Übungen zur Vorlesung Einführung in die Stochastik

Blatt 10

Abgabe: 13.01.2009 nach der Vorlesung

Aufgabe 1.

Für $n \in \mathbb{N}$ seien reelle Zufallsvariablen Y_n und Z_n gegeben mit $Z_n \xrightarrow{P} 0$, $Y_n \xrightarrow{P} 0$.

Man beweise: $(Y_n + Z_n) \xrightarrow{P} 0$.

Aufgabe 2.

Für jedes $n\in\mathbb{N}$ sei eine χ^2_n -verteilte Zufallsvariable Y_n gegeben. Die Dichte der χ^2_n -Verteilung ist gegeben durch

$$f_n(x) = \begin{cases} \frac{x^{\frac{n}{2} - 1} e^{-\frac{x}{2}}}{2^{\frac{n}{2}} \Gamma(\frac{n}{2})}, & x > 0\\ 0, & x \le 0 \end{cases}.$$

Man zeige:

$$\mathbb{E}[Y_n^k] = \prod_{i=0}^{k-1} (n+2i) \quad \text{für jedes } k \in \mathbb{N} \,.$$

Aufgabe 3.

Für jedes $n \in \mathbb{N}$ sei Y_n wieder χ^2_n -verteilt.

Mit Hilfe von Ungleichung von Markov und Borel-Cantelli Lemma zeige:

$$\frac{1}{n}Y_n \to 1$$
 P-f.s..

Aufgabe 4.

In einem Kollektivversicherungsvertrag bezeichne Y_i die i-te Schadenshöhe und N die Anzahl der Schäden. $\{Y_i\}_{i\in\mathbb{N}}$ seien unabhängig identisch verteilt und N eine von $\{Y_i\}_{i\in\mathbb{N}}$ unabhängige Zufallsvariable mit $\mathbb{P}[N\in\mathbb{N}]=1$. Sei

$$S = \sum_{i=1}^{N} Y_i$$

der Gesamtschaden. Bestimmen Sie die beste Prognose für Sgegeben ${\cal N}.$