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Diffusion Approximations

We consider a diffusion process on the probability space (Ω, F , P)
of the form

Xt = x +

∫ t

0
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∫ t

0
σ(Xs)dWs .
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of the form

Xt = x +

∫ t

0
m(Xs)ds +

∫ t

0
σ(Xs)dWs .

◮ F = (Ft)t≥0: natural filtration of X .
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Diffusion Approximations

We consider a diffusion process on the probability space (Ω, F , P)
of the form

Xt = x +

∫ t

0
m(Xs)ds +

∫ t

0
σ(Xs)dWs .

◮ F = (Ft)t≥0: natural filtration of X .

◮ x : initial capital

◮ W = (Wt)t≥0: standard Brownian motion

◮ m and σ: Lipschitz continuous functions
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Let Y = (Yt)t≥0 be a non-decreasing, non-anticipating process.
For the stochastic process X let

dXY
t = m(XY

t )dt + σ(XY
t )dWt + dYt with XY

0 = x .
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Let Y = (Yt)t≥0 be a non-decreasing, non-anticipating process.
For the stochastic process X let

dXY
t = m(XY

t )dt + σ(XY
t )dWt + dYt with XY

0 = x .

The value connected to the strategy Y is
V Y (x) = E(

∫ ∞
0 e−δtdYt) with δ > 0 a discounting factor.
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t )dWt + dYt with XY

0 = x .

The value connected to the strategy Y is
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Let Y = (Yt)t≥0 be a non-decreasing, non-anticipating process.
For the stochastic process X let

dXY
t = m(XY

t )dt + σ(XY
t )dWt + dYt with XY

0 = x .

The value connected to the strategy Y is
V Y (x) = E(

∫ ∞
0 e−δtdYt) with δ > 0 a discounting factor.

Y is called admissible, if the following conditions hold:

◮ Y is adapted to (F )t≥0.

◮ P(XY
t ≥ 0 for all t ≥ 0) = 1.

By Sx we denote the set of admissible strategies for an initial
value x .
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V Y (x) with

lim
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We are interested in the value function V (x) = inf
Y∈Sx

V Y (x) with

lim
x→∞

V (x) = 0 and in, if it exists, the optimal strategy.

For the processes we consider, one should reinvest as late as
possible and only as much as it is necessary to keep the process
nonnegative. Thus the optimal strategy must be

Y ∗
t = sup

0≤s≤t

(−Xs) ∨ 0,

i.e. the process reflected at 0.
By the principle of smooth fit it holds V ′(0) = −1.

S.E. Shreve, J.P. Lehoczky and D.P. Gaver showed that the HJB
equation for this problem is solved by V Y ∗

(x) with boundary
conditions V ′(0) = −1 and lim

x→∞
V (x) = 0.
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Optimal Reinvestment Strategy
Solution for Brownian Motions

We are interested in the value function V (x) = inf
Y∈Sx

V Y (x) with

lim
x→∞

V (x) = 0 and in, if it exists, the optimal strategy.

For the processes we consider, one should reinvest as late as
possible and only as much as it is necessary to keep the process
nonnegative. Thus the optimal strategy must be

Y ∗
t = sup

0≤s≤t

(−Xs) ∨ 0,

i.e. the process reflected at 0.
By the principle of smooth fit it holds V ′(0) = −1.

S.E. Shreve, J.P. Lehoczky and D.P. Gaver showed that the HJB
equation for this problem is solved by V Y ∗

(x) with boundary
conditions V ′(0) = −1 and lim

x→∞
V (x) = 0.

And S. Watanabe showed that the strategy Y ∗ is unique.
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Solution for Brownian Motions

Shreve, Lechoczky and Gaver found the explicit solution for
Brownian motions Xt = x + mt + σWt .
The value function has in this case the form

V (x) =

{

σ2

m+
√

m2+2δσ2
exp

(

− m+
√

m2+2δσ2

σ2 x
)

: x ≥ 0
σ2

m+
√

m2+2δσ2
− x : x < 0.
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Diffusion Approximations for a Classical Risk Model

The simplest diffusion approximation for a classical risk model can
be obtained as follows:
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Diffusion Approximations for a Classical Risk Model

The simplest diffusion approximation for a classical risk model can
be obtained as follows:

Let λ > 0, η ∈ (0, 1), Zi ≥ 0 iid, µk = E(Z k
i ) and (N

(n)
t ) ∼ P(nλ).

Let further X
(n)
t be a sequence of classical risk models:

X
(n)
t = x +

[

(1 + η/
√

n)λµ1
√

n
]

t −
N

(n)
t

∑

i=1

Zi/
√

n.
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Diffusion Approximations for a Classical Risk Model

The simplest diffusion approximation for a classical risk model can
be obtained as follows:

Let λ > 0, η ∈ (0, 1), Zi ≥ 0 iid, µk = E(Z k
i ) and (N

(n)
t ) ∼ P(nλ).

Let further X
(n)
t be a sequence of classical risk models:

X
(n)
t = x +

[

(1 + η/
√

n)λµ1
√

n
]

t −
N

(n)
t

∑

i=1

Zi/
√

n.

As weak limit we obtain:

Xt = x + λµ1ηt +
√

λµ2Wt ,

where Wt is a standard Brownian motion.
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Diffusion Approximations with Reinsurance

We consider now diffusion approximations to a classical risk
process where the claims are reinsured by some reinsurance:

dXB
t = λθ

[

(η
θ − 1

)

µ + E(r(Z , bt))
]

dt +
√

λE(r(Z , bt)2)dWt .
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[

(η
θ − 1

)

µ + E(r(Z , bt))
]
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◮ Z : generic random variable, representing claims
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Julia Eisenberg Optimal Control of Reinvestments



Outline
Ito-Diffusions with Reinvestments

Diffusion Approximations with Reinsurance
Examples

Introduction
Hamilton-Jacobi-Bellman Equation
Existence of a Solution

Diffusion Approximations with Reinsurance

We consider now diffusion approximations to a classical risk
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dXB
t = λθ

[

(η
θ − 1

)

µ + E(r(Z , bt))
]

dt +
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◮ µ, µn: the first and the n’s moments of Z
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t = λθ

[

(η
θ − 1

)
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]
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Diffusion Approximations with Reinsurance

We consider now diffusion approximations to a classical risk
process where the claims are reinsured by some reinsurance:

dXB
t = λθ

[

(η
θ − 1

)

µ + E(r(Z , bt))
]

dt +
√

λE(r(Z , bt)2)dWt .

◮ Z : generic random variable, representing claims

◮ λ: intensity of a Poisson process

◮ µ, µn: the first and the n’s moments of Z

◮ η and θ: safety coefficients of the insurer and reinsurer

◮ B and b: reinsurance strategy and corresponding deductible

◮ r(Z , b): continuous self-insurance function

b ∈ [0, b̃] with b = 0 meaning “full reinsurance” and b = b̃

meaning “no reinsurance”.

Julia Eisenberg Optimal Control of Reinvestments



Outline
Ito-Diffusions with Reinvestments

Diffusion Approximations with Reinsurance
Examples

Introduction
Hamilton-Jacobi-Bellman Equation
Existence of a Solution

Let U be the set of adapted strategies, i.e. strategies B = (bt)t≥0

with bt ∈ [0, b̃].
We denote the value connected to the strategy
Y B

t = sup
0≤s≤t

(−XB
s ) ∨ 0 by V B(x) and define the value function

again as V (x) = inf
B∈U

V B(x).
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with bt ∈ [0, b̃].
We denote the value connected to the strategy
Y B

t = sup
0≤s≤t

(−XB
s ) ∨ 0 by V B(x) and define the value function

again as V (x) = inf
B∈U

V B(x).

Let τB
x = inf{t ≥ 0 : XB

t < 0, XB
0 = x} be the ruin time.
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Hamilton-Jacobi-Bellman Equation
Existence of a Solution

Let U be the set of adapted strategies, i.e. strategies B = (bt)t≥0

with bt ∈ [0, b̃].
We denote the value connected to the strategy
Y B

t = sup
0≤s≤t

(−XB
s ) ∨ 0 by V B(x) and define the value function

again as V (x) = inf
B∈U

V B(x).

Let τB
x = inf{t ≥ 0 : XB

t < 0, XB
0 = x} be the ruin time.

Then we can write

V B(x) = V B(0)E(e−δτB
x ).
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Existence of a Solution

Let U be the set of adapted strategies, i.e. strategies B = (bt)t≥0

with bt ∈ [0, b̃].
We denote the value connected to the strategy
Y B

t = sup
0≤s≤t

(−XB
s ) ∨ 0 by V B(x) and define the value function

again as V (x) = inf
B∈U

V B(x).

Let τB
x = inf{t ≥ 0 : XB

t < 0, XB
0 = x} be the ruin time.

Then we can write

V B(x) = V B(0)E(e−δτB
x ).

In order to minimize V B(x), we have to minimize

LB(x) := E(e−δτB
x ) and find L(x) := inf

B∈U
LB(x).
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L(x) is an Exponential Function

Let x , y ∈ R+ and B the optimal strategy, i.e. we assume that
there is an optimal strategy, then we have
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Existence of a Solution

L(x) is an Exponential Function

Let x , y ∈ R+ and B the optimal strategy, i.e. we assume that
there is an optimal strategy, then we have

V B(x + y) = V B(y)E(e−δτB
x ) = V B(0)E(e−δτB

y )E(e−δτB
x )
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L(x) is an Exponential Function

Let x , y ∈ R+ and B the optimal strategy, i.e. we assume that
there is an optimal strategy, then we have

V B(x + y) = V B(y)E(e−δτB
x ) = V B(0)E(e−δτB

y )E(e−δτB
x )

V B(x + y) = V B(0)E(e−δτB
x+y ).

Julia Eisenberg Optimal Control of Reinvestments



Outline
Ito-Diffusions with Reinvestments

Diffusion Approximations with Reinsurance
Examples

Introduction
Hamilton-Jacobi-Bellman Equation
Existence of a Solution

L(x) is an Exponential Function

Let x , y ∈ R+ and B the optimal strategy, i.e. we assume that
there is an optimal strategy, then we have

V B(x + y) = V B(y)E(e−δτB
x ) = V B(0)E(e−δτB

y )E(e−δτB
x )

V B(x + y) = V B(0)E(e−δτB
x+y ).

Consequently L(x) = LB(x) is an exponential function in x .
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L(x) is an Exponential Function

Let x , y ∈ R+ and B the optimal strategy, i.e. we assume that
there is an optimal strategy, then we have

V B(x + y) = V B(y)E(e−δτB
x ) = V B(0)E(e−δτB

y )E(e−δτB
x )

V B(x + y) = V B(0)E(e−δτB
x+y ).

Consequently L(x) = LB(x) is an exponential function in x .

Because V B(x) is decreasing in x and dV B

dx
(0) = −1, there is

β(B) > 0 independent of x with LB(x) = exp(−β(B)x) .
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Hamilton-Jacobi-Bellman Equation
Existence of a Solution

L(x) is an Exponential Function

Let x , y ∈ R+ and B the optimal strategy, i.e. we assume that
there is an optimal strategy, then we have

V B(x + y) = V B(y)E(e−δτB
x ) = V B(0)E(e−δτB

y )E(e−δτB
x )

V B(x + y) = V B(0)E(e−δτB
x+y ).

Consequently L(x) = LB(x) is an exponential function in x .

Because V B(x) is decreasing in x and dV B

dx
(0) = −1, there is

β(B) > 0 independent of x with LB(x) = exp(−β(B)x) .

On the other hand β(B) independent of x means B is independent
of x , i.e. B = b is a constant strategy.
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Existence of a Solution

HJB Equation

In order to find the optimal constant strategy b∗ we consider the
Hamilton-Jacobi-Bellman equation for the function L(x):

inf
b∈[0,b̃]

λE(r(Z ,b)2)
2 L′′(x)+λθ

[

(η
θ−1)µ+E(r(Z , b))

]

L′(x)−δL(x) = 0.
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Introduction
Hamilton-Jacobi-Bellman Equation
Existence of a Solution

HJB Equation

In order to find the optimal constant strategy b∗ we consider the
Hamilton-Jacobi-Bellman equation for the function L(x):

inf
b∈[0,b̃]

λE(r(Z ,b)2)
2 L′′(x)+λθ

[

(η
θ−1)µ+E(r(Z , b))

]

L′(x)−δL(x) = 0.

If there is an optimal strategy b∗, i.e. L(x) = Lb∗

(x), then the
value function is also an exponential function and the HJB
equation has the form:
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Introduction
Hamilton-Jacobi-Bellman Equation
Existence of a Solution

HJB Equation

In order to find the optimal constant strategy b∗ we consider the
Hamilton-Jacobi-Bellman equation for the function L(x):

inf
b∈[0,b̃]

λE(r(Z ,b)2)
2 L′′(x)+λθ

[

(η
θ−1)µ+E(r(Z , b))

]

L′(x)−δL(x) = 0.

If there is an optimal strategy b∗, i.e. L(x) = Lb∗

(x), then the
value function is also an exponential function and the HJB
equation has the form:
λE(r(Z ,b∗)2)

2 β(b∗)2 + λθ
[

(η
θ − 1)µ + E(r(Z , b∗))

]

β(b∗) − δ = 0,

i.e. a quadratic equation in β(b∗).
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Existence of a Solution

With notation α(b) = λθ
[

(η
θ −1)µ+E(r(Z , b))

]

, b 6= 0 we obtain

β(b) = [λE(r(Z , b)2)]−1
[

α(b) +
√

α(b)2 + 2δλE(r(Z , b)2)
]

> 0

as a positive solution to the HJB equation.
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Existence of a Solution

Existence of a Solution

With notation α(b) = λθ
[

(η
θ −1)µ+E(r(Z , b))

]

, b 6= 0 we obtain

β(b) = [λE(r(Z , b)2)]−1
[

α(b) +
√

α(b)2 + 2δλE(r(Z , b)2)
]

> 0

as a positive solution to the HJB equation.

If we set β(0) = 0, then β(b) is continuous on the set [0, b̃] and
has therefore a maximum in (0, b̃].
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Existence of a Solution

With notation α(b) = λθ
[

(η
θ −1)µ+E(r(Z , b))

]

, b 6= 0 we obtain

β(b) = [λE(r(Z , b)2)]−1
[

α(b) +
√

α(b)2 + 2δλE(r(Z , b)2)
]

> 0

as a positive solution to the HJB equation.

If we set β(0) = 0, then β(b) is continuous on the set [0, b̃] and
has therefore a maximum in (0, b̃].

Because V b(x) = 1
β(b) exp(−β(b)x) the minimum of V b(x) in b is

at the same time the maximum of β(b).
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Verification Theorem

Verification theorem:

There is a b∗ ∈ (0, b̃] with L(x) = exp(−β(b∗)x). The constant
strategy B = b∗ is an optimal reinsurance strategy, whereas b∗ is a
maximum point of β(b).
The corresponding value function has the form:

V b∗

(x) =

{

1
β(b∗)e

−β(b∗)x : x ≥ 0
1

β(b∗) − x : x < 0.

The uniqueness of the optimal strategy, as the case may be, can be
shown for a concrete function r(Z , b).
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Proportional Reinsurance

Consider the proportional reinsurance, i.e. r(Z , b) = bZ , b ∈ [0, 1].
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Proportional Reinsurance

Consider the proportional reinsurance, i.e. r(Z , b) = bZ , b ∈ [0, 1].

We set λµ = 1,
√

λµ2 = σ and b0 = 1 − η
θ and consider the

process

X b
t = x + (bθ − (θ − η))t + bσWt .
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Proportional Reinsurance

Consider the proportional reinsurance, i.e. r(Z , b) = bZ , b ∈ [0, 1].

We set λµ = 1,
√

λµ2 = σ and b0 = 1 − η
θ and consider the

process

X b
t = x + (bθ − (θ − η))t + bσWt .

It is easy to verify, that the optimal constant strategy b∗ is given
through:

b∗ =

{

1 : θ ≥ η +
√

η2 + 2δσ2

2b0

1+2δσ2/θ2 : η < θ < η +
√

η2 + 2δσ2.
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Choose for example θ = 0.5, η = 0.3, λ = 0.05, δ = 0.04 and
µ2 = 80. Then we have for the optimal deductible b∗ = 0.351 < 1
In this case it holds:

V 0.351(x) =

{

0.235−1e−0.235x : x ≥ 0
0.235−1 − x : x < 0.
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Choose for example θ = 0.5, η = 0.3, λ = 0.05, δ = 0.04 and
µ2 = 80. Then we have for the optimal deductible b∗ = 0.351 < 1
In this case it holds:

V 0.351(x) =

{

0.235−1e−0.235x : x ≥ 0
0.235−1 − x : x < 0.

The parameters θ = 0.8, η = 0.2, λ = 0.05, δ = 0.04 and µ2 = 80
yield b∗ = 1, i.e. the value function:

V 1(x) =

{

0.356−1e−0.356x : x ≥ 0
0.356−1 − x : x < 0.
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Value functions for optimal strategies b∗ = 1 and b∗ = 0.351.
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Excess of Loss Reinsurance

Consider now the Excess of Loss reinsurance with deductible
b ∈ [0,∞].
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Excess of Loss Reinsurance

Consider now the Excess of Loss reinsurance with deductible
b ∈ [0,∞].

For a claim Z the insurer pays min(Z , b) and the reinsurer pays
(Z − b)+, i.e. r(Z , b) = min(Z , b). And we consider the process

X b
t = x + λθ

[

(η
θ − 1

)

µ + E(min(Z , b))
]

t +
√

λE(min(Z , b)2)Wt .
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Excess of Loss Reinsurance

Consider now the Excess of Loss reinsurance with deductible
b ∈ [0,∞].

For a claim Z the insurer pays min(Z , b) and the reinsurer pays
(Z − b)+, i.e. r(Z , b) = min(Z , b). And we consider the process

X b
t = x + λθ

[

(η
θ − 1

)

µ + E(min(Z , b))
]

t +
√

λE(min(Z , b)2)Wt .

We assume E(Z 2) < ∞.
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Value function for Z ∼Exp( 1
µ)

We consider at first the function

β(b) = [λE(min(Z , b)2)]−1
[

α(b) +
√

α(b)2 + 2δλE(min(Z , b)2)
]

and show, that there is a unique b∗ ∈
(

2µθ2λ(1−η/θ)
2δ+θ2λ

, µθ2λ(1−η/θ)
δ

)

.
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Value function for Z ∼Exp( 1
µ)

We consider at first the function

β(b) = [λE(min(Z , b)2)]−1
[

α(b) +
√

α(b)2 + 2δλE(min(Z , b)2)
]

and show, that there is a unique b∗ ∈
(

2µθ2λ(1−η/θ)
2δ+θ2λ

, µθ2λ(1−η/θ)
δ

)

.

We assume Z ∼Exp( 1
µ) and obtain for the parameters θ = 0.5,

η = 0.3, λ = 0.05, δ = 0.04 and µ2 = 80 the value function

V 2.173(x) =

{

0.23−1e−0.23x : x ≥ 0
0.23−1 − x : x < 0.
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Value functions for the XL (VXL) and proportional (VP) reinsurances with the same
parameters θ = 0.5, η = 0.3, λ = 0.05, δ = 0.04 and µ2 = 80.

0 4 8 12 16−4−8
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