a solution y on
this line that

∂

∂t
y (x(t)) =

nX
i=1

x0i(t)
∂

∂xi
y(x) =

=
nX
i=1

Ai(x)
∂

∂xi
y(x) = B (x(t), y (x(t)))

and hence that we may solve y on this curve when one value y (x0) is given.
Indeed ½

x0(t) = A (x(t))
x(0) = x0

(3.15)

is an o.d.e. system with a unique solution for analytic A (Lipschitz is sufficient).

Definition 3.4.5 The solution t 7→ x(t) is called a characteristic curve for
(3.14).

With this curve t 7→ x(t) known one obtains a second o.d.e. for t 7→ y (x(t)) .
Set Y (t) = y (x(t)) and Y solves½

Y 0(t) = B (x(t), Y (t))
Y (0) = y(x0)

(3.16)

So if we would prescribe the initial values for the solution on an n − 1-
dimensional surface we should take care that this surface does not intersect
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each of those characteristic curves more than once. This is best guaranteed by
assuming that the characteristic directions are not tangential to the surface. For
a first order this means that x0(t) should not be tangential to this surface. In
other words A (x(t)) · ν = x0(t) · ν 6= 0 where ν is the normal direction of the
surface.

Characteristic lines and an appropriate surface with prescribed values

Exercise 50 Show that also for the first order quasilinear equations

mX
i=1

Ai(x, y)
∂

∂xi
y(x) = B (x, y)

one obtains a system of o.d.e.’s for the curve t 7→ x(t) and the solution t 7→
y (x(t)) along this curve.

3.4.2 Classification of second order p.d.e. in two dimen-
sions

The standard form of a second order semilinear partial differential equation in
two dimensions is

a ux1x1 + 2b ux1x2 + c ux2x2 = f (x, u,∇u) . (3.17)

Here f is a given function and one is searching for a function u.
We may write this second order differential operator as follows:

a
∂2

∂x21
+ 2b

∂2

∂x1∂x2
+ c

∂2

∂x22
= ∇ ·

µ
a b
b c

¶
∇

and since the matrix is symmetric we may diagonalize it by an orthogonal matrix
T : µ

a b
b c

¶
= TT

µ
λ1 0
0 λ1

¶
T.

Definition 3.4.6 The equation in (3.17) is called
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• elliptic if λ1 and λ2 have the same (nonzero) sign;

• hyperbolic if λ1 and λ2 have opposite (nonzero) signs;
• parabolic if λ1 = 0 or λ2 = 0.

Remark 3.4.7 In the case that a, b and c do depend on x one says that the
equation is elliptic, hyperbolic respectively parabolic in x if the eigenvalues λ1(x)
and λ2(x) are as above (freeze the coefficients in x). Note that

∇ ·
µ
a(x) b(x)
b(x) c(x)

¶
∇u =

= a(x) ux1x1 + 2b(x) ux1x2 + c(x) ux2x2 + γ(x)ux1 + δ(x)ux2

where

γ =
∂a

∂x1
+

∂b

∂x2
and δ =

∂b

∂x1
+

∂c

∂x2
.

So the highest order doesn’t change.

For the constant coefficients case one reduce the highest order coefficients to
standard form by taking new coordinates Tx = y. One finds that (3.17) changes
to

λ1 uy1y1 + λ2 uy2y2 = f̃ (y, u,∇u) .
Depending on the signs of λ1 and λ2 we may introduce a scaling yi =

p|λi|zi
and come up with either one of the following three possibilities:

• a semilinear Laplace equation: uz1z1 + uz2z2 = f̂(z, u,∇u);
• a semilinear wave equation: uz1z1 − uz2z2 = f̂(z, u,∇u);
• uz1z1 = f̂(z, u,∇u), which can be turned into a heat equation when
f̂(z, u,∇u) = c1uz1 + c2uz2 .

Exercise 51 Show that (3.17) is

1. elliptic if and only if det
µ

a b
b c

¶
> 0;

2. parabolic if and only if det
µ

a b
b c

¶
= 0;

3. hyperbolic if and only if det
µ

a b
b c

¶
< 0;

Exercise 52 Show that under any regular change of coordinates y = Bx, with
B a nonsingular 2 × 2-matrix, the classification of the differential equation in
(3.17) does not change.

Definition 3.4.8 For a linear p.d.e. operator Lu :=
P|α|≤m

α∈Nn Aα(x)
¡
∂
∂x

¢α
u

one introduces the symbol by replacing the derivation ∂
∂xi

by ξi :

symbolL(ξ) =
|α|≤mX
α∈Nn

Aα(x) ξ
α1
1 . . . ξαnn .
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Exercise 53 Show that for second order operators with constant coefficients in
two dimensions:

1. The solutions of {ξ ∈ R2; symbolL(ξ) = k} consists of an ellips for some
k ∈ R, if and only if L is elliptic.

2. The solutions of {ξ ∈ R2; symbolL(ξ) = k} consists of a hyperbola for
some k ∈ R, if and only if L is hyperbolic.

3. If the solutions of {ξ ∈ R2; symbolL(ξ) = k} consists of a parabola for
some k ∈ R, then L is parabolic.

4. If the solutions of {ξ ∈ R2; symbolL(ξ) = k} do not fit the descriptions
above for any k ∈ R, then L is not a real p.d.e.: it can be transformed
into an o.d.e..
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3.5 Characteristics II

3.5.1 Second order p.d.e. revisited

Let us consider the three standard equations that we obtained separately.

1. ux1x1+ux2x2 = f(x, u,∇u).We may take any line c through a point x̄ and
a orthonormal coordinate system with ν perpendicular and τ tangential
to find in the new coordinates uνν + uττ = f̃(y, u, uτ , uν). So with x =
y1ν + y2τ uy2y2 = −uy1y1 + f̃(y, u, uy1 , uy2) for y ∈ R2,

u(y1, 0) = φ (y1) for y1 ∈ R,
uy2(y1, 0) = ψ (y1) for y1 ∈ R,

(3.18)

and find that the coefficients in the power series are defined. Indeed if we
prescribe u(y1, 0) and uy2(y1, 0) for y1 we also knowµ

∂

∂y1

¶k
u(y1, 0) and

µ
∂

∂y1

¶k
∂

∂y2
u(y1, 0) for all k ∈ N+. (3.19)

Using the differential equation and (3.19) we findµ
∂

∂y2

¶2
u(y1, 0) and hence

µ
∂

∂y1

¶k µ
∂

∂y2

¶2
u(y1, 0) for all k ∈ N+.

(3.20)
Differentiating the differential equation with respect to y2 and using the
results from (3.19-3.20) givesµ

∂

∂y2

¶3
u(y1, 0) and hence

µ
∂

∂y1

¶k µ
∂

∂y2

¶3
u(y1, 0) for all k ∈ N+.

(3.21)
By repeating these steps we will find all Taylor-coefficients and, hoping
the series converges, the solution.

Going back through the transformation one finds that for any p.d.e. as
in (3.17) that is elliptic the Cauchy-problem looks well-posed.(We would
like to say ‘is well-posed’ but since we didn’t state the corresponding
theorem ... )

For elliptic p.d.e. any manifold is noncharacteristic.

2. ux1x1 − ux2x2 = f(x, u,∇u). Taking new orthogonal coordinates by

y =

µ
cosα − sinα
sinα cosα

¶
x (3.22)

the differential operator turns into

¡
cos2 α− sin2 α¢ ∂2

∂y21
− 4 cosα sinα ∂2

∂y1∂y2
+
¡
sin2 α− cos2 α¢ ∂2

∂y22
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and the equation we may write as

uy2y2 = uy1y1 +
4 cosα sinα

sin2 α− cos2 αuy1y2 + f̂(y, u,∇u)

if and only if sin2 α 6= cos2 α. If we suppose that sin2 α 6= cos2 α and
prescribe u(y1, 0) and uy2(y1, 0) then we may proceed as for case 1 and find
the coefficients of the Taylor series. On the other hand, if sin2 α = cos2 α,
then we are left with

2uy1y2 = ±f̃(y, u, uy1 , uy2).
Prescribing just u (y1, 0) is not sufficient since then uy2 (y1, 0) is still un-
known but prescribing both u (y1, 0) and uy2 (y1, 0) is too much since now
uy1y2 (y1, 0) follows from uy2 (y1, 0) directly and from the differential equa-
tion indirectly and unless some special relation between f and uy2 holds
two different values will come out. So the Cauchy problem ux2x2 = ux1x1 + f(x, u, ux1 , ux2) for x ∈ R2,

u(x) = φ (x) for x ∈ c,
uν(x) = ψ (x) for x ∈ c,

is (probably) only well-posed for c not parallel to
¡
1
1

¢
or
¡
1
−1
¢
. Going back

through the transformation one finds that any p.d.e. as in (3.17) that is
hyperbolic has at each point two directions for which the Cauchy problem
has a singularity if one of these two direction coincides with the manifold
M. For any other manifold (a curve in 2 dimensions) the Cauchy-problem
is (could be) well-posed.

2nd order hyperbolic in 2d: in each point there are two singular directions.

3. ux1x1 = f(x, u,∇u). Doing the transformation as in (3.22) one finds
sin2 α uy2y2 = 2 sinα cosα uy1y2 − cos2 α uy1y1 + f̂(y, u,∇u).

which a (probably) well-posed Cauchy problem (3.18) except for α a mul-
tiple of π. The lines x2 = c give the sigular directions for this equation.
Going back through the transformation one finds that any p.d.e. as in
(3.17) that is parabolic has one family of directions where the highest or-
der derivatives disappear. For any 1-d manifold that crosses one of those
lines exactly once, the Cauchy-problem is (as we will see) well-posed.

2nd order parabolic in 2d: in each point there is one singular direction.

Exercise 54 Consider the one-dimensional wave equation (a p.d.e. in R2)
utt = c2uxx for some c > 0.

1. Write the Cauchy problem for utt = c2uxx onM = {(x, t); t = 0}.
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2. Use utt − c2uxx =
¡
∂
∂t − c ∂

∂x

¢ ¡
∂
∂t + c ∂

∂t

¢
to show that solutions of this

one-dimensional wave equation can be written as

u (x, t) = f(x− ct) + g(x+ ct).

3. Now compute the f and g such that u is a solution of the Cauchy problem
with general ϕ0 and ϕ1.

The explicit formula for this Cauchy problem that comes out is named after
d’Alembert. If you promise to make the exercise before continuing reading, this
is it:

u(x, t) = 1
2ϕ0 (x+ ct) + 1

2ϕ0 (x− ct) + 1
2

Z x+ct

x−ct
ϕ1(s)ds.

Exercise 55 Try the find a solution for the Cauchy problem for utt+ut = c2uxx
onM = {(x, t); t = 0}.

3.5.2 Semilinear second order in higher dimensions

That means we are considering differential equations of the form

|α|=2X
α∈Nn

Aα(x)

µ
∂

∂x

¶α
u = f (x, u,∇u) (3.23)

and we want to prescribe u and the normal derivative uν on some analytic n−1-
dimensional manifold. Let us suppose that this manifold is given by the implicit
equation Φ (x) = c. So the normal in x̄ is given by

ν =
∇Φ(x̄)
|∇Φ(x̄)| .

In order to have a well-defined Cauchy problem we should have a nonvanishing
∂2

∂ν2u component in (3.23).

Going to new coordinates We want to rewrite (3.23) such that we recog-
nize the ∂2

∂ν2u component. We may do so by filling up the coordinate system
with tangential directions τ1, . . . , τn−1 at x̄. Denoting the old coordinates by
{x1, x2, . . . , xn} and the new coordinates by {y1, y2, . . . , yn} we have

x1
x2
...
xn

 =


ν1 τ1,1 · · · τn−1,1
ν2 τ1,2 · · · τn−1,n
...

...
...

νn τ1,n · · · τn−1,n




y1
y2
...
yn


and since this transformation matrix T is orthonormal one finds

y1
y2
...
yn

 =


ν1 ν2 · · · νn
τ1,1 τ1,2 · · · τ1,n
...

...
...

τn−1,1 τn−1,n · · · τn−1,n




x1
x2
...
xn

 .
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Hence

∂

∂xi
=

∂y1
∂xi

∂

∂y1
+

n−1X
j=1

∂yj
∂xi

∂

∂yj
= νi

∂

∂y1
+

n−1X
j=1

τ i,j
∂

∂yj

So (3.23) turns into

|α|=2X
α∈Nn

Aα(x)
nY
i=1

νi
∂

∂y1
+

n−1X
j=1

τ i,j
∂

∂yj

αi

u = f (x, u,∇u) (3.24)

and the factor in front of the ∂2

∂y21
u component, which is our notation for ∂2

∂ν2u

at x̄ in (3.23), is

|α|=2X
α∈Nn

Aα(x̄)ν
α = ν ·


A2,0,...,0(x̄)

1
2A1,1,...,0(x̄) · · · 1

2A1,0,...,1(x̄)
1
2A1,1,...,0(x̄) A0,2,...,0(x̄) · · · 1

2A0,1,...,1(x̄)
...

...
...

1
2A1,0,...,1(x̄)

1
2A0,1,...,1(x̄) · · · A0,0,...,2(x̄)

 ν.

(3.25)

Classification by the number of positive, negative and zero eigenvalues

Let us call the matrix in (3.25) M. Since it is symmetric we may diagonalize it
and find a matrix with eigenvalues λ1, . . . , λn on the diagonal. Notice that this
matrix does not depend on ν. Also remember that we have a well-posed Cauchy
problem if ν ·Mν 6= 0.
Let P be the number of positive eigenvalues and N the number of negative

ones. There are three possibilities.

1. (P,N) = (n, 0) of (P,N) = (0, n) . Then all eigenvalues of M have the
same sign and in that case ν ·Mν 6= 0 for any ν with |ν| = 1. So any
direction of the normal ν is fine and there is no direction that a manifold
may not contain. Equation (3.23) is called elliptic.

2. P +N = n but 1 ≤ P ≤ n−1. There are negative and positive eigenvalues
but no zero eigenvalues. Then there are directions ν such that ν ·Mν = 0.
Equation (3.23) is called hyperbolic.

3. P + N < n. There are eigenvalues equal to 0. Equation (3.23) is called
parabolic.

There exists a more precise subclassification according to the number of
positive, negative and zero eigenvalues.
In dimension 3 with (N,P ) = (1, 2) or (2, 1) one finds a cone of singular

directions near x̄.
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The singular directions at x̄ form a cone in the hyperbolic case.

In dimension 3 with (N,P ) = (0, 2) or (0, 2) one finds one singular direction
near x̄.

Singular directions in a parabolic case.

3.5.3 Higher order p.d.e.

The classification for higher order p.d.e. in so far it concerns parabolic and
hyperbolic becomes a bit of a zoo. Elliptic however can be formulated by the
absence of any singular directions. For an mth-order semilinear equation asX

|α|=m
Aα(x)

µ
∂

∂x

¶α
u = F

µ
x, u, ∂

∂x1
u, . . . ,

µ
∂

∂x

¶α
u

¶
(3.26)

it can be rephrased as:

Definition 3.5.1 The differential equation in (3.26) is called elliptic in x̄ ifX
|α|=m

Aα(x̄)ξ
α 6= 0 for all ξ ∈ Rn\{0}.

Exercise 56 Show that for an elliptic mth-order semilinear equation (as in
(3.26)) with (as always) real coefficients Aα(x) the order m is even.
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Week 4

Some old and new solution
methods II

4.1 Cauchy-Kowalevski

4.1.1 Statement of the theorem

Let us try to formulate some of the ‘impressions’ we might have got from the
previous sections.

Heuristics 4.1.1

1. For a well-posed Cauchy problem of a general p.d.e. one should have a
manifold M to which the singular directions of the p.d.e. are strictly
nontangential.

2. The condition for the singular directions of the p.d.e.

X
|α|=m

Aα (x)

µ
∂

∂x

¶α
u+ F (x, u,

∂

∂x1
u, . . . ,

∂m−1

∂xm−1n

u) = 0

is
P
|α|=mAα (x) ν

α = 0. A noncharacteristic manifold M means that if
ν is normal toM then

P
|α|=mAα (x) ν

α 6= 0.

3. The amount of singular directions increases from elliptic (none) via parabolic
to hyperbolic.

4. (Real-valued) elliptic p.d.e.’s have an even order m; so odd order p.d.e.’s
have singular directions.

Now for the theorem.

Theorem 4.1.2 (Cauchy-Kowalevski for one p.d.e.) We consider the Cauchy
problem for the quasilinear p.d.e.X

|α|=m
Aα

³
x, u, ∂

∂x1
u, . . . , ∂m−1

∂xm−1n
u
´ ¡

∂
∂x

¢α
u = F

³
x, u, ∂

∂x1
u, . . . , ∂m−1

∂xm−1n
u
´
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with the boundary conditions as in (3.10) with an (n− 1)-dimensional manifold
M and given functions ϕ0, ϕ1, . . . ϕm−1.
Assume that

1. M is a real analytic manifold with x̄ ∈M. Let ν be the normal direction
toM in x̄.

2. ϕ0, ϕ1, . . . ϕm−1 are real analytic functions defined in a neighborhood of
x̄.

3. (x,p) 7→ Aa(x,p) and (x,p) 7→ F (x,p) are real analytic in a neighborhood
of x̄.

If
P
|α|=mAα

³
x̄, u, ∂

∂x1
u, . . . , ∂m−1

∂xm−1n
u
´

να 6= 0 with the derivatives of u

replaced by the appropriate (derivatives of) ϕi at x = x̄, then there is a ball
Br(x̄) and a unique analytic solution u of the Cauchy-problem in this ball.

For Cauchy-Kowalevski the characteristic curves should not be tangential to
the manifold.

The theorem above seems quite general but in fact it is not. There is a version
of the Theorem of Cauchy-Kowalevski for systems of p.d.e. But similar as for
o.d.e. we may reduce Theorem 4.1.2 or the version for systems to a version for
a system of first-order p.d.e.

4.1.2 Reduction to standard form

We are considering X
|α|=m

Aα

¡
∂
∂x

¢α
u = F (4.1)

where Aα and F may depend on x and the derivatives
¡
∂
∂x

¢β
u of orders |β| ≤

m− 1. In fact the u could even be a vector function, that is u : Rn → RN , and
the Aα would be N × N matrices. Are you still following? Then one might
recognize that not only solutions turn into vector-valued solutions but also that
characteristic curves turn into characteristic manifolds.
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For the moment let us start with the single equation in (4.1), which is written
out:X

|α|=m
Aα

³
x, u, ∂

∂x1
u, . . . , ∂m−1

∂xm−1n
u
´ ¡

∂
∂x

¢α
u = F

³
x, u, ∂

∂x1
u, . . . , ∂m−1

∂xm−1n
u
´
.

The first step is to take new coordinates that fit with the manifold. This we
have done before: see Definitions 2.1.8 and 2.2.1 where now C1 or Cm is re-
placed by real analytic. In fact we are only considering local solutions so one
box/coordinate system is sufficient. Next we introduce new coordinates for
which the manifold is flat. The assumption that the manifoldM does not con-
tain singular directions is preserved in this new coordinate system. Let us write
{y1, y2, . . . , yn−1, t} for the coordinates where the flattened manifold is {t = 0} .
We are let to the following problem:

Â(0,...,0,m)
¡
∂
∂t

¢m
û =

m−1X
k=0

|β|=m−kX
β∈Nn−1

Â(β,k)
¡
∂
∂t

¢k ³ ∂
∂y

´β
û+ F̂ (4.2)

where the coefficients Âα and F̂ depend on y, t, û, ∂
∂y1

û, . . . , ∂m−1
∂tm−1 û. The as-

sumption that M does not contain singular directions is transferred to the
condition Â(0,...,0,m) 6= 0 and hence we are allowed to divide by this factor to
find just

¡
∂
∂t

¢m
û on the left hand side of (4.2). The prescribed Cauchy-data on

M change into

û = ϕ̂0 = ϕ0
∂
∂t û = ϕ̂1 = ϕ1 +

nP
i=1

ai
∂
∂τ i

ϕ0

...

∂m−1
∂tm−1 û = ϕ̂m−1 = ϕm−1 +

m−2P
k=0

k+|β|=m−2P
β∈Nm−1

a(β,k)
¡
∂
∂τ

¢β
ϕk

(4.3)

taking the appropriate identification of x ∈M and (y, t) ∈ Rn−1 × {0} .
As a next step one transfers the higher order initial value problem (4.2)-(4.3)

into a first order system by setting

ũ(β,k) =
¡
∂
∂t

¢k ³ ∂
∂y

´β
û for |β|+ k ≤ m− 1 and β ∈ Nn−1.

We find for k ≤ m− 1 that
∂
∂t ũ(0,...,0,k) =

¡
∂
∂t

¢k+1
û

and if |β|+ k ≤ m− 1 with |β| 6= 0, let us say iβ is the first nonzero index with
βi ≥ 1, that

∂
∂t ũ(β,k) =

³
∂

∂yiβ

´
ũ(β̃,k+1) with β̃ = (0, . . . , 0, βi − 1, βi+1, . . . , βn−1)

So combining these equations we have
∂
∂t ũ(0,k) = ũ(0,k+1) for 0 ≤ k ≤ m− 2,
∂
∂t ũ(β,k) =

³
∂
∂yi

´
ũ(β̃,k+1) for 0 ≤ k + |β| ≤ m− 1 with |β| 6= 0,

∂
∂t ũ(0,...,0,m−1) =

m−1P
k=0

|β|=m−kP
β∈Nn−1

Ã(β,k)
∂

∂yiβ
ũ(β̃,k) + F̂

(4.4)
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where Ã(β,k) and F̂ are analytic functions of y, t, ũ(β,k) with |β| + k ≤ m − 1.
The boundary conditions go to(

ũ(0,k) = ϕ̂k for 0 ≤ k ≤ m− 1,
ũ(β,k) =

³
∂
∂y

´β
ϕ̂k for 0 ≤ k + |β| ≤ m− 1 with |β| 6= 0 (4.5)

With some extra equations for the coordinates in order to make the system
autonomous as we did for the o.d.e. the equation (4.4)-(4.5) can be recasted by
vector notation:(

∂
∂tv = Ăj(v)

∂
∂yj
v + F̆(v) in Rn−1 ×R+,

v(0, y) = ψ(y) on Rn−1.

As a final step we consider u(t, y) = v(t, y)−ψ(0) in order to reduce to vanishing
initial data at the origin:

∂
∂tu = Aj(u)

∂
∂yj
u+F(u) in Rn−1 ×R+,

u(0, y) = ϕ(y) on Rn−1,
u(0, 0) = 0.

(4.6)

The formulation of the Cauchy-Kowalevski Theorem is usually stated for this
system which is more general than the one we started with.

Theorem 4.1.3 (Cauchy-Kowalevski) Assume that u 7→ Aj(u), u 7→ F(u)
and y 7→ ϕ(y) are real analytic functions in a neighborhood of the origin. Then
there exists a unique analytic solution of (4.6) in a neighborhood of the origin.

For a detailed proof one might consider the book by Fritz John.
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4.2 A solution for the 1d heat equation

4.2.1 The heat kernel on R
Let us try to derive a solution for

ut − uxx = 0 (4.7)

and preferably one that satisfies some initial condition(s). The idea is to look for
similarity solutions, that is, try to find some solution that fits with the scaling
found in the equation. Or in other words exploit this scaling to reduce the
dimension. For the heat equation one notices that if u(t, x) solves (4.7) also
u
¡
c2t, cx

¢
is a solution for any c ∈ R. So let us try the (maybe silly) approach

to take c such that c2t = 1. Then it could be possible to get a solution of the
form u(1, t−1/2x) which is just a function of one variable. Let’s try and set
u(1, t−1/2x) = f(t−1/2x). Putting this in (4.7) we obtainµ

∂

∂t
− ∂2

∂x2

¶
f(x/

√
t) = − x

2t
√
t
f 0(x/

√
t)− 1

t
f 00(x/

√
t).

If we set ξ = x/
√
t we find the o.d.e.

1
2ξf

0(ξ) + f 00(ξ) = 0.

This o.d.e. is separable and through

f 00(ξ)
f 0(ξ)

= −12ξ

and integrating both sides we obtain first

ln |f 0(ξ)| = −14ξ2 + C and f 0(ξ) = c1e
−14 ξ

2

and next

f(x/
√
t) = c2 + c1

Z x/
√
t

−∞
e−

1
4 ξ

2

dξ.

The constant solution is not very interesting so we forget c2 and for reasons

to come we take c1 such that c1
R∞
−∞ e−

1
4 ξ

2

dξ = 1. A computation gives c1 =
1
2π
−1/2. Here is a graph of that function.

-4 -2 0 2 4x

0

t

1

0

1

u

1

One finds that

ū(t, x) =
1

2
√
π

Z x/
√
t

−∞
e−

1
4 ξ

2

dξ

is a solution of the equation. Moreover for (t, x) 6= (0, 0) (and t ≥ 0) this function
is infinitely differentiable. As a result also all derivatives of this ū satisfy the
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heat equation. One of them is special. The function x 7→ ū(0, x) equals 0 for
x < 0 and 1 for x > 0. The derivative ∂

∂x ū(0, x) equals Dirac’s δ-function in the
sense of distributions. Let us give a name to the x-derivative of ū

p(t, x) = 1
2
√
πt
e−

x2

4t .

This function p is known as the heat kernel on R.

Exercise 57 Let ϕ ∈ C∞0 (R). Show that z(t, x) =
R∞
−∞ p (t, x− y)ϕ(y)dy is a

solution of ( ³
∂
∂t − ∂2

∂x2

´
z(t, x) = 0 for (t, x) ∈ R+×R,

z(0, x) = ϕ(x) for x ∈ R.

Exercise 58 Let ϕ ∈ C∞0 (R3) and set p3(t, x) = p(t, x1)p(t, x2)p(t, x3). Show
that z(t, x) =

R
R3 p3 (t, x− y)ϕ(y)dy is a solution of½ ¡

∂
∂t −∆

¢
z(t, x) = 0 for (t, x) ∈ R+×R3,

z(0, x) = ϕ(x) for x ∈ R.

Exercise 59 Show that the function w (x, t) = x
t
√
t
e−

x2

4t is a solution to the heat
equation and satisfies

lim
t↓0

w(x, t) = 0 for any x ∈ R.

Is this a candidate for showing that( ³
∂
∂t − ∂2

∂x2

´
z(t, x) = 0 for (t, x) ∈ R+×R,

z(0, x) = ϕ(x) for x ∈ R.

has a non-unique solution in C2
¡
R+0 ×R

¢
?

Is the convergence of limt↓0w(x, t) = 0 uniform with respect to x ∈ R?

4.2.2 On bounded intervals by an orthonormal set

For the heat equation in one dimension on a bounded interval, say (0, 1), we
may find a solution for initial values ϕ ∈ L2 by the following construction. First
let us recall the boundary value problem: the p.d.e.: ut − uxx = 0 in (0, 1)×R+,

the initial value: u = ϕ on (0, 1)× {0} ,
the boundary condition: u = 0 on {0, 1} ×R+.

(4.8)

We try to solve this boundary value problem by separation of variables.
That is, we try to find functions of the form u(t, x) = T (t)X(x) that solve the
boundary value problem in (4.8) for some initial value.

Putting these special u’s into (4.8) we find the following T 0(t)X(x)− T (t)X
00
(x) = 0 for 0 < x < 1 and t > 0,

T (0)X(x) = ϕ(x) for 0 < x < 1,
T (t)X(0) = T (t)X(1) = 0 for t > 0.
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The only nontrivial solutions for X are found by

T 0(t)
T (t)

= c = −X
00(x)

X(x)
and X(0) = X(1) = 0,

where also the constant c is unknown. Some lengthy computations show that
these nontrivial solutions are

Xk (x) = α sin (kπx) and c = k2π2.

(Without further knowledge one tries c < 0, finds functions ae
√
cx+be−

√
cx that

do not satisfy the boundary conditions except when they are trivial. Similarly
c = 0 doesn’t bring anything. For some c > 0 some combination of cos(

√
cx)

and sin(
√
cx) does satisfy the boundary condition.)

Having these Xk we can now solve the corresponding T and find

Tk(t) = e−k
2π2t.

So the special solutions we have found are

u (t, x) = α e−k
2π2t sin (kπx) .

Since the problem is linear one may combine such special functions and find
that one can solve ut(t, x)− uxx(t, x) = 0 for 0 < x < 1 and t > 0,

u(0, x) =
Pm

k=1 αk sin (kπx) for 0 < x < 1,
u(t, 0) = u(t, 1) = 0 for t > 0.

(4.9)

Now one should remember that the set of functions {ek}∞k=1 with ek (x) =√
2 sin (kπx) is a complete orthonormal system in L2(0, 1), so that we can write

any function in L2(0, 1) as
P∞

k=1 αkek(·). Let us recall:
Definition 4.2.1 Suppose H is a Hilbert space with inner product h·, ·i . The
set of functions {ek}∞k=1 in H is called a complete orthonormal system for H if
the following holds:

1. hek, eci = δkl (orthonormality);

2. lim
m→∞ k

Pm
k=1 hek, fi ek(·)− f(·)kH = 0 for all f ∈ H (completeness).

Remark 4.2.2 As a consequence one finds Parseval’s identity: for all f ∈ H

kfk2H = lim
m→∞

°°°°°
mX
k=1

hek, fi ek(·)
°°°°°
2

H

=

= lim
m→∞

*
mX
k=1

hek, fi ek(·),
mX
j=1

hej , fi ej(·)
+
=

= lim
m→∞

mX
k=1

mX
j=1

hek, fi hej , fi δkj =

= lim
m→∞

mX
k=1

hek, fi2 = khek, fik2c2 .
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Remark 4.2.3 Some standard complete orthonormal systems on L2(0, 1), which
are useful for the differential equations that we will meet, are:

• ©√2 sin (kπ·) ; k ∈ N+ª ;
• ©1,√2 sin (2kπ·) ,√2 cos (2kπ·) ; k ∈ N+ª ;
• ©1,√2 cos (kπ·) ; k ∈ Nª .
Another famous set of orthonormal functions are the Legendre polynomials:

•
nq

k + 1
2Pk(·); k ∈ N

o
with Pk(x) =

1
2kk!

dk

dxk

¡
x2 − 1¢k is a complete or-

thonormal set in L2 (−1, 1) .
Remark 4.2.4 The use of orthogonal polynomials for solving linear p.d.e. is
classical. For further reading we refer to the books of Courant-Hilbert, Strauss,
Weinberger or Sobolev.

Exercise 60 Write down the boundary conditions that the third set of functions
in Remark 4.2.3 satisfy.

Exercise 61 The same question for the second set of functions.

Exercise 62 Find a complete orthonormal set of functions for −u
00 = f in (−1, 1) ,

u(−1) = 0,
u(1) = 0.

Exercise 63 Find the appropriate set of orthonormal functions for −u
00 = f in (0, 1) ,

u(0) = 0,
ux(1) = 0.

Exercise 64 Suppose that {ek; k ∈ N} is an orthonormal system in L2(0, 1).
Let f ∈ L2(0, 1). Show that for a0, . . . , ak ∈ R the following holds:°°°°°f −

kX
i=0

hf, eii ei
°°°°°
L2(0,1)

≤
°°°°°f −

kX
i=0

ai ei

°°°°°
L2(0,1)

.

1. Show that the set of Legendre polynomials is an orthonormal collection.

2. Show that every polynomial p : R→ R can be written by a finite combina-
tion of Legendre polynomials.

3. Prove that the Legendre polynomials form a complete orthonormal set in
L2(−1, 1).

Coming back to the problem in (4.8) we have found for ϕ ∈ L2(0, 1) the
following solution:

u(t, x) =
∞X
k=1

D√
2 sin (kπ·) , ϕ

E
e−π

2k2t
√
2 sin (kπx) . (4.10)
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Exercise 65 Let ϕ ∈ L2(0, 1) and let u be the function in (4.10).

1. Show that x 7→ u(t, x) is in L2(0, 1) for all t ≥ 0.
2. Show that all functions x 7→ ∂i

∂xi
∂j

∂tj u(t, x) for t > 0 are in L2(0, 1).

3. Show that there is c > 0 (independent of ϕ) with ku(t, ·)kW2,2(0,1) ≤
c
t kϕkL2(0,1) .

75



4.3 A solution for the Laplace equation on a
square

The boundary value problem that we will consider has zero Dirichlet boundary
conditions: ( −∆u = f in (0, 1)2 ,

u = 0 on ∂
³
(0, 1)

2
´
,

(4.11)

where f ∈ L2(0, 1)2. We will try the use a separation of variables approach and
first try to find sufficiently many functions of the form u(x, y) = X(x)Y (y) that
solve the corresponding eigenvalue problem:( −∆φ = λφ in (0, 1)2 ,

φ = 0 on ∂
³
(0, 1)

2
´
.

(4.12)

At least there should be enough functions to approximate f in L2-sense. Putting
such functions in (4.12) we obtain −X

00(x)Y (y)−X(x)Y 00(y) = λX(x)Y (y) for 0 < x, y < 1,
X(x)Y (0) = 0 = X(x)Y (1) for 0 < x < 1,
X(0)Y (y) = 0 = X(1)Y (y) for 0 < y < 1.

Skipping the trivial solution we find −
X00(x)
X(x) − Y 00(y)

Y (y) = λ for 0 < x, y < 1,

X(0) = 0 = X(1)
Y (0) = 0 = Y (1)

Our quest for solutions X,Y, λ leads us after some computations to

Xk(x) = sin(kπx),

Yc(y) = sin(cπy),

λk,c = π2k2 + π2c2.

Since
©√
2 sin(kπ·); k ∈ N+ª is a complete orthonormal system in L2(0, 1) (and©√

2 sin(cπ·); c ∈ N+ª on L2
¡
1
0

¢
, sorry L2(0, 1)) the combinations supply such a

system in L2((0, 1)2).

Lemma 4.3.1 If {ek; k ∈ N} is a complete orthonormal system in L2 (0, a) and
if {fk; k ∈ N} is a complete orthonormal system in L2 (0, b) , then {ẽk,c; k, c ∈ N}
with ẽk,c(x, y) = ek(x)fc(y) is a complete orthonormal system on L2((0, a) ×
(0, b)).

Since we now have a complete orthonormal system for (4.11) we can approx-
imate f ∈ L2(0, 1)2. Setting

ek,l(x, y) = 2 sin(kπx) sin(cπy)

we have

lim
M→∞

°°°°°°f −
MX
m=2

X
i+j=m

hei,j , fi ei,j

°°°°°°
L2(0,1)2

= 0.
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Since for the right hand side f in (4.11) replaced by f̃ :=
MP
m=2

P
i+j=m

hei,j , fi ei,j
the solution is directly computable, namely

ũ =
MX
m=2

X
i+j=m

hei,j , fi
λij

ei,j ,

there is some hope that the solution for f ∈ L2(0, 1)2 is given by

u = lim
M→∞

MX
m=2

X
i+j=m

hei,j , fi
λij

ei,j , (4.13)

at least in L2-sense. Indeed, one can show that for every f ∈ L2(0, 1)2 a solution
u is given by (4.13). This solution will be unique in W 2,2(0, 1)2 ∩W 1,2

0 (0, 1)2.

Exercise 66 Suppose that f ∈ L2(0, 1)2.

1. Show that the following series converge in L2-sense:

MX
m=2

X
i+j=m

iα1jα2
hei,j , fi
λij

ei,j

with α ∈ N2 and |α| ≤ 2 (6 different series).
2. Show that u(t, x), ux, uy, uxx, uxy and uyy are in L2(0, 1)2.

Exercise 67 Find a complete orthonormal system that fits for −∆u(x, y) = f(x, y) for 0 < x, y < 1,
u(0, y) = u(1, y) = 0 for 0 < y < 1,
uy(x, 0) = uy(x, 1) = 0 for 0 < x < 1.

(4.14)

Exercise 68 Have a try for the disk in R2 using polar coordinates½ −∆u(x) = f(x) for |x| < 1,
u(x) = 0 for |x| = 1. (4.15)

In polar coordinates: ∆ = ∂2

∂r2 +
1
r
∂
∂r +

1
r2

∂2

∂ϕ2 .
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4.4 Solutions for the 1d wave equation

4.4.1 On unbounded intervals

For the 1-dimensional wave equation we have seen a solution by the formula of
d’Alembert. Indeed utt(x, t)− c2uxx(x, t) = 0 for x ∈ R and t ∈ R+,

u(x, 0) = ϕ0(x) for x ∈ R,
ut(x, 0) = ϕ1(x) for x ∈ R,

has a solution of the form

u(x, t) = 1
2ϕ0(x− ct) + 1

2ϕ0(x+ ct) + 1
2

Z x+ct

x−ct
ϕ1(s)ds.

We may use this solution to find a solution for the wave equation on the half
line: 

utt(x, t)− c2uxx(x, t) = 0 for x ∈ R+ and t ∈ R+,
u(x, 0) = ϕ0(x) for x ∈ R+,
ut(x, 0) = ϕ1(x) for x ∈ R+,
u(0, t) = 0 for t ∈ R+.

(4.16)

A way to do this is by a ‘reflection’. We extend the initial values ϕ0 and ϕ1
on R−, use d’Alembert’s formula on R×R+0 and hope that if we restrict the
function we have found to R+0 ×R+0 a solution of (4.16) comes out.
First the extension. For i = 1, 2 we set

ϕ̃i(x) =

 ϕi(x) if x > 0,
0 if x = 0,

−ϕi(−x) if x < 0.

Then we make the distinction for

I: = {(x, t) ; 0 ≤ t ≤ cx} ,
II: = {(x, t) ; t > c |x|} ,

(the case 0 ≤ t ≤ c |x| with x < 0 we will not need).
Case I. The solution for the modified ϕ̃i on R is

ũ (x, t) = 1
2 ϕ̃0(x− ct) + 1

2 ϕ̃0(x+ ct) + 1
2

Z x+ct

x−ct
ϕ̃1(s)ds =

= 1
2ϕ0(x− ct) + 1

2ϕ0(x+ ct) + 1
2

Z x+ct

x−ct
ϕ1(s)ds.

Case II. The solution for the modified ϕ̃i on R is, now using that x− ct < 0

ũ (x, t) = 1
2 ϕ̃0(x− ct) + 1

2 ϕ̃0(x+ ct) + 1
2

Z x+ct

x−ct
ϕ̃1(s)ds =

= −12ϕ0(ct− x) + 1
2ϕ0(x+ ct) + 1

2

Z 0

x−ct
ϕ1(−s)ds+ 1

2

Z x+ct

0

ϕ1(s)ds =

= −12ϕ0(ct− x) + 1
2ϕ0(x+ ct) + 1

2

Z ct+x

ct−x
ϕ1(s)ds.
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Exercise 69 Suppose that ϕ0 ∈ C2(R+0 ) and ϕ1 ∈ C1(R+0 ) with ϕ0(0) =
ϕ1(0) = 0.

1. Show that

u (x, t) = sign(x− ct) 12ϕ0(|x− ct|) + 1
2ϕ0(x+ ct) + 1

2

Z x+ct

|x−ct|
ϕ1(s)ds

is C2(R+0 ×R+0 ) and a solution to (4.16).
2. What happens when we remove the condition ϕ1(0) = 0 ?

3. And what if we also remove the condition ϕ0(0) = 0 ?

Exercise 70 Solve the problem
utt − c2uxx = 0 in R+ ×R+,
u(x, 0) = ϕ0(x) for x ∈ R+,
ut(x, 0) = ϕ1(x) for x ∈ R+,
ux(0, t) = 0 for t ∈ R+,

using d’Alembert and a reflection.

Exercise 71 Try to find out what happens when we
use a similar approach for

utt(x, t)− c2uxx(x, t) = 0 for (x, t) ∈ (0, 1)×R+,
u(x, 0) = ϕ0(x) for x ∈ (0, 1),
ut(x, 0) = ϕ1(x) for x ∈ (0, 1),
u(0, t) = u(1, t) = 0 for t ∈ R+.

The picture on the right might help.

0.5 1

1

2

3

4

4.4.2 On a bounded interval

Exercise 72 We return to the boundary value problem in Exercise 71.

1. Use an appropriate complete orthonormal set {ek (·) ; k ∈ N} to find a so-
lution:

u (t, x) =
∞X
k=0

ak (t) ek (x)

2. Suppose that ϕ0, ϕ1 ∈ L2(0, 1). Is it true that x 7→ u(t, x) ∈ L2(0, 1) for
all t > 0?

3. Suppose that ϕ0, ϕ1 ∈ C [0, 1] . Is it true that x 7→ u(t, x) ∈ C [0, 1] for all
t > 0?

4. Suppose that ϕ0, ϕ1 ∈ C0 [0, 1] . Is it true that x 7→ u(t, x) ∈ C0 [0, 1] for
all t > 0?
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5. Give a condition on ϕ0, ϕ1 such that sup
n
ku(·, t)kL2(0,1) ; t ≥ 0

o
is bounded.

6. Give a condition on ϕ0, ϕ1 such that sup {|u(x, t)| ; 0 ≤ x ≤ 1, t ≥ 0} is
bounded.

7. Give a condition on ϕ0, ϕ1 such that ku(·, ·)kL2((0,1)×R+) is bounded.

80



4.5 A fundamental solution for the Laplace op-
erator

A function u defined on a domain Ω ⊂ Rn are called harmonic whenever

∆u = 0 in Ω.

We will start today by looking for radially symmetric harmonic functions. Since
the Laplace-operator ∆ in Rn can be written for radial coordinates with r = |x|
by

∆ = r1−n
∂

∂r
rn−1

∂

∂r
+
1

r2
∆LB

where ∆LB is the so-called Laplace-Beltrami operator on the surface of the unit
ball Sn−1 in Rn. So radial solutions of ∆u = 0 satisfy

r1−n
∂

∂r
rn−1

∂

∂r
u(r) = 0.

Hence ∂
∂r r

n−1 ∂
∂ru(r) = 0, which implies r

n−1 ∂
∂ru(r) = c, which implies ∂

∂ru(r) =
cr1−n, which implies

for n = 2 : u(r) = c1 log r + c2,
for n ≥ 3 : u(r) = c1r

2−n + c2.

Removing the not so interesting constant c2 and choosing a special c1 (the reason
will become apparent later) we define

for n = 2 : F2(x) =
−1
2π log |x| ,

for n ≥ 3 : Fn(x) =
1

ωn(n−2) |x|
2−n . (4.17)

where ωn is the surface area of the unit ball in Rn.

Lemma 4.5.1 The functions Fn and ∇Fn are in L1loc (Rn) .

Next let us recall a consequence of Green’s formula:

Lemma 4.5.2 For u, v ∈ C2
¡
Ω̄
¢
and Ω ⊂ Rn a bounded domain with C1-

boundary Z
Ω

u ∆v dy =

Z
Ω

∆u v dy +

Z
∂Ω

µ
u

∂

∂ν
v −

µ
∂

∂ν
u

¶
v

¶
dσ,

where ν is the outwards pointing normal direction.

So if u, v ∈ C2
¡
Ω̄
¢
with u is harmonic, we findZ

Ω

u ∆v dy =

Z
∂Ω

µ
u

∂

∂ν
v −

µ
∂

∂ν
u

¶
v

¶
dσ. (4.18)

Now we use this for v (y) = Fn (x− y) with x ∈ Rn and the Fn in (4.17). If
x /∈ Ω̄ then (4.18) holds. If x ∈ Ω then since the Fn are not harmonic in 0 we
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have to drill a hole around x for y 7→ Fn (x− y) . Since the Fn have an integrable
singularity we findZ

Ω

Fn (x− y) ∆v(y) dy = lim
ε↓0

Z
Ω\Bε(x)

Fn (x− y) ∆v(y) dy.

So instead of Ω we will use Ω\Bε(x) = {y ∈ Ω; |x− y| > ε} and find

lim
ε↓0

Z
Ω\Bε(x)

Fn (x− y) ∆v(y) dy =

=

Z
∂(Ω\Bε(x))

µ
Fn (x− y)

∂

∂ν
v −

µ
∂

∂ν
Fn (x− y)

¶
v

¶
dσ =

=

Z
∂Ω

µ
Fn (x− y)

∂

∂ν
v −

µ
∂

∂ν
Fn (x− y)

¶
v

¶
dσ +

− lim
ε↓0

Z
∂Bε(x)

µ
Fn (x− y)

∂

∂ν
v −

µ
∂

∂ν
Fn (x− y)

¶
v

¶
dσ. (4.19)

Notice that the minus sign appeared since outside of Ω\Bε(x) is inside of Bε(x).
Now let us separately consider the last two terms in (4.19).
We find that

lim
ε↓0

Z
∂Bε(x)

Fn (x− y)
∂

∂ν
v dσ =

=

 if n = 2: limε↓0
R
|ω|=1

¡−1
2π log ε

¢
∂
∂ν v(x+ εω) ε dω = 0,

if n ≥ 3: limε↓0
R

1
ωn(n−2)ε

2−n ∂
∂ν v(x+ εω) εn−1 dω = 0,

and since ∂
∂νFn (x− y) = −ω−1n ε1−n on ∂Bε(x) for all n ≥ 2 it follows that

lim
ε↓0

Z
∂Bε(x)

µ
∂

∂ν
Fn (x− y)

¶
v dσ =

= lim
ε↓0

Z
|ω|=1

−ω−1n ε1−n v(x+ εω) εn−1 dω = −v (x) .

Combining these results we have found, assuming that x ∈ Ω:

v (x) =

Z
Ω

Fn (x− y) (−∆v(y)) dy +

+

Z
∂Ω

Fn (x− y)
∂

∂ν
v dσ −

Z
∂Ω

µ
∂

∂ν
Fn (x− y)

¶
v dσ.

If x /∈ Ω̄ then we may directly use (4.18) to find

0 =

Z
Ω

Fn (x− y) (−∆v(y)) dy +

+

Z
∂Ω

Fn (x− y)
∂

∂ν
v dσ −

Z
∂Ω

µ
∂

∂ν
Fn (x− y)

¶
v dσ.

Example 4.5.3 Suppose that we want to find a solution for½ −∆v = f on R+ ×Rn−1,
v = ϕ on {0} ×Rn−1,
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say for f ∈ C∞0 (R+ ×Rn−1) and ϕ ∈ C∞0 (Rn−1). Introducing

x∗ = (−x1, x2, . . . , xn)
we find that for x ∈ R+ ×Rn−1:

v (x) =

Z
Ω

Fn (x− y) (−∆v(y)) dy +

+

Z
∂Ω

Fn (x− y)
∂

∂ν
v dσ −

Z
∂Ω

µ
∂

∂ν
Fn (x− y)

¶
v dσ, (4.20)

0 =

Z
Ω

Fn (x
∗ − y) (−∆v(y)) dy +

+

Z
∂Ω

Fn (x
∗ − y)

∂

∂ν
v dσ −

Z
∂Ω

µ
∂

∂ν
Fn (x

∗ − y)

¶
v dσ. (4.21)

On the boundary, that is x1 = 0, it holds that Fn (x− y) = Fn (x
∗ − y) and

∂

∂ν
Fn (x− y) = − ∂

∂x1
Fn (x− y) =

∂

∂x1
Fn (x

∗ − y) = − ∂

∂ν
Fn (x

∗ − y) .

So by subtracting (4.20)-(4.21) and setting

G (x, y) = Fn (x− y)− Fn (x
∗ − y)

we find

v(x) =

Z
R+×Rn−1

G (x, y) (−∆v(y)) dy +

−
Z
{0}×Rn−1

µ
∂

∂ν
G (x, y)

¶
v(0, y2, . . . , yn) dy2 . . . dyn.

Since both −∆v and v|{0}×Rn−1 are given we might have some hope to have
found a solution, namely by

v(x) =

Z
R+×Rn−1

G (x, y) f(y) dy +

−
Z
{0}×Rn−1

µ
∂

∂ν
G (x, y)

¶
ϕ(y2, . . . yn) dy2 . . . dyn.

Indeed this will be a solution but this conclusion does need some proof.

Definition 4.5.4 Let Ω ⊂ Rn be a domain. A function G : Ω̄ × Ω̄ → R such
that

v(x) =

Z
Ω

G (x, y) f(y) dy −
Z
∂Ω

µ
∂

∂ν
G (x, y)

¶
ϕ(y) dσ

is a solution of ½ −∆v = f in Ω,
v = ϕ on ∂Ω,

(4.22)

is called a Green function for Ω.

Exercise 73 Show that the v in the previous example is indeed a solution.
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Exercise 74 Let f ∈ C∞0 (R+ × R+ × Rn−1) and ϕa, ϕb ∈ C∞0 (R+ × Rn−2).
Find a solution for −∆v(x) = f(x) for x ∈ R+ ×R+ ×Rn−2,

v(0, x2, x3, . . . , xn) = ϕa(x2, x3, . . . , xn) for x2 ∈ R+, xk ∈ R and k ≥ 3,
v(x1, 0, x3, . . . , xn) = ϕb(x1, x3, . . . , xn) for x1 ∈ R+, xk ∈ R and k ≥ 3.

Exercise 75 Let n ∈ {2, 3, . . . } and define

F̃n(x, y) =

(
Fn

³
x |y|− y

|y|
´

for y 6= 0,
Fn (1, 0, . . . , 0) for y = 0.

1. Show that F̃n(x, y) = F̃n(y, x) for all x, y ∈ R with y 6= |x|−2 x.

2. Show that y 7→ F̃n(x, y) is harmonic on Rn\
n
|x|−2 x

o
.

3. Set G (x, y) = Fn(|x− y|) − F̃n(x, y) and B = {x ∈ Rn; |x| < 1} . Show
that

v(x) =

Z
B

G (x, y) f(y) dy −
Z
∂B

µ
∂

∂ν
G (x, y)

¶
ϕ(y) dσ

is a solution of ½ −∆v = f in B,
v = ϕ on ∂B.

(4.23)

You may assume that f ∈ C∞(B̄) and ϕ ∈ C∞(∂B).

Exercise 76 Consider (4.23) for ϕ = 0 and let G be the Green function of the
previous exercise.

1. Let p > 1
2n. Show that G : Lp(B)→ L∞(B) defined by

(Gf) (x) :=
Z
B

G (x, y) f(y) dy (4.24)

is a bounded operator.

2. Let p > n. Show that G : Lp(B) → W 1,∞(B) defined as in (4.24) is a
bounded operator.

3. Try to improve one of the above estimates.

4. Compare these results with the results of section 2.5

Exercise 77 Suppose that f is real analytic and consider
−∆v = f in B,

v = 0 on ∂B,
∂
∂ν v = 0 on ∂B.

(4.25)

1. What may we conclude from Cauchy-Kowalevski?

2. Suppose that f = 1. Compute the ‘Cauchy-Kowalevski’-solution.
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Week 5

Some classics for a unique
solution

5.1 Energy methods

Suppose that we are considering the heat equation or wave equation with the
space variable x in a bounded domain Ω, that is p.d.e.: ut = ∆u in Ω×R+,

initial c.: u(x, 0) = φ0(x) for x ∈ Ω,
boundary c.: u(x, t) = g(x, t) for x ∈ ∂Ω×R+,

(5.1)

or 
p.d.e.: utt = c2∆u in Ω×R+,
initial c.:

u(x, 0) = φ0(x)
ut(x, 0) = φ1(x)

for x ∈ Ω,
boundary c.: u(x, t) = g(x, t) for x ∈ ∂Ω×R+.

(5.2)

Then it is not clear by Cauchy-Kowalevski that these problems are well-posed.
Only locally near (x, 0) ∈ Ω × R there is a unique solution for the second
problem at least when the φi are real analytic. When Ω is a special domain we
may construct solutions of both problems above by an appropriate orthonormal
system. Even for more general domains there are ways of establishing a solution.

The question we want to address in this paragraph is whether or not such a
solution in unique. For the two problems above one may proceed by considering
an energy functional.

• For (5.1) this is
E(u)(t) = 1

2

Z
Ω

|u(x, t)|2 dx.

This quantity is called the thermal energy of the body Ω at time t.

Now let u1 and u2 be two solutions of (5.1) and set u = u1 − u2. This u
is a solution of (5.1) with φi = 0 and g = 0. Since u satisfies 0 initial and
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boundary conditions we obtain

∂

∂t
E(u)(t) =

∂

∂t

µ
1
2

Z
Ω

|u(x, t)|2 dx
¶
=

Z
Ω

ut(x, t) u(x, t)dx =

=

Z
Ω

∆u(x, t) u(x, t)dx = −
Z
Ω

|∇u(x, t)|2 dx ≤ 0.

So t 7→ E(u)(t) decreases, is nonnegative and starts with E(u)(0) = 0.
Hence E(u)(t) ≡ 0 for all t ≥ 0, which implies that u(x, t) ≡ 0.

Lemma 5.1.1 Suppose Ω is a bounded domain in Rn with a ∂Ω ∈ C1 and let
T > 0. Then C2(Ω̄× [0, T ]) solutions of (5.1) are unique.
• For (5.2) the appropriate functional is

E(u)(t) = 1
2

Z
Ω

³
c2 |∇u(x, t)|2 + |ut(x, t)|2

´
dx.

This quantity is called the energy of the body Ω at time t;

• 1
2

R
Ω
c2 |∇u(x, t)|2 dx is the potential energy due to the deviation from

the equilibrium,

• 1
2

R
Ω
|ut(x, t)|2 dx is the kinetic energy.

Again we suppose that there are two solutions and set u = u1 − u2 such
that u satisfies 0 initial and boundary conditions. Now (note that we use
u is twice differentiable)

∂

∂t
E(u)(t) =

Z
Ω

¡
c2∇u(x, t) ·∇ut(x, t) + ut(x, t)utt(x, t)

¢
dx =

=

Z
Ω

¡−c2∆u(x, t) + utt(x, t)
¢
ut(x, t)dx = 0.

As before we may conclude that E(u)(t) ≡ 0 for all t ≥ 0. This implies
that |∇u(x, t)| = 0 for all x ∈ Ω and t ≥ 0. Since u (x, t) = 0 for x ∈ ∂Ω
we find that u (x, t) = 0. Indeed, let x∗ ∈ ∂Ω the point closest to x, and
we find

u (x, t) = u(x∗, t) +
Z 1

0

∇u(θx+ (1− θ)x∗, t) · (x− x∗) dθ = 0.

Lemma 5.1.2 Suppose Ω is a bounded domain in Rn with a ∂Ω ∈ C1 and let
T > 0. Then C2(Ω̄× [0, T ]) solutions of (5.2) are unique.
• In a closely related way one can even prove uniqueness for½ −∆u = f in Ω,

u = g on ∂Ω.
(5.3)

Suppose that there are two solutions and call the difference u. This u
satisfies (5.3) with f and g both equal to 0. SoZ

Ω

|∇u|2 dx = −
Z
0

∆u u dx = 0

and ∇u = 0 implying, since u|∂Ω = 0, that u = 0.
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Lemma 5.1.3 Suppose Ω is a bounded domain in Rn with a ∂Ω ∈ C1. Then
C2(Ω̄) solutions of (5.3) are unique.

Exercise 78 Why is the condition ‘Ω is bounded’ appearing in the three lemma’s
above?

Exercise 79 Can we prove a similar uniqueness result for the following b.v.p.?
ut = ∆u in Ω×R+,
u(x, 0) = φ0(x) for x ∈ Ω,
∂
∂nu(x, t) = g(x) for x ∈ ∂Ω×R+.

(5.4)

Exercise 80 And for this one?
utt = c2∆u in Ω×R+,
u(x, 0) = φ0(x)
ut(x, 0) = φ1(x)

for x ∈ Ω,
∂
∂nu(x, t) = g(x) for x ∈ ∂Ω×R+.

(5.5)

Exercise 81 Let Ω = {(x1, x2);−1 < x1, x2 < 1} and let
Γc = {(−1, s) ;−1 < s < 1} ,
Γr = {(1, s) ;−1 < s < 1} .

Let f ∈ C∞
¡
Ω̄
¢
. Which of the following problems has at most one solution

in C2
¡
Ω̄
¢
? And which one has at least one solution in W 2,2(Ω)?

A :

½ −∆u = f in Ω,
u = 0 on ∂Ω.

B :

½ −∆u = f in Ω,
∂
∂nu = 0 on ∂Ω.

C :


−∆u = f in Ω,
u = 0 on Γc,
∂
∂nu = 0 on ∂Ω\Γc.

D :


−∆u = f in Ω,
∂
∂nu = 0 on ∂Ω,
u(1, 1) = 0.

E :

 −∆u = f in Ω\{0},
u = 0 on ∂Ω,
u(0, 0) = 0.

F :


−∆u = f in Ω,
u = 0 in Γc,
∂
∂nu = 0 on ∂Ω\Γr.

Exercise 82 For which of the problems in the previous exercise can you find
f ∈ C∞(Ω̄) such that no solution in C2

¡
Ω̄
¢
exists?

1. Can you find a condition on λ such that for the solution u of ut = ∆u+ λu in Ω×R+,
u(x, 0) = φ0(x) for x ∈ Ω,
u(x, t) = 0 for x ∈ ∂Ω×R+.

(5.6)

the norm ku(·, t)kL2(Ω) remains bounded for t→∞.

2. Can you find a condition on f such that ut = ∆u+ f(u) in Ω×R+,
u(x, 0) = φ0(x) for x ∈ Ω,
u(x, t) = 0 for x ∈ ∂Ω×R+.

(5.7)

ku(·, t)kL2(Ω) remains bounded for t→∞.
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Exercise 83 Here is a model for a string with some damping:
utt + aut = c2uxx in (0, c)×R+,
u(x, 0) = φ(x) for 0 < x < c,
ut(x, 0) = 0 for 0 < x < c,
u(x, t) = 0 for x ∈ {0, c} and t ≥ 0.

(5.8)

Find a bound like
°°u2x (·, t)°°L2 ≤Me−bt.

Exercise 84 A more realistic model is
utt + a |ut|ut = c2uxx in (0, c)×R+,
u(x, 0) = φ(x) for 0 < x < c,
ut(x, 0) = 0 for 0 < x < c,
u(x, t) = 0 for x ∈ {0, c} and t ≥ 0.

(5.9)

Can you show that u (·, t)→ 0 for t→∞ in some norm?
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5.2 Maximum principles
In this section we will consider second order linear partial differential equations
in Rn. The corresponding differential operators are as follows:

L =
nX

i,j=1

aij (x)
∂

∂xi

∂

∂xj
+

nX
i=1

bi (x)
∂

∂xi
+ c(x) (5.10)

with aij , bi, c ∈ C(Ω̄).Without loss of generality we may assume that aij = aji.
In order to restrict ourselves to parabolic and elliptic cases with the right

sign for stating the results below we will assume a sign for the operator.

Definition 5.2.1 We will call L parabolic-elliptic in x if
nX

i,j=1

aij (x) ξiξj ≥ 0 for all ξ ∈ Rn. (5.11)

We will call L elliptic in x if there is λ > 0 such that
nX

i,j=1

aij (x) ξiξj ≥ λ |ξ|2 for all ξ ∈ Rn. (5.12)

Definition 5.2.2 For Ω ⊂ Rn and L as in (5.10)-(5.11) we will define the
parabolic boundary ∂LΩ as follows:
x ∈ ∂LΩ if x ∈ ∂Ω and either

1. ∂Ω is not C1 locally near x, or

2.
Pn

i,j=1 aij (x) νiνj > 0 for the outside normal ν at x, or

3.
Pn

i,j=1 aij (x) νiνj = 0 and
Pn

i=1 bi(x)νi ≥ 0 for the outside normal ν at
x.

Lemma 5.2.3 Let L be parabolic-elliptic on Ω̄ with Ω ⊂ Rn and Γ ⊂ ∂Ω\∂LΩ
with Γ ∈ C1. Suppose that u ∈ C2(Ω ∪ Γ), that Lu > 0 in Ω ∪ Γ and that c ≤ 0
on Ω ∪ Γ. Then u cannot attain a nonnegative maximum in Ω ∪ Γ.
Example 5.2.4 For the heat-equation with source term ut −∆u = f on Ω =
Ω̃× (0, T ) ⊂ Rn+1 the non-parabolic boundary is Ω̃× {T}. Indeed, rewriting to
∆u − ut we find part 2 of Definition 5.2.2 satisfied on ∂Ω × (0, T ) and part 3
of Definition 5.2.2 satisfied on Ω̃× {0} . In (x, t)-coordinates b = (0, . . . , 0,−1)
one finds that aij = δij for all i, j 6= (n+ 1, n+ 1) and an+1,n+1 = 0. So

n+1X
i,j=1

aij (x) νiνj =
nX

i,j=1

δij0
2 + 0 12 = 0 and b · ν = −1 on Ω× {T} .

So, if ut −∆u > 0 then u cannot attain a nonpositive minimum in Ω × (0, T ]
for every T > 0. In other words, if u satisfies ut −∆u > 0 in Ω×R+,

u(x, 0) = φ0(x) ≥ 0 for x ∈ Ω,
u(x, t) = g(x, t) ≥ 0 for x ∈ ∂Ω×R.

then u ≥ 0 in Ω̄×R+0 .
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Proof. Suppose that u does attain a nonnegative maximum in Ω ∪ Γ, say in
x0. If x0 ∈ Ω then ∇u(x0) = 0. If x0 ∈ Γ then by assumption b · ν ≤ 0 and
∇u(x0) = γν for some nonnegative constant γ. So in both case

b(x0) ·∇u(x0) + c(x0)u(x0) ≤ 0.
We find that

nX
i,j=1

aij (x0)
∂

∂xi

∂

∂xj
u(x0) ≥ Lu(x0) > 0.

As before we may diagonalize (aij (x0)) = T tDT and find in the new coordinates
y = Tx with U(y) = u(x) that

nX
i=1

d2ii
∂2

∂y2i
U (Tx0) > 0

with dii ≥ 0 by our assumption in (5.11).
If x0 ∈ Ω then in a maximum ∂2

∂y2i
U (Tx0) ≤ 0 for all i ∈ {1, n} and we find

nX
i=1

d2ii
∂2

∂y2i
U (Tx0) ≤ 0, (5.13)

a contradiction.
If x0 ∈ Γ then ν is an eigenvector of (aij (x0)) with eigenvalue zero and

hence we may use this as our first new basis element and one for which we have
d11 = 0. In a maximum we still have ∂2

∂y2i
U (Tx0) ≤ 0 for all i ∈ {2, n} . Our

proof is saved since the first component is killed through d11 = 0 and we still
find the contradiction by (5.13).
In the remainder we will restrict ourselves to the strictly elliptic case.

Definition 5.2.5 The operator L as in (5.10) is called strictly elliptic on Ω if
there is λ > 0 such that

nX
i,j=1

aij (x) ξiξj ≥ λ |ξ|2 for all x ∈ Ω and ξ ∈ Rn. (5.14)

Exercise 85 Suppose that Ω ⊂ Rn is bounded. Show that if L as in (5.10) is
elliptic for all x ∈ Ω̄ then L is strictly elliptic on Ω as in (5.14). Also give an
example of an elliptic L that is not strictly elliptic.

For u ∈ C
¡
Ω̄
¢
we define u+ ∈ C(Ω̄) by

u+(x) = max [0, u(x)] and u−(x) = max [0,−u(x)] .
Theorem 5.2.6 (Weak Maximum Principle) Let Ω ⊂ Rn be a bounded do-
main and suppose that L is strictly elliptic on Ω with c ≤ 0. If u ∈ C2 (Ω)∩C(Ω̄)
and Lu ≥ 0 in Ω, then the maximum of u+ is attained at the boundary.

Proof. The proof of this theorem relies on a smartly chosen auxiliary function.
Supposing that Ω ⊂ BR(0) we consider w defined by

w(x) = u(x) + εeαx1
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with ε > 0. One finds that

Lw(x) = Lu(x) + ε
¡
α2a11(x) + αb1(x) + c(x)

¢
eαx1 .

Since a11(x) ≥ λ be the strict ellipticity assumption and since b1, c ∈ C(Ω̄) with
Ω bounded, we may choose α such that

α2a11(x) + αb1(x) + c(x)eαx1 > 0.

The result follows for w from the previous Lemma and hence

sup
Ω

u ≤ sup
Ω

w ≤ sup
Ω

w+ ≤ sup
∂Ω

w+ ≤ sup
∂Ω

u+ + εeαR.

Letting ε ↓ 0 the claim follows.

Exercise 86 State and prove a weak maximum principle for L = − ∂
∂t +∆ on

Ω× (0, T ) .

Theorem 5.2.7 (Strong Maximum Principle) Let Ω ⊂ Rn be a domain
and suppose that L is strictly elliptic on Ω with c ≤ 0. If u ∈ C2 (Ω)∩C(Ω̄) and
Lu ≥ 0 in Ω, then either

1. u ≡ sup©u(x);x ∈ Ω̄ª , or
2. u does not attain a nonnegative maximum in Ω.

For the formulation of a boundary version of the strong maximum principle
we need a condition on Ω.

Definition 5.2.8 A domain Ω ⊂ Rn satisfies the interior sphere condition at
x0 ∈ ∂Ω if there is a open ball B such that B ⊂ Ω and x0 ∈ ∂B.

Theorem 5.2.9 (Hopf’s boundary point lemma) Let Ω ⊂ Rn be a do-
main that satisfies the interior sphere condition at x0 ∈ ∂Ω. Let L be strictly
elliptic on Ω with c ≤ 0. If u ∈ C2 (Ω)∩C(Ω̄) satisfies Lu ≥ 0 in Ω and is such
that max

©
u(x);x ∈ Ω̄ª = u(x0) ≥ 0, then either

1. u ≡ u(x0) on Ω̄, or

2. lim inf
t↓0

u(x0)− u(x0 + tµ)

t
> 0 (possibly +∞) for every direction µ point-

ing into an interior sphere.

Remark 5.2.10 If u ∈ C1(Ω ∪ {x0}) then
∂

∂µ
u(x0) = − lim inf

t↓0
u(x0)− u(x0 + tµ)

t
< 0,

which means for the outward normal ν

∂

∂ν
u(x0) > 0
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Exercise 87 Suppose that Ω = Br(xa) ∪Br(xb) with r = 2 |xa − xb| . Let L be
strictly elliptic on Ω with c ≤ 0 and assume that u ∈ C2(Ω) ∩ C(Ω̄) satisfies½

Lu ≥ 0 in Ω,
u = 0 on ∂Ω.

Show that if u ∈ C1(Ω̄) then u ≡ 0 in Ω̄. Hint: consider some x0 ∈ ∂Br(xa) ∩
∂Br(xb).

Exercise 88 Let Ω be a bounded domain in Rn and let L be strictly elliptic
on Ω (and we put no sign restriction on c). Suppose that there is a function
v ∈ C2(Ω) ∩ C(Ω̄) such that −Lv ≥ 0 in Ω and v > 0 on Ω̄.
Show that any function w ∈ C2(Ω) ∩ C(Ω̄) such that½ −Lw ≥ 0 in Ω,

w ≥ 0 on ∂Ω,

is nonnegative.

Exercise 89 Let Ω be a bounded domain in Rn and let L be strictly elliptic on
Ω with c ≤ 0. Let f and φ be given functions. Show that½ −Lu = f in Ω,

u = φ on ∂Ω,

has at most one solution in C2(Ω) ∩ C(Ω̄).
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5.3 Proof of the strong maximum principle

Set m = supΩ u and set Σ = {x ∈ Ω;u(x) = m} . We have to prove that when
m > 0 then either Σ is empty or that Σ = Ω. We argue by contradiction and
assume that both Σ and Ω\Σ are nonempty, say Ω\Σ 3 x1 and Σ 3 x2.

I. Constructing an appropriate subdomain. First we will construct a
ball in Ω that touches Σ exactly once. Since u is continuous Ω\Σ is open. Move
along the arc from x1 to x2 and there will be a first x3 on this arc that lies in
Σ. Set s the minimum of |x1 − x3| and the distance of x3 to ∂Ω. Take x4 on the
arc between x1 and x3 such that |x3 − x4| < 1

2s.

Next we take Br1 (x4) to be the largest ball around x4 that is contained
in Ω\Σ. Since |x3 − x4| < 1

2s we find that r1 ≤ 1
2s and that there is at least

one point of Σ on ∂Br1 (x4) . Let us call such a point x5. The final step of the
construction is to set x∗ = 1

2x4+
1
2x5 and r =

1
2r1. The ball Br(x

∗) is contained
in Ω\Σ and ∂Br(x

∗) ∩ Σ = {x5} . We will also use the ball B 1
2 r
(x5). See the

pictures below.
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II. The auxiliary function. Next we set for α > 0 the auxiliary function

h(x) =
e−

α
2 |x−x∗|2 − e−

α
2 r

2

1− e−
α
2 r

2 .

One should notice that this function is tailored in such a way that h = 0 for
x ∈ ∂Br(x

∗), positive inside Br(x
∗) and negative outside of Br(x∗). Moreover

h(x) ≤ 1 on Br(x
∗).

On B 1
2 r
(x5) one finds, using that |x− x∗| ∈ ¡12r, 32r¢ that

Lh =

α2
nP

i,j=1
aij(xi − x∗i )(xj − x∗j )− α

nP
i=1
(aii + bi(xi − x∗i ) + c

1− e−
α
2 r

2 e−
α
2 |x−x∗|2+

−c(x) e−
α
2 r

2

1− e−
α
2 r

2 ≥

≥
Ã
4α2λ

¡
1
2r
¢2 − 2α nX

i=1

¡
aii(x) + |bi(x)| 32r

¢
+ c

!
e−

α
2 |x−x∗|2

1− e−
α
2 r

2

and by choosing α large enough we find Lh > 0 in B 1
2 r
(x5).

III. Deriving a contradiction. As before we consider w = u+εh. Now the
subdomain that we will use to derive a contradiction is B 1

2 r
(x5). The boundary

of this set consists of two parts:

Γ1 = ∂B 1
2 r
(x5) ∩Br(x∗) and Γ2 = ∂B 1

2 r
(x5)\Γ1.

Since Γ1 is closed, since u|Γ1 < m by construction and since u is continuous we
find

sup {u(x);x ∈ Γ1} = max {u(x);x ∈ Γ1} = m̃ < m.

On Γ2 we have h ≤ 0 and hence w = u+ εh ≤ u ≤ m.
Next we choose ε > 0 such that

ε =
1

2
(m− m̃)

As a consequence we find that

sup
n
w(x);x ∈ ∂B 1

2 r
(x5)

o
< m.

Since w(x5) = u(x5) = m and also Lw > 0 in B 1
2 r
(x5) we obtain a contradiction

with Theorem 5.2.6.
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5.4 Alexandrov’s maximum principle

Alexandrov’s maximum principle gives a first step towards regularity. Before
we are able to state the result we need a definition.

Definition 5.4.1 For u ∈ C(Ω̄) with Ω a domain in Rn, the upper contact set
Γ+ is defined by

Γ+ = {y ∈ Ω;∃ay ∈ Rn such that ∀x ∈ Ω : u(x) ≤ u(y) + ay · (x− y)} .

Next we define a lemma concerning this upper contact set. Here the diameter
of Ω will play a role:

diam(Ω) = sup {|x− y| ;x, y ∈ Ω} .

Lemma 5.4.2 Suppose that Ω is bounded. Let g ∈ C(Rn) be nonnegative and
u ∈ C(Ω̄) ∩ C2(Ω). Set

M = (diam(Ω))
−1
µ
sup
Ω

u− sup
∂Ω

u

¶
. (5.15)

Then Z
BM (0)⊂Rn

g(z)dz ≤
Z
Γ+

g(∇u(x))
¯̄̄̄
det

µ
∂

∂xi

∂

∂xj
u(x)

¶¯̄̄̄
dx. (5.16)

Proof. Let Σ ⊂ Rn be the following set:

Σ =
©∇u(x);x ∈ Γ+ª .

If ∇u : Γ+ → Σ is a bijection thenZ
Σ

g(z)dz =

Z
Γ+

g(∇u(x))
¯̄̄̄
det

µ
∂

∂xi

∂

∂xj
u(x)

¶¯̄̄̄
dx.

is just a consequence of a change of variables. One cannot expect that this holds
but since the mapping is onto and since g ≥ 0 one findsZ

Σ

g(z)dz ≤
Z
Γ+

g(∇u(x))
¯̄̄̄
det

µ
∂

∂xi

∂

∂xj
u(x)

¶¯̄̄̄
dx.
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So if we can show thatBM (0) ⊂ Σ we are done. In other words, it is sufficient
to show that for every a ∈ BM (0) there is y ∈ Γ+ such that a = ∇u(y).
Set

c(a) = min
x∈Ω̄

(a · x− u(x))

which is attained at some ya since Ω̄ is closed and bounded and u is continuous.
So we have

a · ya − u(ya) = c(a) for some ya ∈ Ω̄,
a · x− u(x) ≥ c(a) for all x ∈ Ω̄,

which implies that

u(ya) ≥ u(x) + a · (ya − x) for all x ∈ Ω̄. (5.17)

By taking x0 ∈ Ω̄ such that u (x0) = maxx∈Ω̄ u(x) one obtains
u(ya) ≥ u(x0) + a · (ya − x0)

= sup
x∈Ω

u+ a · (ya − x0)

= sup
x∈∂Ω

u+M diam(Ω) + a · (ya − x0)

> sup
x∈∂Ω

u+M diam(Ω)−M |ya − x0| ≥ sup
x∈∂Ω

u.

So ya /∈ ∂Ω and hence ya ∈ Ω. Since (5.17) holds and since u is differentiable in
ya we find that a = ∇u(ya). By this construction we even have that ya ∈ Γ+,
the upper contact set.

Corollary 5.4.3 Suppose that Ω is bounded and that u ∈ C(Ω̄)∩C2(Ω). Denote
the volume of the unit ball in Rn by ω∗n and set

D∗(x) =
³
det

³
aij(x)

´´1/n
.

Then

sup
Ω

u ≤ sup
∂Ω

u+
diam(Ω)

n
√
ω∗n

°°°°°−
Pn

i.j=1 aij(·) ∂
∂xi

∂
∂xj

u(·)
nD∗(·)

°°°°°
Ln(Γ+)

.

Remark 5.4.4 Replacing Ω with Ω+ = {x ∈ Ω;u(x) > 0} one finds

sup
Ω

u ≤ sup
∂Ω

u+ +
diam(Ω)

n
√
ω∗n

°°°°°−
Pn

i.j=1 aij(·) ∂
∂xi

∂
∂xj

u(·)
nD∗(·)

°°°°°
Ln(Γ+∩Ω+)

.

Proof. Note that
nX

i.j=1

aij(x)
∂

∂xi

∂

∂xj
u(x) = trace (AD)

with the matrices A and D defined by

A =
³
aij(x)

´
and D =

µ
∂

∂xj

∂

∂xi
u(x)

¶
.
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Now let us diagonalize the elliptic operator
Pn

i.j=1 aij(x̄)
∂
∂xi

∂
∂xj

by choosing new
orthonormal coordinates y at this point x̄ (the new coordinates will be different
at each point x̄ but that doesn’t matter since for the moment we are just using
linear algebra at this fixed point x̄) which fit the eigenvalues of (aij(x)) . So
AD = T tΛD̃T with diagonal matrices

Λ =

µ
λi(x̄)

¶
and D̃ =

µ
∂2

∂y2i
(v ◦ T ) (y)

¶
.

Since for T orthonormal the eigenvalues of AD and ΛD̃ coincide and

trace (AD) = trace
³
ΛD̃

´
det (AD) = det

³
ΛD̃

´
we may consider the at x̄ diagonalized elliptic operator. The ellipticity condition
implies λi(x̄) ≥ λ > 0. Since we are at a point in the upper contact set Γ+ we
have ∂2

∂y2i
u(y) ≤ 0. So on Γ+ the matrix T tΛD̃T is nonpositive definite. Writing

µi = −λi(x̄) ∂
2

∂y2i
(v ◦ T ) (y) for the the eigenvalues of −AD by µi and using that

the geometric mean is less then the arithmetic mean (for positive numbers) we
obtain

D∗(x) det (−D)1/n = det (−AD)1/n =
Ã

nY
i=1

µi

!1/n
≤

≤ 1

n

nX
i=1

µi =
1

n
trace (−AD) .

So we may conclude that for every x ∈ Γ+

det

µ
− ∂

∂xi

∂

∂xj
u(x)

¶
≤
Ã−Pn

i.j=1 aij(x)
∂
∂xi

∂
∂xj

u(x)

n D∗(x)

!n

. (5.18)

Taking g = 1 in (5.16) and M as in (5.15) we have

ω∗n

µ
supΩ u− sup∂Ω u

diam(Ω)

¶n
=

Z
BM (0)

1dz ≤

≤
Z
Γ+

¯̄̄̄
det

µ
∂

∂xi

∂

∂xj
u(x)

¶¯̄̄̄
dx ≤

≤
Z
Γ+

Ã−Pn
i.j=1 aij(x)

∂
∂xi

∂
∂xj

u(x)

n D∗(x)

!n

dx,

which completes the proof.

Theorem 5.4.5 (Alexandrov’s Maximum Principle) Let Ω ⊂ Rn be a
bounded domain and let L be elliptic as in (5.12) with c ≤ 0. Suppose that
u ∈ C2(Ω) ∩ C(Ω̄) satisfies Lu ≥ f with

|b(·)|
D∗(·) ,

f(·)
D∗(·) ∈ Ln(Ω),
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and let Γ+ denote the upper contact set of u. Then one finds

sup
Ω

u ≤ sup
∂Ω

u+ + C diam(Ω)

°°°°f−(·)D∗(·)
°°°°
Ln(Γ+)

,

where C depends on n and
°°° |b(·)|D∗(·)

°°°
Ln(Γ+)

.

Proof. If the bi and c components of L would be equal 0 then the result follows
from (5.4.3). Indeed, on Γ+

0 ≤ −
nX

i.j=1

aij(x)
∂

∂xi

∂

∂xj
u(x) ≤ −f(x) ≤ f−(x).

For nonzero bi and c we proceed as follows. Since it is sufficient to consider
u > 0 we may restrict ourselves to Ω+. Then we have c(x)u(x) ≤ 0 and hence
for any µ > 0 :

0 ≤ −
nX

i.j=1

aij(x)
∂

∂xi

∂

∂xj
u(x) ≤

≤
nX
i=1

bi(x)
∂

∂xi
u(x) + c(x)u(x)− f(x) ≤

≤
nX
i=1

bi(x)
∂

∂xi
u(x) + f−(x) ≤ (by Cauchy-Schwarz)

≤ |bi(x)| |∇u(x)| 1 + µ−1f−(x) µ 1 ≤ (by Hölder)
≤

³
|bi(x)|n +

¯̄
µ−1f−(x)

¯̄n´ 1
n

(|∇u(x)|n + µn)
1
n (1 + 1)

n−2
n .

Using Lemma 5.4.2 on Ω+ and with g(z) = (|z|n + µn)
−1 one finds with

M̃ = (diam(Ω))−1
µ
sup
Ω

u− sup
∂Ω

u+
¶

that, similar as before in (5.18),Z
BM̃ (0)

1

|z|n + µn
dz ≤

Z
Γ+∩Ω+

1

|∇u(x)|n + µn

¯̄̄̄
det

µ
∂

∂xi

∂

∂xj
u(x)

¶¯̄̄̄
dx

≤
Z
Γ+∩Ω+

1

|∇u(x)|n + µn

Ã−Pn
i.j=1 aij(x)

∂
∂xi

∂
∂xj

u(x)

n D∗(x)

!n

dx ≤

≤ 2n−2
Z
Γ+∩Ω+

¡|bi(x)|n + ¯̄µ−1f−(x)¯̄n¢ 1n
n D∗(x)

n

dx ≤

≤ 2n−2

nn

Z
Γ+∩Ω+

|bi(x)|n +
¯̄
µ−1f−(x)

¯̄n
D∗(x)n dx =

=
2n−2

nn

Ã°°°° |bi|D∗
°°°°n
Ln(Γ+∩Ω+)

+ µ−n
°°°°f−D∗

°°°°n
Ln(Γ+∩Ω+)

!
.
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By a direct computationZ
BM̃ (0)⊂Rn

1

|z|n + µn
dz = nω∗n

Z M

0

rn−1

rn + µn
dr = ω∗n log

Ã
M̃n + µn

µn

!
.

Choosing µ = kf−/D∗kLn(Γ+∩Ω+) it follows that

ω∗n log

ÃÃ
M̃

kf−/D∗kLn(Γ+∩Ω+)

!n

+ 1

!
≤ 2

n−2

nn

Ã°°°° |bi|D∗
°°°°n
Ln(Γ+∩Ω+)

+ 1

!

and hence Ã
M̃

kf−/D∗kLn(Γ+∩Ω+)

!n

≤ e
2n−2
nnω∗n

Ã°°°° |bi|D∗

°°°°n
Ln(Γ+∩Ω+)

+1

!
− 1

and the claim follows.
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5.5 The wave equation

5.5.1 3 space dimensions

This is the differential equation with four variables x ∈ R3 and t ∈ R+ and the
unknown function u

utt = c2∆u, (5.19)

where ∆u = ∂2

∂x21
+ ∂2

∂x22
+ ∂2

∂x23
.

Believing in Cauchy-Kowalevski an appropriate initial value problem would
be  utt = c2∆u in R3 ×R+,

u(x, 0) = ϕ0(x) for x ∈ R3,
ut(x, 0) = ϕ1(x) for x ∈ R3.

(5.20)

We will start with the special case that u is radially symmetric in x, y, z.
Under this assumption and setting r =

p
x2 + y2 + z2 the equation changes in

utt = c2
µ
urr +

2

r
ur

¶
.

Next we use the substitution

U (r, t) = ru(r, t),

and with some elementary computations

utt =
1

r
Utt and urr +

2

r
ur =

1

r
Urr,

we return to the one dimensional wave equation

Utt = c2Urr.

This equation on R×R+0 has solutions of the form
U (r, t) = Φ(r − ct) +Ψ(r + ct).

Returning to u it means we obtain solutions

u (x, t) =
1

|x|Φ(|x|− ct) +
1

|x|Ψ(|x|+ ct)

but this does not look like covering all solutions and in fact the second term is
suspicious. IfΨ is somewhere nonzero, say at x0, then 1

|x|Ψ(|x|+ct) is unbounded
for t = c−1 |x0| in x = 0. So we are just left with u (x, t) = 1

|x|Φ(|x|− ct).

How can we turn this into a solution of (5.20)? Remember that for the heat
equation it was sufficient to have the solution for the δ-function in order to find
a solution for arbitrary initial values by a convolution. In the present case one
might try to consider as this special ‘function’ (really a distribution)

v(x, t) =
1

|x|δ (|x|− ct) =
1

ct
δ (|x|− ct) .

So at time t the influence of an initial ‘function’ at x = 0 distributes itself over a
circle of radius ct around 0. Or similarly if we start at y, at time t the influence
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of an initial ‘function’ at x = y distributes itself over a circle of radius ct around
y :

v1(x, t) =
1

|x− y|δ (|x− y|− ct) =
1

ct
δ (|x− y|− ct) .

Combining these ‘solutions’ for y ∈ Rn with density f(y) we obtain

u (x, t) =

Z
R3

1

ct
δ (|x− y|− ct) f(y)dy =

=
1

ct

Z
|x−y|=ct

f(y)dσy =
1

ct

Z
|z|=ct

f(x+ z)dσz = ct

Z
|ω|=1

f (x+ ctω) dω.

Looking backwards from (x, t) we should see an average of the initial function
at positions at distance ct from x.

On the left the cones that represent the influence of the initial data; on the
right the cone representing the dependence on the initial data.

Now we have to find out what u(x, 0) and ut(x, 0) are. For f ∈ C∞0 (R3) one
gets

u (x, 0) = lim
t↓0

ct

Z
|ω|=1

f (x+ ctω) dω = 0

and

ut(x, 0) = lim
t↓0

∂

∂t

Ã
ct

Z
|ω|=1

f (x+ ctω) dω

!
=

= lim
t↓0

Ã
c

Z
|ω|=1

f (x+ ctω) dω + c2t2
Z
|ω|=1

∇f (x+ ctω) · ω dω

!
= 4πcf (x) .

So there is a possible solution of (5.20) for ϕ0 = 0, namely

ũ(ϕ1;x, t) =
1

4πc2t

Z
|x−y|=ct

ϕ1 (y) dσ. (5.21)

Since we do have a solution with u (x, 0) = 0 and ut(x, 0) = ϕ1(x) it could
be worth a try to consider the derivative with respect to t of this ũ in (5.21),
with ϕ1 replaced by ϕ0, in order to solve the first initial condition. So v(x, t) =
∂
∂t ũ(ϕ0;x, t) will satisfy the differential equation and the first initial condition,
that is, v(x, 0) = ϕ0(x). We still have to see about vt(x, 0). First let us write
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out v(x, t) :

v(x, t) =
∂

∂t
ũ(ϕ0;x, t) =

∂

∂t

Ã
1

4πc2t

Z
|x−y|=ct

ϕ0 (y) dσ

!
=

=
∂

∂t

Ã
t

4π

Z
|ω|=1

ϕ0 (x+ ctω) dω

!
=

=
1

4π

Z
|ω|=1

ϕ0 (x+ ctω) dω +
ct

4π

Z
|ω|=1

∇ϕ0 (x+ ctω) · ω dω =

=
1

4πc2t2

Z
|x−y|=ct

ϕ0 (y) dσ +
1

4πc2t2

Z
|x−y|=ct

∇ϕ0 (y) · (y − x) dσ,

We find that

vt(x, t) =
∂

∂t

Ã
1

4π

Z
|ω|=1

ϕ0 (x+ ctω) dω +
ct

4π

Z
|ω|=1
∇ϕ0 (x+ ctω) · ω dω

!

=
2c

4π

Z
|ω|=1

∇ϕ0 (x+ ctω) · ω dω +

+
c2t

4π

Z
|ω|=1

3X
i,j=1

ωiωj
∂2

∂xi∂xj
ϕ0 (x+ ctω) dω

and since

lim
t↓0

2c

4π

Z
|ω|=1

∇ϕ0 (x+ ctω) · ω dω =
2c

4π

Z
|ω|=1

∇ϕ0 (x) · ω dω = 0,

we have
lim
t↓0

vt(x, t) = 0.

Theorem 5.5.1 Suppose that ϕ0 ∈ C3(R3) and ϕ1 ∈ C2(R3). The Cauchy
problem in (5.20) has a unique solution u ∈ C2

¡
R3 ×R+¢ and this solution is

given by

u (x, t) =
1

4πc2t

Z
|x−y|=ct

ϕ1 (y) dσ +
∂

∂t

Ã
1

4πc2t

Z
|x−y|=ct

ϕ0 (y) dσ

!
.

This expression is known as Poisson’s solution.

Exercise 90 Let u ∈ C2
¡
B̄
¢
with B =

©
x ∈ R3; |x| ≤ 1ª and define ū as fol-

lows:

ū (x) =
1

4π |x|2
Z
|y|=|x|

u(y)dy.

This ū is called the spherical average of u. Show that:

∆ū (x) =
1

4π |x|2
Z
|y|=|x|

∆u(y)dy.

Hint: use spherical coordinates x = (r cosϕ sin θ, r sinϕ sin θ, r cos θ). In these
coordinates:

∆ = r−2
∂

∂r
r2

∂

∂r
+

1

r2 sin θ

∂

∂θ
sin θ

∂

∂θ
+

1

r2 sin2 θ

∂2

∂ϕ2
.
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Proof. To give a direct proof that the formula indeed gives a solution of the
differential equation is quite tedious. Some key ingredients are Green’s formula
applied to the fundamental solution:

−4πf(x) =
=

Z
|z|<R

1

|z|∆zf(x+ z)dz − 1

R

Z
|z|=R

∂

∂r
f(x+ z)dσ − 1

R2

Z
|z|=R

f(x+ z)dσ,

the observation that

∂

∂t

Z
|z|<ct

v(z)dz = c

Z
|z|=ct

v(z)dσ

and a version of the fundamental theorem of calculus on balls in R3:Z
|z|<R

1

|z|2
∂

∂ |z|g (z) dz =
Z
|ω|=1

Z R

r=0

1

r2

µ
∂

∂r
g(rω)

¶
r2drdω =

=

Z
|ω|=1

(g(Rω)− g(0)) dω =

Z
|z|=R

1

|z|2 (g (z)− g(0)) dσz.

Here we go for u(x, t) = 1
t

R
|x−y|=ct f (y) dσ:

c2∆u (x, t) =
c2

t

Z
|z|=ct

∆xf(x+ z)dσz = c3
Z
|z|=ct

1

|z|∆zf(x+ z)dσz =

= c2
∂

∂t

Z
|z|<ct

1

|z|∆zf(x+ z)dz =

= c2
∂

∂t

Ã
−4πf(x) + 1

ct

Z
|z|=ct

∂

∂ |z|f(x+ z)dσ +
1

c2t2

Z
|z|=ct

f(x+ z)dσ

!
=

= c2
∂

∂t

ÃZ
|z|=ct

1

|z|
∂

∂ |z|f(x+ z)dσ +

Z
|z|=ct

1

|z|2 f(x+ z)dσ

!
=

= c2
∂

∂t

ÃZ
|z|=ct

1

|z|2
∂

∂ |z|
³
|z| f(x+ z)

´
dz

!
=

= c
∂2

∂t2

ÃZ
|z|<ct

1

|z|2
∂

∂ |z|
³
|z| f(x+ z)

´
dz

!
=

= c
∂2

∂t2

ÃZ
|z|=ct

1

|z|f(x+ z)dσ

!
=

= c
∂2

∂t2

Ã
1

ct

Z
|z|=ct

f(x+ z)dσ

!
=

∂2

∂t2
u (x, t) .

Indeed it solves ∂2

∂t2u (x, t) = c2∆u (x, t) . The initial conditions we have already
checked above.
It remains to verify the uniqueness. Suppose that u1 and u2 are two different

solutions to (5.20). Set v = u1−u2 and consider the average of v over the sphere
of radius r around some x

v̄ (r, t) =
1

4πr2

Z
|y−x|=r

v(y, t)dy.
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Since
∂2

∂r2

³
rv̄ (r, t)

´
= r

∂2

∂r2
v̄ (r, t) + 2

∂

∂r
v̄ (r, t) = r∆v̄ (|y| , t) ,

we may, by taking the average as in the last exercise, conclude that

∂2

∂r2

³
rv̄ (r, t)

´
=

r

4πr2

Z
|y−x|=r

∆v(y, t)dy =

=
r

4πc2r2

Z
|y−x|=r

vtt(y, t)dy =
1

c2
∂2

∂t2
(rv̄ (r, t)) .

Since v(·, 0) and vt(·, 0) are both 0 also rv̄ (r, 0) and rv̄t (r, 0) are zero implying
that rv̄ (t, r) = 0. Moreover, for all t ≥ 0 one finds (rv̄ (t, r))|r=0 = 0. So we
may use the version of d’Alembert formula we derived for (x, t) ∈ R+ × R+ in
Exercise 69. We find that rv̄ (t, r) = 0. So the average of u1(·, t) and u2(·, t) are
equal over each sphere in R3 for all t > 0. This contradicts the assumption that
u1 6= u2.

Exercise 91 Writing out Poisson’s solution one obtains Kirchhoff ’s formula.
From the cited books (see the bibliography) the following versions of Kirchhoff ’s
formula have been copied:

1. u(x, t) =
1

c2

Z
∂B(x,t)

th(y) + g(y) +Dg(y) · (y − x) dS(y)

where
Z
A

v(y)dy =

µZ
A

1dy

¶−1 Z
A

v(y)dy.

2. u(x, t) =
1

4πc2t2

Z
|x−y|=ct

[tψ(y) + ϕ(y) +∇ϕ · (x− y)] dσ

3. u(x, t) =
1

4πc2t2

Z
|x−y|=ct

"
tg(y) + f(y) +

X
i

fyi(y)(yi − xi)

#
dσ

4. u(x, t) =
1

4π

ZZ
S

·
∂

∂n

µ
1

r

¶
− 1

r

∂u1
∂n
− 2

cr

∂r

∂n

∂u1
∂t1

¸
t1=0

dS +

+
1

4π

ZZZ
Ω

1

c2r
F
³
y, t− r

c

´
dy

5. u (x, t) =
∂

∂t
tω[f ;x, t] + tω[g;x, t]

where the following expression is called Kirchhoff ’s solution:

tω[g;x, t] =

t

4π

Z 2π

0

Z π

0

g(x1 + t sin θ cosφ, x2 + t sin θ sinφ, x3 + t cos θ) sin θdθdφ.

Explain which boundary value problem each of these u solve (if that one does)
and what the appearing symbols mean.
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5.5.2 2 space dimensions

In 2 dimensions no transformation to a 1 space dimensional problem exists as
in 3 dimensions. However, having a solution in 3 space dimensions one could
just use that formula for initial values that do not depend on x3. The solution
that comes out should not depend on the x3 variable and hence

utt = c2 (ux1x1 + ux2x2 + ux3x3) = c2 (ux1x1 + ux2x2) .

Borrowing the formula from Theorem 5.5.1 we obtain, with y = (y1, y2)

1

4πc2t

Z
|(x,0)−(y,y3)|=ct

ϕ1 (y1, y2) dσ =

=
2

4πc2t

Z
|x−y|≤ct

ϕ1 (y1, y2)
ctq

c2t2 − (x1 − y1)
2 − (x2 − y2)

2
dy1dy2

=
1

2πc

Z
|x−y|≤ct

ϕ1 (y)q
c2t2 − |x− y|2

dy.

So we may conclude that utt = c2∆u in R2 ×R+,
u(x, 0) = φ0(x) for x ∈ R2,
ut(x, 0) = φ1(x) for x ∈ R2.

(5.22)

can be solved uniquely. This idea to go down from a known solution method in
dimension n in order to find a solution in dimension n− 1 is called the method
of descent.

Theorem 5.5.2 Suppose that ϕ0 ∈ C3(R2) and ϕ1 ∈ C2(R2). The Cauchy
problem in (5.22) has a unique solution u ∈ C2

¡
R2 ×R+¢ and this solution is

given by

u (x, t) =
1

2πc

Z
|x−y|≤ct

ϕ1 (y)q
c2t2 − |x− y|2

dy +

+
∂

∂t

 1

2πc

Z
|x−y|≤ct

ϕ0 (y)q
c2t2 − |x− y|2

dy

 .

This expression is known as Poisson’s solution in 2 space dimensions.

As a result of this ‘spreading out’ higher frequencies die out faster then lower
frequencies in 2 dimensions. Flatlanders should be baritones.
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