Übungen zur Vorlesung Einführung in die Stochastik

Blatt 6

Abgabe: 2.12.2008 nach der Vorlesung

Aufgabe 1. (4 Punkte)

Sei X Poisson-verteilt mit Parameter λ . Berechnen Sie $\mathbb{E}[\frac{1}{1+X}]$.

Aufgabe 2. (4 Punkte)

Sei $\{A_n\}_{n\geq 1}$ eine Folge von unabhängigen Ereignissen mit

$$\sum_{n=1}^{\infty} \mathbb{P}[A_n] = \infty.$$

Sei A ein Ereignis, für das

$$\sum_{n=1}^{\infty} \mathbb{P}[A_n \cap A] < \infty$$

gilt. Zeigen Sie, dass $\mathbb{P}[A] = 0$.

Aufgabe 3. (4 Punkte)

Es sei $\Omega = \mathbb{R}$ und $\mathcal{P}(\Omega)$ die Potenzmenge von Ω . Man prüfe, ob

- a) $A_1 = \{A \in \mathcal{P}(\Omega) : A \text{ endlich oder } \Omega \setminus A \text{ endlich} \},$
- $b) \qquad \mathcal{A}_2 = \{A \in \mathcal{P}(\Omega): \ A \ \text{abz\"{a}hlbar oder } \Omega \backslash A \text{ abz\"{a}hlbar}\}$

eine σ -Algebra ist.

Aufgabe 4. (4 Punkte)

- 1. Es seien $\Omega \neq \emptyset$ und $A_1,...,A_n$ eine Partition von Ω (d.h. $A_i \neq \emptyset$, $A_i \cap A_j = \emptyset$ für $i \neq j, \bigcup_{i=1}^n A_i = \Omega$). Man zeige:
 - a) $\mathcal{F} := \left\{ \bigcup_{i \in J} A_i : J \subset \{1, 2, ..., n\} \right\}$ ist eine σ -Algebra in Ω .
 - b) $|\mathcal{F}| = 2^n$, d.h. die Elementenanzahl von \mathcal{F} ist 2^n .
- 2. Der Ergebnisraum $\Omega = \{1, 2, 3, 4, 5, 6\}$ modelliere die Augenzahl des Wurfs eines Würfels. Geben Sie jeweils diejenige Partition von Ω an, die die gleiche σ -Algebra erzeugt wie die folgenden Ereignisse. Hier wird kein Beweis verlangt.
 - a) "Augenzahl durch 3 teilbar" und "Augenzahl ungerade",
 - b) "Augenzahl gerade" und "Augenzahl > 3",
 - c) "Augenzahl gerade", "Augenzahl >3" und "Augenzahl 1 oder 6".