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1 Introduction

1.1 The classical risk model

The classical risk model is a surplus process X = {Xt} of the form

Xt = x + ct−
Nt∑

i=1
Zi

where

• x: initial capital

• c: premium rate

• Zi: iid claims

• Nt: Poisson process with intensity λ, independent of Zi

• Ti: claims arrival times.
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Figure 1: The process {Xt}.

1.2 Reinsurance

Reinsurer ∼= “an insurer assuming the risk of another under contract”

Problem of the first insurer: How much reinsurance should I buy?

The decision depends on

• the retention level b ∈ [0, b̃];

• the self-insurance function r(z, b). We assume, that r is continuous and
increasing in both variables;

• the premium rate function c(b). c(b) denotes the premium remaining to
the first insurer, if the retention level b was chosen.

1.3 Investments

In addition to the classical setup we allow the insurer to invest into a risky
asset, modeled as a Black-Scholes model

dQt = mQt dt + σQt dWt ⇔ Qt = exp{(m− σ2

2 )t + σWt}

where {Wt} is a standard Brownian motion and m,σ > 0.
We are not interested in the asset price, but in the asset return!
The return of such a process is then the stochastic process {Q′

t} given by the
stochastic differential equation

dQ′
t = dQt

Qt
= m dt + σ dWt

1.4 Surplus process with reinsurance, investments and
capital injections

The surplus process under reinsurance, investments and with capital injections
fulfils

XA,B,Y
t = x +

∫ t

0 c(bs) ds−
Nt∑

i=1

r(Zi, bTi−) +m
∫ t

0 as ds + σ
∫ t

0 as dWs + Y A,B
t

where

• A = {at} and B = {bt}, at ∈ R, bt ∈ [0, b̃] investment und reinsurance
strategies respectively;

• Y A,B = {Y A,B
t } accumulated capital injections, which are needed to pre-

vent that the surplus process becomes negative.

We assume, that
Nt∑

i=1

Zi and Wt are independent and consider the filtration {Ft},

generated by the two dimensional process (
Nt∑

i=1

Zi,Wt). We call a strategy (A,B)

admissible, if A and B are cadlag and {Ft} measurable.

2 Return and Value Functions

As the risk measure connected to some admissible strategy pair (A,B) we
choose the value of expected discounted capital injections with some discount-
ing factor δ ≥ 0.

V (x)
︸︷︷︸

value funktion

= inf
(A,B)

V A,B(x)
︸ ︷︷ ︸

return funktion

= inf
(A,B)

Ex

[ ∫ ∞

0 e−δt dY A,B
t

]

It is clear, that it makes sense to inject capital only if the surplus becomes neg-
ative; and directly after the capital injection the surplus is equal to zero.

2.1 Properties of the value function

Lemma 1
The value function V (x) has the following properties

1. V (x) is decreasing with lim
x→∞

V (x) = 0;

2. V (x) is Lipschitz continuous on [0,∞) with |V (x) − V (y)| ≤ |x− y|;

3. Let c(b) be concave in b and r(z, b) = zb, b ∈ [0, 1]. Then V (x) is convex.

The Hamilton–Jacobi–Bellman equation of the considered problem is

0 = inf
a∈R

b∈[0,b̃]

σ2a2

2 V
′′(x)+λ

∫ ∞

0 V (x−r(z, b)) dG(z)+(c(b)+am)V ′(x)− (δ+λ)V (x) (1)

Assume that V (x) is twice continuously differentiable. Minimimising with re-
spect to a yields:

0 = inf
b∈[0,b̃]

{

λ
∫ ∞

0 V (x− r(z, b)) dG(z) + c(b)V ′(x)
}

− m2V ′(x)2

2σ2V ′′(x)
− (δ + λ)V (x)

In particular: If V (x) is twice continuously differentiable, the optimal invest-
ment strategy is given by

a∗(x) = −
mV ′(x)

σ2V ′′(x)
.

Problem: We do not know, whether V is twice continuously differentiable!

Thus we have to use the concept of viscosity solutions.

2.2 Viscosity solutions

We say that a continuous function u : [0,∞) → R+ is a viscosity subsolution to
(1) at x ∈ (0,∞) if any twice continuously differentiable function ψ : (0,∞) → R

with ψ(x) = u(x) such that u− ψ reaches the maximum at x satisfies

−
m2ψ′(x)2

2σ2ψ′′(x)
+ λ

∫ ∞

0

u(x− z) dG(z) + cψ′(x) − (δ + λ)u(x) ≥ 0 .

We say that a continuous function ū : [0,∞) → R+ is a viscosity supersolution
to (1) at x ∈ (0,∞) if any twice continuously differentiable function φ : (0,∞) →
R with φ(x) = ū(x) such that ū− φ reaches the minimum at x satisfies

−
m2φ′(x)2

2σ2φ′′(x)
+ λ

∫ ∞

0

ū(x− z) dG(z) + cφ′(x) − (δ + λ)ū(x) ≤ 0 .

A viscosity solution to (1) is a continuous function u : [0,∞) → R+ if it is both
a viscosity subsolution and a viscosity supersolution at any x ∈ (0,∞).

2.3 Main result

Theorem 1

V (x) is a viscosity solution to (1).

Theorem 2: Comparison principle
Let v(x) be a super- and u(x) a subsolution to (1), fulfilling conditions 1 and 2
of Lemma 1. If it holds u(0) ≤ v(0), then u(x) ≤ v(x) on [0,∞).

Conclusion: The value function V (x) is the unique viscosity solution to the
HJB equation (1).

Similar results and proof techniques one can find for example in [1], [2] or [3].

3 Proportional Reinsurance and No-Discounting

In the special case of proportional reinsurance and δ = 0 we will be able to
show th existence and uniqueness of the classical solution to the HJB equation.
In the following we will refer to the HJB equation (1) with δ = 0.

3.1 The optimal strategy

Proportional reinsurance means r(z, b) = zb for b ∈ [0, 1]. Consider for the
moment c(b) calculated by the expected value principle:

c(b) = −λµ(θ − η) + λµ(1 + θ)b ,

where µ = E[Z], η and θ are the safety coefficients of the insurer and reinsurer
respectively.

We obtain from the HJB equation (1)

1. V ′′(x) > 0: V ′′(x) ≥ 0 follows from the convexity; V ′′(x) 6= 0 follows from

σ2a2

2
V ′′(x) +

(
c(0) + am

)
V ′(x) < 0 für a =

1 − c(0)

m
.

2. The optimal strategy at x = 0 is given by

(a∗, b∗) =







(2λµ(θ−η)
m , 0) : V ′(0) ∈ (− 1

1+θ, 0) ,

(a∗, 1) : V ′(0) ∈ (−1,− 1
1+θ

) ,

(2λµ(θ−η)
m

, b) : V ′(0) = − 1
1+θ

, b ∈ [0, 1] .

3. If V ′(0) ∈ (−1,− 1
1+θ), then b∗(x) = 1 für x ∈ [0, ǫ), ǫ > 0.

3.2 Existence and uniqueness of the value function

Theorem 3
Let f (x) be a decreasing, twice continuously differentiable solution to (1) with
lim
x→∞

f (∞) = 0. Then f (x) = V (x) and the optimal strategy is the strategy of the

feedback form (A∗(Xt), B
∗(Xt)).

The uniqueness of the classical solution allows us to show the following re-
sult:

Lemma 2 Assume the value function V (x) is the unique, twice continu-
ously differentiable, vanishing at infinity solution to the HJB equation (1); and
the net profit condition c > λµ is fulfilled, then the optimal investment strategy
at x = 0 is a∗ = 0.

Theorem 4 There is a unique decreasing, twice continuously differen-
tiable solution to (1), if the claims distribution function G(x) has a bounded

density and lim
b→1

c−c(b)
1−b > 0.

The proofs of the Theorems 3 and 4 are similar to the proofs in [4].

4 Numerical Results

Assume now Z ∼Exp(1/µ) and σ2 = 0.01, m = 0.03, δ = 0.04, µ = λ = 1, η = 0.3
und θ = 0.5.

Figure 2: Optimal investment strategy Figure 3: Optimal reinsurance
strategy

Figure 4: Value function
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