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1 Introduction

1.1 The classical risk model

The classical risk model is a surplus process X = {X;} of the form

Vi
Xe=zxz+ct— > Z
=l

where
e z: initial capital
e c: premium rate
e /;: iid claims
e N;: Poisson process with intensity ), independent of Z;

e T;: claims arrival times.

Figure 1: The process { X;}.

1.2 Reinsurance

Reinsurer = “an insurer assuming the risk of another under contract”

Problem of the first insurer: How much reinsurance should I buy?

The decision depends on
o the retention level b € [0, ];

e the self-insurance function r(z,b). We assume, that r is continuous and
increasing in both variables;

e the premium rate function c(b). c(b) denotes the premium remaining to
the first insurer, if the retention level b was chosen.

1.3 Investments

In addition to the classical setup we allow the insurer to invest into a risky
asset, modeled as a Black-Scholes model

dQ; =m@Q; dt + oQ; AW & Q= exp{(m — 072)75 + oW}

where {W,} is a standard Brownian motion and m, o > 0.

We are not interested in the asset price, but in the asset return!

The return of such a process is then the stochastic process {Q;} given by the
stochastic differential equation

dQéz%zmdt—i—adm

1.4 Surplus process with reinsurance, investments and
capital injections

The surplus process under reinsurance, investments and with capital injections
fultils

Ny
XtA7B’Y =T+ fot C(bs) ds — ZT(Z@, sz—) + mf()t as ds + o fOt as AW + iftA,B
1=1

where

e A= {a}and B = {b}, a; € R, b, € [0,b] investment und reinsurance
strategies respectively;

o Y4B = {y*P} accumulated capital injections, which are needed to pre-
vent that the surplus process becomes negative.

Ny
We assume, that > | Z; and W, are independent and consider the filtration {F,},
i=1

Ny

generated by the two dimensional process () Z;, W,;). We call a strategy (A, B)
i=1

admissible, if A and B are cadlag and {F;} measurable.
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2 Return and Value Functions

As the risk measure connected to some admissible strategy pair (A, B) we
choose the value of expected discounted capital injections with some discount-
ing factor > 0.

V(z) = inf  VAB@) = inf ]Ex[ fi2 et dYtA’B]
—~— (A,B) —— (A,B)
value funktion return funktion

It is clear, that it makes sense to inject capital only if the surplus becomes neg-
ative; and directly after the capital injection the surplus is equal to zero.

2.1 Properties of the value function

Lemma 1
The value function V' (x) has the following properties

1. V(x) is decreasing with lim V(z) = 0;
2. V(z) is Lipschitz continuous on [0, co) with |V (z) — V(y)| < |z —y|;
3. Let ¢(b) be concave in b and r(z,b) = zb, b € [0, 1]. Then V' (x) is convex.

The Hamilton—Jacobi-Bellman equation of the considered problem is

0= inf ZEV"(@)+A 77V (e =7(z,0) dG(2) +(c(b) +am)V'(@) = (§+ M)V (z) (1)
be(0,0]

Assume that V(z) is twice continuously differentiable. Minimimising with re-
spect to a yields:

0= inf {)\ IV (x = r(2,b) dG(2) + c(b)V’(x)} — IS (6 + NV ()
be[0,b]

In particular: If V(z) is twice continuously differentiable, the optimal invest-
ment strategy is given by

- mV'(z)
a2V (x)

a(x) =

Problem: We do not know, whether V' is twice continuously differentiable!

Thus we have to use the concept of viscosity solutions.

2.2 Viscosity solutions

We say that a continuous function v : [0, c0) — R, is a viscosity subsolution to
(1) atz € (0, 00) if any twice continuously differentiable function ¢ : (0,00) — R
with ¢(x) = u(x) such that u — ¢ reaches the maximum at x satisfies
me/(x)Z 00 /
e _ _ > (.
A /0 u(@ — 2) dG(2) + ev'(x) — (6 + Nu(z) > 0

We say that a continuous function @ : [0,00) — R, is a viscosity supersolution
to (1) atx € (0, c0) if any twice continuously differentiable function ¢ : (0, 00) —
R with ¢(x) = u(x) such that u — ¢ reaches the minimum at « satisfies

m2¢/<$)2

o+ /0 8z — 2) dG(2) + cd'(z) — (6 + Na(z) < 0.

A viscosity solution to (1) is a continuous function u : [0, 00) — R, if it is both
a viscosity subsolution and a viscosity supersolution at any = € (0, o).

2.3 Main result

Theorem 1

V(z) is a viscosity solution to (1).

Theorem 2: Comparison principle
Let v(x) be a super- and u(x) a subsolution to (1), fulfilling conditions 1 and 2
of Lemma 1. If it holds u(0) < v(0), then u(z) < v(z) on [0, c0).

Conclusion: The value function V(z) is the unique viscosity solution to the
HJB equation (1).

Similar results and proof techniques one can find for example in [1], [2] or [3].
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3 Proportional Reinsurance and No-Discounting

In the special case of proportional reinsurance and § = 0 we will be able to
show th existence and uniqueness of the classical solution to the HJB equation.
In the following we will refer to the HJB equation (1) with § = 0.

3.1 The optimal strategy

Proportional reinsurance means r(z,b) = zb for b € [0,1]. Consider for the
moment ¢(b) calculated by the expected value principle:

c(b) = —Au(0 —n) + Au(l +0)b

where 1 = E[Z], n and 6 are the safety coefficients of the insurer and reinsurer
respectively.

We obtain from the HJB equation (1)

1. V"(x) > 0: V"(z) > 0 follows from the convexity; V"(x) # 0 follows from

@v”@:) £ (e(0) + am)V'(z) < 0 fiir a = =0

m

2. The optimal strategy at = 0 is given by

(ZEE0) 2 VI(0) € (—r5,0)
(a*,0%) = ¢ (a*,1) - V(0) € (-1, —15)
(PO by VI(0) = —1L5 b e 0,1].

\ m

3. If V'(0) € (=1, —17), then b*(2) = 1 fiir x € [0,€), € > 0.

3.2 Existence and uniqueness of the value function

Theorem 3
Let f(x) be a decreasing, twice continuously differentiable solution to (1) with
lim f(oo) = 0. Then f(x) = V(x) and the optimal strategy is the strategy of the

feedback form (A*(X;), B*(X))).
The uniqueness of the classical solution allows us to show the following re-
sult:

Lemma 2 Assume the value function V(z) is the unique, twice continu-
ously differentiable, vanishing at infinity solution to the H]JB equation (1); and
the net profit condition ¢ > Ap is fulfilled, then the optimal investment strategy
atx =01sa* = 0.

Theorem 4 There is a unique decreasing, twice continuously differen-
tiable solution to (1), if the claims distribution function G(z) has a bounded

density and lin Ifgf L > 0.

The proofs of the Theorems 3 and 4 are similar to the proofs in [4].

4 Numerical Results

Assume now Z ~Exp(1/p) and 0 = 0.01, m = 0.03,5 = 0.04, u =X =1,17=0.3
und 6 = 0.5.

Figure 2: Optimal investment strategy Figure 3: Optimal reinsurance
strategy

Figure 4: Value function
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