Übungen zur Vorlesung Wahrscheinlichkeitstheorie I

Blatt 2

Abgabe: 29.04.09 bzw. 30.04.09 in der Übung

Aufgabe 1. (4 Punkte)

Es sei $\Omega = [0,1), \mathcal{F} = \mathcal{B}([0,1))$ und μ das Lebesguemass. Für alle $n \in \mathbb{N}$ sei

$$A_n := \left[0, \frac{1}{2^n}\right) \cup \left[\frac{2}{2^n}, \frac{3}{2^n}\right) \cup \dots \cup \left[\frac{2^n - 2}{2^n}, \frac{2^n - 1}{2^n}\right).$$

Man zeige, dass $\mu(A_n \cap A_{n+1}) = \mu(A_n) \cdot \mu(A_{n+1})$.

Aufgabe 2. (4 Punkte)

Es seien $(\Omega, \mathcal{F}, \mu)$ ein Maßraum mit $\mu(\Omega) < \infty$ und $A_1, ..., A_n \in \mathcal{F}$. Man zeige:

$$\sum_{i=1}^{n} \mu(A_i) > (n-1)\mu(\Omega) \implies \bigcap_{i=1}^{n} A_i \neq \emptyset.$$

Aufgabe 3. (4 Punkte)

Sei F eine stetige, monoton wachsende Funktion und μ das zugehörige Stieltjesmass.

- a) Zeige, dass $\mu(\lbrace x \rbrace) = 0$ für alle $x \in \mathbb{R}$.
- b) Zeige, dass abzählbare Mengen das Maß 0 haben .
- c) Wenn eine Menge positives Maß hat, muss sie dann ein nichtleeres, offenes Intervall enthalten?

Aufgabe 4. (4 Punkte)

Seien (Ω,\mathcal{F}) , (Ω',\mathcal{F}') und (Ω'',\mathcal{F}'') messbare Räume; $f:=\Omega\to\Omega'$ und $f':=\Omega'\to\Omega''$ beliebige Abbildungen. Man zeige:

- a) $\mathcal{A} := \{ f^{-1}(A) : A \in \mathcal{F}' \}$ ist eine σ -Algebra.
- b) Ist $\mathcal{B} \subset \mathcal{F}'$ mit $\sigma(\mathcal{B}) = \mathcal{F}'$, dann ist f genau dann messbar, wenn $f^{-1}(B) \in \mathcal{F}$ für alle $B \in \mathcal{B}$.
- c) Sind f und f' messbar, so ist auch $f' \circ f$ messbar.