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Abstract. We prove several combinatorial identities involving overpartitions whose
smallest parts are even. These follow from an infinite product generating function for
certain four-colored overpartitions.

1. Statement of results

In a recent study of generalizations of Schur’s theorem, the second author gave two
identities involving partitions whose smallest parts are even [12, Corollaries 2 and 3].
For example, let C(n) denote the number of partitions of n satisfying the difference
conditions

λi − λi+1 ≥

{
5, if λi+1 is even or if λi+1 ≡ 5 (mod 6) and λi ≡ 0, 5 (mod 6),

11, if λi+1 ≡ 0 (mod 6) and λi ≡ 0, 5 (mod 6),

where, in addition, the smallest s parts are even, where s is the number of parts
congruent to 1 or 2 modulo 6. Then C(n) is equal to the number of partitions of n into
distinct parts congruent to 0, 2, 3, 4 modulo 6.

While the connection between partitions with congruence restrictions and partitions
with difference conditions is in line with many classical identities (see [1, 2, 6] for some
surveys), restricting the parity of the smallest parts according to the number of parts
in certain congruence classes is quite different. This restriction arises from the use of a
“partial staircase” in place of the usual staircase in the proof of Schur’s theorem. For
more on partial staircases, see [9, 12].

Motivated by this, our goal in this paper is to prove several identities for overpar-
titions into distinct parts whose smallest parts are even. Recall that an overpartition
is a partition in which the final occurrence of an integer may be overlined [7]. Instead
of partial staircases, the overpartition identities depend on what we call a “partial ge-
neralized staircase”. The two simplest results are stated below, using the usual truth
function χ(A) = 1 if A is true and 0 otherwise.

Theorem 1. Let A1(n) denote the number of overpartitions into parts ≥ 2 satisfying
the difference conditions

λi − λi+1 ≥ 4 + 2χ(λi is overlined) + 3χ(λi+1 is odd),

where, in addition, (i) only parts ≡ 2, 3 (mod 4) may be overlined, (ii) neither 2 nor 3
occurs, and (iii) the smallest s parts are even, where s is the number of non-overlined
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parts ≡ 2, 3 (mod 4). Then A1(n) is equal to the number of partitions into distinct
parts ≡ 0, 2, 4, 5, 6 (mod 8).

Theorem 2. Let B1(n) denote the number of overpartitions of n satisfying the diffe-
rence conditions

λi − λi+1 ≥ 3 + 2χ(λi+1 is overlined) + 5χ(λi+1 is odd),

where, in addition, (i) only parts ≡ 1, 2 (mod 4) may be overlined, (ii) if the smallest
overlined part is the kth smallest part, then it is not 4k − 2 or 4k − 3, and (iii) the smal-
lest s parts are even, where s is the number of non-overlined parts ≡ 1, 2 (mod 4). Then
B1(n) is equal to the number of partitions into distinct parts ≡ 0, 2, 3, 4, 6 (mod 8).

As an example of Theorem 1, there are 12 partitions of n = 23 into distinct parts
congruent to 0, 2, 4, 5, or 6 modulo 8,

(21, 2), (18, 5), (16, 5, 2), (14, 5, 4), (13, 10), (13, 8, 2), (13, 6, 4), (12, 6, 5),

(12, 5, 4, 2), (10, 8, 5), (10, 6, 5, 2), (8, 6, 5, 4),

and as predicted, there are exactly 12 overpartitions of n = 23 counted by A1(23),

(23), (21, 2), (19, 4), (19, 4), (18, 5), (17, 6), (17, 6),

(16, 7), (15, 8), (15, 8), (15, 6, 2), (13, 8, 2).

To illustrate Theorem 2, note that there are 15 partitions of n = 22 into distinct
parts congruent to 0, 2, 3, 4, or 6 modulo 8,

(22), (20, 2), (19, 3), (18, 4), (16, 6), (16, 4, 2), (14, 8), (14, 6, 2), (12, 10), (12, 8, 2),

(12, 6, 4), (11, 8, 3), (11, 6, 3, 2), (10, 8, 4), (10, 6, 4, 2),

and as predicted, there are also 15 overpartitions counted by B1(22),

(22), (22), (20, 2), (19, 3), (18, 4), (18, 4), (17, 5), (16, 6), (16, 6),

(15, 7), (14, 8), (14, 8), (14, 6, 2), (14, 6, 2), (12, 8, 2).

Our results depend on combinatorial interpretations of the infinite product

(−aq; q2)∞(−bq)∞(−q)∞,

which we prove in the next section. Here we use the usual notation

(a)n = (a; q)n :=
n∏

k=1

(1− aqk−1),

valid for n ∈ N ∪ {0,∞}. These combinatorial interpretations are in terms of certain
four-colored overpartitions. Theorems 1 and 2 then follow after dilating by q = q4 and
making appropriate substitutions for a and b. This approach goes back to Alladi and
Gordon’s treatment of Schur’s partition theorem. See [4, 5] for Alladi and Gordon’s
original work and [2, 3, 8] for more on their idea and its applications. Two more
identities resembling Theorems 1 and 2 are given in Theorems 5 and 6 in Section 3.



IDENTITIES FOR OVERPARTITIONS WITH EVEN SMALLEST PARTS 3

2. Identities for four-colored overpartitions

In this section we consider overpartitions into distinct parts colored by u, au, b, and
ab such that (i) only parts colored by b or ab may be overlined, and (ii) the s smallest
parts do not have a in their color, where s is the number of non-overlined parts labeled
by b or ab. Denote this set of overpartitions by O. Define A(i, j, n) to be the number
of four-colored overpartitions of n in O with i parts having a in their color and j parts
having b in their color, with no part equal to 1, and such that the minimal difference
between adjacent parts is given by the matrix

MA =

b b u ab ab au


b 2 2 2 3 3 3
b 1 1 2 2 2 3
u 1 1 1 2 2 2
ab 2 2 2 3 3 3 .
ab 1 1 2 2 2 3
au 1 1 1 2 2 2

By this we mean that the minimal difference between λi of color x and λi+1 of color y is
given by the (x, y) entry of M . We have the following generating function for A(i, j, n).

Theorem 3. We have

(2.1)
∑

i,j,n≥0

A(i, j, n)aibjqn =
(
−aq; q2

)
∞ (−bq)∞(−q)∞.

Proof: We first consider three partitions - one ordinary partition with “uncolored”
parts labeled by u, another ordinary partition with parts labeled by b, and a partition
into distinct parts ≥ 2 labeled by b. We overline the parts in the third partition and
then put the three partitions together with the order

(2.2) xb < xb < xu,

obtaining a colored overpartition such that only parts labeled by b may be overlined,
with no part 1b, and satisfying the difference conditions in the matrix

(2.3)

b b u( )
b 1 1 1
b 0 0 1 .
u 0 0 0

The generating function for such overpartitions is

(2.4)
∑

r,s,t≥0

qr

(q)r

bsqs

(q)s

btqt+(t+1
2 )

(q)t
.

Next we add a staircase to this overpartition, meaning that we add 0 to the smallest
part, 1 to the next smallest part, and so on. This multiplies the generating function by
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the term q(
r+s+t

2 ) and increases the minimal difference between parts by 1, resulting in
the difference conditions

b b u( )
b 2 2 2
b 1 1 2 .
u 1 1 1

Finally, we multiply by the term (−a)r+t, which generates a partition into distinct
parts between 0 and r + t − 1 and in which the exponent of a counts the number of
parts. For each part m in this partition, we add 1 to each of the m largest parts of the
overpartition and then add the label a to the m+ 1st part. Note that if all of the parts
between 0 and r + t − 1 occur, then we have an ordinary staircase of size r + t. For
this reason, such a partition into distinct parts is often called a generalized staircase.
See [9, 11, 12] for more on the use of generalized staircases. Here, since the parts in
the generalized staircase do not go all the way up to the length of the overpartition to
which it is added, we call it a partial generalized staircase. The largest possible part
in this partial generalized staircase is r + t − 1, while our overpartition has r + s + t
parts. Thus there is no label a in the s smallest parts of the resulting overpartition and
we obtain an overpartition counted by A(i, j, n). We have the triple sum generating
function,

(2.5)
∑

i,j,n≥0

A(i, j, n)aibjqn =
∑

r,s,t≥0

qr

(q)r

bsqs

(q)s

btqt+(t+1
2 )

(q)t
(−a)r+tq

(r+s+t
2 ).

To complete the proof of the theorem, we will show that the triple sum above is equal
to the product on the right-hand side of (2.1). To this end, we recall a few well-known
q-series identities [10]: the q-Chu-Vandermonde summation

(2.6)
n∑

k=0

(a)k (q−n)k q
k

(q)k(c)k
=

(c/a)na
n

(c)n
,

the q-binomial identity

(2.7)
∑
n≥0

q(
n+1
2 )zn

(q)n
= (−zq)∞ ,

and Lebesgue’s identity,

(2.8)
∑
n≥0

q(
n+1
2 )(−z)n
(q)n

=
(
−zq; q2

)
∞ (−q)∞,

noting the special case c = 0 and a = q−m of (2.6),

(2.9)
n∑

k=0

(q−n)k (q−m)k q
k

(q)k
= q−mn.



IDENTITIES FOR OVERPARTITIONS WITH EVEN SMALLEST PARTS 5

We also note that

(2.10) (q)n−k =
(q)n

(q−n)k
(−1)kq(

k
2)−nk.

Now we rewrite the triple sum in (2.5) as∑
i,j,n≥0

A(i, j, n)aibjqn

=
∑

r,s,t≥0

q(
r+s+t

2 )+r+s+t+(t+1
2 )(−a)r+tb

s+t

(q)r(q)s(q)t

=
∑

r,s,t≥0
t≤min{r,s}

q(
r+s−t

2 )+r+s+(t
2)(−a)rb

s

(q)r−t(q)s−t(q)t
(by setting (r, s) 7→ (r − t, s− t))

=
∑

r,s,t≥0
t≤min{r,s}

q(
r+1
2 )+(s+1

2 )+rs+t (q−r)t (q−s)t (−a)rb
s

(q)r(q)s(q)t
(by (2.10))

=
∑
r,s≥0

q(
r+1
2 )+(s+1

2 )(−a)rb
s

(q)r(q)s
(by (2.9))

=
(−aq; q2)∞ (−bq)∞

(q; q2)∞
(by (2.7) and (2.8)),

which gives the desired result. �

We may now deduce Thereom 1.

Proof of Theorem 1: With the dilations

(2.11) q → q4, a→ aq, b→ bq−2

in Theorem 3, the infinite product becomes

(−aq5; q8)∞(−bq2; q4)∞(−q4; q4)∞,

while the four-colored integers are transformed by

xu → 4xu, xau → (4x+ 1)au, xb → (4x− 2)b, xab → (4x− 1)ab.

This gives the full set of integers ≥ 2, where only parts which are congruent to 2 or 3
modulo 4 may be overlined. The absence of a 1 before dilating means there is no 2 or 3
after dilating. The condition on the s smallest parts on overpartitions in O becomes the
condition in the statement of the theorem. Finally, the matrix of difference conditions
MA becomes
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MA1 =

b b u ab ab au


b 8 8 6 11 11 9
b 4 4 6 7 7 9
u 6 6 4 9 9 7
ab 9 9 7 12 12 10 ,
ab 5 5 7 8 8 10
au 7 7 5 10 10 8

and we obtain∑
i,j,n≥0

A1(i, j, n)aibjqn =
(
−aq5; q8

)
∞

(
−bq2; q4

)
∞

(
−q4; q4

)
∞ ,

where A1(i, j, n) is equal to the number of overpartitions of n counted by A1(n) having
i (resp. j) parts with a (resp. b) in their color. This is a refinement of the statement of
Theorem 1 and the proof is complete.

�
To arrive at Theorem 2 we will show that a slightly different set of overpartitions in
O also has the generating function on the right-hand side of (2.1). Namely, let B(i, j, n)
denote the number of overpartitions of n in O with i parts having a in their color and
j parts having b in their color, where the kth smallest part is not k, and such that the
minimal difference between adjacent parts is given by the matrix

MB :=

b b u ab ab au


b 2 1 2 3 2 3
b 2 1 2 3 2 3
u 1 1 1 2 2 2
ab 2 1 2 3 2 3 .
ab 2 1 2 3 2 3
au 1 1 1 2 2 2

Theorem 4. We have

(2.12)
∑

i,j,n≥0

B(i, j, n)aibjqn =
(
−aq; q2

)
∞ (−bq)∞(−q)∞.

Proof: The proof is the almost the same as the proof of Theorem 3, except that when
we start with parts colored by b and u generated by (2.4) we use the order

(2.13) xb < xb < xu

instead of the order (2.2). This gives the difference conditions

b b u( )
b 1 0 1
b 1 0 1
u 0 0 0
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in place of (2.3), and so after adding the staircase and the partial generalized staircase
corresponding to (−a)r+t we obtain the difference conditions in MB above. The only
subtle point is that since 1b does not occur originally, after adding the staircase we
have that the kth smallest part is not kb, and after adding the partition corresponding
to (−a)r+t the kth smallest part cannot be kab, either. �

We may now deduce Theorem 2.

Proof of Theorem 2: With the dilations

(2.14) q → q4, a→ aq−1, b→ bq−2,

the infinite product in (2.12) becomes

(−aq3; q8)∞(−bq2; q4)∞(−q4; q4)∞,
while the four-colored integers are transformed by

xu → 4xu, xau → (4x− 1)au, xb → (4x− 2)b, xab → (4x− 3)ab.

The gives the full set of integers, where only parts ≡ 1 or 2 (mod 4) may be overlined.
The difference condition matrix MB becomes

MB1 =

b b u ab ab au


b 8 4 6 13 9 11
b 8 4 6 13 9 11
u 6 6 4 11 11 9
ab 7 3 5 12 8 10 ,
ab 7 3 5 12 8 10
au 5 5 3 10 10 8

and we obtain∑
i,j,n≥0

B1(i, j, n)aibjqn = (−aq3; q8)∞(−bq2; q4)∞(−q4; q4)∞,

where B1(i, j, n) is equal to the number of overpartitions counted by B1(n) having i
(resp. j) parts with a (resp. b) in their color. This is a refinement of the statement of
Theorem 2 and the proof is complete. �

Before continuing, we make two remarks. First, the condition on the s smallest parts
in the definition of the overpartitions in O is necessary in order for A(i, j, n) and
B(i, j, n) to have a nice infinite product generating function. Indeed, if this condition
is dropped and we use a complete generalized staircase, then the generating function
is the triple sum ∑

r,s,t≥0

q(
r+s+t

2 )+r+s+t+(t+1
2 )(−a)r+s+tb

s+t

(q)r(q)s(q)t
,

and it is easy to check that this is not even a simple infinite product for a = b = 1.
Second, we used the different dilations (2.11) and (2.14) in Theorems 3 and 4 in order
to have a little variety in the infinite products, but we could have also used (2.11) in
Theorem 4 or (2.14) in Theorem 3 and obtained similar identities. In fact, there are
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many dilations which could be used in these theorems, each giving a slightly different
result.

3. Further results

In this section we consider different orders among the parts xu, xb and xb instead
of (2.2) and (2.13) in the proof of Theorems 3 and 4 respectively, so that we obtain
similar results to Theorems 1 and 2. We will be brief with the details. First we use the
order

xu < xb < xb
instead of (2.2). After adding the staircase and the partial generalized staircase, we
have the difference conditions

MD :=

b b u ab ab au


b 2 1 1 3 2 2
b 2 1 1 3 2 2
u 2 2 1 3 3 2
ab 2 1 1 3 2 2 .
ab 2 1 1 3 2 2
au 2 2 1 3 3 2

The fact that there was orginally no 1b means that in the end if the smallest overlined
part is the kth smallest part, then it is not (k + `)b or (k + `)ab, where ` is the number
of parts following it which have a in their color. With the dilations

q → q4, a→ aq, b→ bq2,

the difference condition matrix MD becomes

MD1 =

b b u ab ab au


b 8 4 6 11 7 9
b 8 4 6 11 7 9
u 6 6 4 9 9 7
ab 9 5 7 12 8 10 ,
ab 9 5 7 12 8 10
au 7 7 5 10 10 8

while the infinite product (−aq; q2)∞(−bq)∞(−q)∞ becomes(
−aq5; q8

)
∞

(
−bq6; q4

)
∞

(
−q4; q4

)
∞ .

Thus we have the following theorem.

Theorem 5. Let D1(n) denote the number of overpartitions into parts ≥ 4 satisfying
the difference conditions

λi − λi+1 ≥ 4 + 2χ(λi+1 is overlined) + 3χ(λi+1 is odd),

where, in addition, (i) only parts ≡ 2, 3 (mod 4) may be overlined, (ii) if the smallest

overlined part is the kth smallest part, then it is neither 4(k + `) + 2 nor 4(k + `) + 3,
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where ` is the number of odd parts coming after it, and (iii) the smallest s parts are
even, where s is the number of non-overlined parts ≡ 2, 3 (mod 4). Then D1(n) is equal
to the number of partitions into distinct parts > 2 which are congruent to 0, 2, 4, 5, or
6 modulo 8.

Now we apply the order

xu < xb < xb

instead of (2.13). After adding the staircase and the partial generalized staircase, we
have the difference conditions given by the matrix

ME :=

b b u ab ab au


b 2 2 1 3 3 2
b 1 1 1 2 2 2
u 2 2 1 3 3 2
ab 2 2 1 3 3 2 .
ab 1 1 1 2 2 2
au 2 2 1 3 3 2

With the dilations

q → q4, a→ aq−1, b→ bq2,

the difference condition matrix ME becomes

ME1 =

b b u ab ab au


b 8 8 6 13 13 11
b 4 4 6 9 9 11
u 6 6 4 11 11 9
ab 7 7 5 12 12 10 ,
ab 3 3 5 8 8 10
au 5 5 3 10 10 8

and the infinite product becomes(
−aq3; q8

)
∞

(
−bq6; q4

)
∞

(
−q4; q4

)
∞ .

Therefore we have another similar result.

Theorem 6. Let E1(n) denote the number of overpartitions into parts ≥ 3 satisfying
the difference conditions

λi − λi+1 ≥ 3 + 2χ(λi is overlined) + 5χ(λi+1 is odd),

where, in addition, (i) only parts ≡ 1, 2 (mod 4) may be overlined, (ii) if the smallest

overlined part is the kth smallest part, then it is not 4(k + `) + 1 or 4(k + `) + 2, where
` is the number of odd parts coming after it, and (iii) the smallest s parts are even,
where s is the number of non-overlined parts ≡ 1, 2 (mod 4). Then E1(n) is equal to
the number of partitions into distinct parts > 2 which are congruent to 0, 2, 3, 4, or 6
modulo 8.
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We close by illustrating Theorems 5 and 6 for n = 29. There are 13 partitions of 29
into distinct parts congruent to 0, 2, 4, 5, or 6 modulo 8,

(29), (24, 5), (21, 8), (20, 5, 4), (18, 6, 5), (16, 13), (16, 8, 5), (14, 10, 5),

(14, 6, 5, 4), (13, 12, 4), (13, 10, 6), (12, 8, 5, 4), (10, 8, 6, 5),

as well as 13 overpartitions counted by D1(29),

(29), (25, 4), (24, 5), (23, 6), (21, 8), (20, 9), (19, 10), (19, 10), (19, 10),

(17, 12), (17, 8, 4), (16, 9, 4), (15, 10, 4).

Similarly, there are 17 partitions of 29 into distinct parts congruent to 0, 2, 3, 4, or 6
modulo 8,

(26, 3), (22, 4, 3), (20, 6, 3), (19, 10), (19, 6, 4), (18, 11), (18, 8, 3), (16, 10, 3),

(16, 6, 4, 3), (14, 12, 3), (14, 11, 4), (14, 8, 4, 3), (12, 11, 6),

(12, 10, 4, 3), (12, 8, 6, 3), (11, 10, 8), (11, 8, 6, 4),

as well as 17 overpartitions counted by E1(29),

(29), (26, 3), (25, 4), (25, 4), (23, 6), (22, 7), (21, 8), (21, 8), (20, 9), (19, 10),

(19, 10), (18, 7, 4), (17, 12), (17, 12), (17, 8, 4), (17, 8, 4), (15, 10, 4).
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