Übungen zur Vorlesung Wahrscheinlichkeitstheorie I

Blatt 3

Abgabe: 6.05.09 bzw. 7.05.09 in der Übung

Aufgabe 1. (4 Punkte)

Es seien $(\Omega_i, \mathcal{F}_i, \mathbb{P}_i)$ W-Räume (i = 1, 2, ..., n), und es sei \mathbb{P} ein W-Maß auf $(\times_{i=1}^n \Omega_i, \otimes_{i=1}^n \mathcal{F}_i)$. Für $A_i \in \mathcal{F}_i$ setze man

$$A'_i := \Omega_1 \times ... \times \Omega_{i-1} \times A_i \times \Omega_{i+1} \times ... \times \Omega_n .$$

Man zeige, dass folgende Aussagen äquivalent sind:

- 1) für alle $i \in \{1, ..., n\}$ und alle $A_i \in \mathcal{F}_i$ gilt $\mathbb{P}[A_i'] = \mathbb{P}_i[A_i]$, und $\mathbb{P}[\bigcap_{i=1}^n A_i'] = \prod_{i=1}^n \mathbb{P}[A_i']$.
- 2) für alle $i \in \{1, ..., n\}$ und alle $A_i \in \mathcal{F}_i$ gilt $\mathbb{P}[A_1 \times ... \times A_n] = \prod_{i=1}^n \mathbb{P}_i[A_i]$.

Aufgabe 2. (4 Punkte)

Sei λ das Lebesguemass. Für $\alpha>0$ sei

$$f_{\alpha}: \mathbb{R} \to \mathbb{R}$$
 $(t, u) \mapsto (1 + |t|^{\alpha} + |u|^{\alpha})^{-1}$.

Man prüfe, für welche $\alpha > 0$ die Funktion f_{α} λ^2 -integrierbar ist.

Hinweis:

Seien für $i \in \mathbb{N}$ die Abbildungen $f_i := \Omega \to \mathbb{R}$, $f_i \ge 0$ und \mathcal{F} , Borel-messbar auf $(\Omega, \mathcal{F}, \mu)$. Dann gilt: $\int \left(\sum_{i=1}^{\infty} f_i\right) d\mu = \sum_{i=1}^{\infty} \int f_i d\mu$.

Aufgabe 3. (4 Punkte)

Sei $\Omega = [0,1)$ und $\mathcal{F} = \mathcal{B}([0,1))$. Das Mass $\mathbb P$ sei definiert durch

$$\mathbb{P}[A] = \frac{1}{\ln 2} \int_A \frac{1}{1+x} \, \mathrm{d}x$$

für alle $A \in \mathcal{F}$.

Sei weiter eine Abbildung $T:(\Omega,\mathcal{F})\to(\Omega,\mathcal{F})$ definiert durch

$$T(x) = \left\{ \begin{array}{ll} (\frac{1}{x}) & : & x \in (0,1) \\ 0 & : & x = 0 \, . \end{array} \right. ,$$

wobei (z)=z-[z], i.e. (z) ist der nichtganzzahlige Anteil von z>0. Zeige:

- 1) Die Abbildung T ist \mathbb{P} -masserhaltend.
- 2) Die Abbildung T ist nicht λ -maßerhaltend, wobei λ das Lebesguemass ist.

Hinweis: Eine messbare Abbildung $f:(\Omega,\mathcal{F})\to(\Omega,\mathcal{F})$ heisst μ -masserhaltend, wenn für das durch $\mu^*:=\mu(f^{-1}(A))$ auf \mathcal{F} definierte Mass gilt

$$\mu^* = \mu$$
.