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Cyclic Sieving Phenomenon

Definition

Let S be a finite set. Let g be a permutation on S that is of order m. Let F (q)
be a polynomial in q. We say that the triple (S , g ,F (q)) exhibits the cyclic

sieving phenomenon (CSP) if the fixed point set cardinality #Sgd is equal to
the polynomial evaluation F (ζd) for all d ≥ 0 where ζ is a primitive mth root
of unity.

Example

Let [n] := {1, . . . , n} and let
(

[n]
k

)
be the set of k-element subsets of [n].

Consider the cyclic shift R : i 7→ i + 1 mod n on [n] and the induced action on(
[n]
k

)
. It is known that the triple

((
[n]
k

)
,R,

[
n
k

]
q

)
exhibits CSP, where

[
n
k

]
q

is the

quantum binomial coefficient.

Although the definition of CSP seems very combinatorial, many proofs of
known CSP involve quite a bit of geometric representation theory. Please see
Sagan’s survey [Sag11] for more detailed examples.
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Cyclic Sieving Phenomenon of Plane Partitions

Plane Partitions

Definition

An a× b plane partition is an a× b matrix π with non-negative integer entries
such that every row is non-increasing from left to right and every column is
non-increasing from top to bottom.

Example

Here’s an example of a 2× 3 plane partition.

3

3

1

2

0

2

Remark. Think of a plane partition as a 3d Young diagram.
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Cyclic Sieving Phenomenon of Plane Partitions

Plane Partitions

Denote the collection of a× b plane partitions with entries no bigger than
some c > 0 by P(a, b, c).

For a plane partition π, define

|π| :=
∑
i,j

πi,j .

For any triple (a, b, c), define

Ma,b,c(q) :=
∑

π∈P(a,b,c)

q|π|.

In [Rob16], Roby defined a toggling operation η on a plane partition π by
changing each entry from bottom to top in each column and from left to
right across all columns according to

π′i,j = min {πi−1,j , πi,j−1}+ max {πi+1,j , πi,j+1} − πi,j .



Cyclic Sieving Phenomenon of Plane Partitions and Cluster Duality of Grassmannian

Cyclic Sieving Phenomenon of Plane Partitions

Plane Partitions

Denote the collection of a× b plane partitions with entries no bigger than
some c > 0 by P(a, b, c).

For a plane partition π, define

|π| :=
∑
i,j

πi,j .

For any triple (a, b, c), define

Ma,b,c(q) :=
∑

π∈P(a,b,c)

q|π|.

In [Rob16], Roby defined a toggling operation η on a plane partition π by
changing each entry from bottom to top in each column and from left to
right across all columns according to

π′i,j = min {πi−1,j , πi,j−1}+ max {πi+1,j , πi,j+1} − πi,j .



Cyclic Sieving Phenomenon of Plane Partitions and Cluster Duality of Grassmannian

Cyclic Sieving Phenomenon of Plane Partitions

Plane Partitions

Denote the collection of a× b plane partitions with entries no bigger than
some c > 0 by P(a, b, c).

For a plane partition π, define

|π| :=
∑
i,j

πi,j .

For any triple (a, b, c), define

Ma,b,c(q) :=
∑

π∈P(a,b,c)

q|π|.

In [Rob16], Roby defined a toggling operation η on a plane partition π by
changing each entry from bottom to top in each column and from left to
right across all columns according to

π′i,j = min {πi−1,j , πi,j−1}+ max {πi+1,j , πi,j+1} − πi,j .



Cyclic Sieving Phenomenon of Plane Partitions and Cluster Duality of Grassmannian

Cyclic Sieving Phenomenon of Plane Partitions

Plane Partitions

Denote the collection of a× b plane partitions with entries no bigger than
some c > 0 by P(a, b, c).

For a plane partition π, define

|π| :=
∑
i,j

πi,j .

For any triple (a, b, c), define

Ma,b,c(q) :=
∑

π∈P(a,b,c)

q|π|.

In [Rob16], Roby defined a toggling operation η on a plane partition π by
changing each entry from bottom to top in each column and from left to
right across all columns according to

π′i,j = min {πi−1,j , πi,j−1}+ max {πi+1,j , πi,j+1} − πi,j .



Cyclic Sieving Phenomenon of Plane Partitions and Cluster Duality of Grassmannian

Cyclic Sieving Phenomenon of Plane Partitions

Plane Partitions

Example

Here’s an example of η(π) for some plane partition π ∈ P(2, 3, 6).

3

3

1

2

0

2

6

6

6 6 6

0 0 0

0

0

Theorem (Hong-Shen-W.)

The toggling operation η has order n = a + b, and the triple
(P(a, b, c), η,Ma,b,c(q)) exhibits CSP.
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Plane Partitions

Example

Here’s an example of η(π) for some plane partition π ∈ P(2, 3, 6).
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2

0

2

6

6

6 6 6

0 0 0

0

0
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(P(a, b, c), η,Ma,b,c(q)) exhibits CSP.
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Decorated Grassmannian

Definition

The decorated Grassmannian is defined to be

G ra(n) := SLa

∖
Matfull rank

a,n G r×a (n) := SLa

∖
Mat×a,n

where superscript × indicates an additional consecutive general position
condition.

Elements of G ra(n) can be represented by the a-fold exterior product α of
the row vectors of a matrix in Mata,n.

O (G ra(n)) is generated by Plücker coordinates ∆g for any g ∈
∧a Cn,

which is defined by
∆g (α) := 〈g , α〉 .
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Decorated Grassmannian

There is a Gm-action on G ra(n) defined by t.α := tα; with respect to this
Gm-action

O (G ra(n)) =
⊕
c>0

O (G ra(n))c , O (G ra(n))c = Vcωa ,

where Vcωa is a representation of GLn.

There is a boundary divisor D =
⋃

i Di such that G r×a (n) = G ra(n) \ D.

Define a twisted cyclic rotation

Ca :=

(
0 (−1)a−1

Idn−1 0

)
∈ GLn

which acts on Matfull rank
a,n by matrix multiplication on the right. This action

descends to an action of Ca on G ra(n) and induces an action of Ca on
O (G ra(n)) that is compatible with the GLn-action.
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Decorated Grassmannian

Consider the maximal torus T ⊂ GLn consisting of invertible diagonal
matrices, which acts on Matfull rank

a,n by matrix multiplication on the right.
This action descends to an action of T on G ra(n) and induces an action of
T on O (G ra(n)) that is compatible with the GLn-action. Thus by using
such T -action we can further decompose O (G ra(n))c

∼= Vcωa into weight
spaces

Vcωa =
⊕
µ

Vcωa(µ).

A result of Scott [Sco06] can be generalized to show that
O
(
G r×a (n)

) ∼= up (Aa,n) for some cluster variety Aa,n.
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Decorated Configuration Space

Motivated by an idea of Goncharov, we define decorated configuration space as
follows.

Definition

The decorated configuration space C onf ×n (a) is defined to be

GLa

∖{(
φi : li

∼=→ li−1, li ⊂ Ca
)n
i=1

}
with an additional consecutive general position condition.

•
l1

φ1

• l2
φ2

•
l3

φ3

•
l4 φ4

•l5

φ5
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Decorated Configuration Space

By composing all the φi in a decorated configuration we obtain its
monodromy; its twisted monodromy P : C onf ×n (a)→ Gm is deifned to be
(−1)a−1 multiple of the monodromy.

For each i define ϑi : C onf ×n (a)→ A1 to be the number such that

φi−a+1 (vi−a+1)− ϑivi−a ∈ Span {li−a+2, . . . , li} ;

then define the potential function

W :=
n∑

i=1

ϑi .

There is a cyclic rotation R acting on C onf ×n (a) defined by

[φ1, l1, φ2, l2, . . . , φn, ln] 7→ [φn, ln, φ1, l1, . . . , φn−1, ln−1] .
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Decorated Configuration Space

By fixing a volume form ω on Ca, for each i we define a regular function
Mi : C onf ×n (a)→ Gm by

Mi :=
ω (φi−a+1 (vi−a+1) ∧ · · · ∧ φi (vi ))

ω (vi−a+1 ∧ · · · ∧ vi )
.

This gives rise to a map

M : C onf ×n (a)→ T∨

where T∨ is the torus dual to the maximal torus T ⊂ GLn.

We prove that O
(
C onf ×n (a)

) ∼= up (Xa,n) for some cluster variety Xa,n.
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Decorated Grassmannian and Decorated Configuration Space

Summary of the Duality between Decorated Spaces


decorated Grassmannian G r×a (n)
a Gm-action on G ra(n)
boundary divisors D =

⋃
i Di

twisted cyclic rotation Ca

an action by T ⊂ GLn on G ra(n)




decorated configuration space C onf ×n (a)
twisted monodromy P : C onf ×n (a)→ Gm

potential function W =
∑

i ϑi

cyclic rotation R
a projection C onf ×n (a)→ T∨
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Cluster Duality of Grassmannian

Cluster Structures on the Decorated Spaces

Up to codimension 2, G r×a (n) ∼= Aa,n and C onf ×n (a) ∼= Xa,n, where
(Aa,n,Xa,n) is the cluster ensemble associated to some quiver Qa,n. Below is
what Q3,7 looks like.

•

•

•

•

•

•

◦

◦

◦ ◦ ◦ ◦

◦
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Cluster Structures on the Decorated Spaces
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(Aa,n,Xa,n) is the cluster ensemble associated to some quiver Qa,n. Below is
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Set of Tropical Points

Definition

Given a positive space X (i.e., an algebraic variety with a semifield of rational
functions P(X )) and a semifield S , the set of S-points of X is defined to be

X (S) := Homsemifield (P(X ),S) .

Example

Consider an algebraic torus T with P(T ) defined to be the semifield generated
by its characters inside the field of rational functions. Then for any semifield S ,
the set of S-points T (S) can be identified with X∗(T )⊗Z S where X∗(T )
denotes the cocharacter lattice of T .

Cluster varieties (both type A and type X ) are known to be positive spaces,
and an important set of tropical points in our story is X

(
Zt
)
, where Zt is the

semifield of tropical integers
(
Zt ,min,+

)
.
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Cluster Duality

Fock and Goncharov conjectured the following statement in [FG09].

Conjecture (Fock-Goncharov Cluster Duality)

For a quiver Q, up (AQ) admits a canonical basis parametrized by XQ

(
Zt
)

and up (XQ) admits a canonical basis parametrized by AQ

(
Zt
)
.

Gross, Hacking, Keel, and Kontsevich gave a sufficient condition for the
Fock-Goncharov cluster duality conjecture in [GHKK14], which can be
reformulated as follows.

Theorem (Gross-Hacking-Keel-Kontsevich)

The full Fock-Goncharov cluster duality holds for the cluster ensemble
(AQ ,XQ) if the following two conditions are satisfied:

a cluster Donaldson-Thomas transformation (defined by Goncharov and
Shen in [GS18]) exists on X uf

Q ;

the canonical map p : AQ → X uf
Q is surjective.
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In the case of the cluster ensemble (Aa,n,Xa,n), the cluster variety
X uf

a,n
∼= Conf×n (a), which is the configuration space of lines without

isomorphisms between them, and the cluster Donaldson-Thomas
transformation was constructed in [Wen18].

The surjectivity of the p map follows from surjectivity of π and the
following commutative diagram.

G r×a (n) Aa,n

Conf×n (a) Xa,n

π p

∼=

∼=

Here π is defined by taking the configuration of the spans of the column
vectors of a matrix representative in Mat×a,n.
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Theorem (Hong-Shen-W.)

The Fock-Goncharov cluster duality holds on the cluster ensemble
(Aa,n,Xa,n) ∼=

(
G r×a (n),C onf ×n (a)

)
. In particular,

O
(
G r×a (n)

)
=

⊕
q∈Conf×n (a)(Zt )

θq,

O
(
C onf ×n (a)

)
=

⊕
p∈G r×a (n)(Zt )

ϑp.

Remark. The regular functions ϑi we defined on C onf ×n (a) are precisely the
basis vectors corresponding to the basic lamination of the frozen vertices of
Qa,n.
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Gelfand-Zetlin Coordinates

Using the quiver Qa,n, we get a coordinate system {x0,0} ∪ {xi,j}1≤j≤b
1≤i≤a on

C onf ×n (a)
(
Zt
) ∼= Zab+1.

Define the Gelfand-Zetlin coordinates on C onf ×n (a)
(
Zt
)

to be

li,j :=
∑

i≤k,j≤l

xk,l .

x0,0

x1,1

x2,1

x3,1

x1,2

x2,2

x3,2

x1,3

x2,3

x3,3

x1,4

x2,4

x3,4
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Gelfand-Zetlin Coordinates

A result of Gross, Hacking, Keel, and Kontsevich on partial
compactification [GHKK14] implies that a basis vector θq can be extended
to a regular function after adding the boundary divisor D =

⋃
i Di if and

only if W t(q) ≥ 0.

By computation we show that the condition W t(q) ≥ 0 is equivalent to
the non-increasing condition on rows and columns of the matrix (li,j)

1≤j≤b
1≤i≤a

plus the condition that li,j ≤ l0,0 for all indices (i , j).

We also show that the weight of a basis vector θq under the Gm-action is
precisely P t(q) = l0,0.

Theorem (Hong-Shen-W.)

Define Θ(a, b, c) :=
{
θq
∣∣ W t(q) ≥ 0,P t(q) = c

}
. Then Θ(a, b, c) is a basis

of the irreducible representation Vcωa
∼= O (G ra(n))c , and there is a natural

bijection between Θ(a, b, c) and plane partitions P(a, b, c).
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Gelfand-Zetlin Coordinates

In [GSV10], Gekhtman, Shapiro, and Vainshtein observed that the rotation R
on C onf ×n (a) is in fact a cluster transformation which can be realized by a
sequence of mutations in the order similar to the toggling operation η.

◦

• • • ◦

• • • ◦

◦ ◦ ◦ ◦

1

2

3456

7
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Gelfand-Zetlin Coordinates

l0,0 = P t is invariant under the action of R.

By computation we show that the induced action of R on the
Gelfand-Zetlin coordinates (li,j)

1≤j≤b
1≤i≤a is given precisely by the toggling

operation η.

Following the cluster duality of Grassmannian we prove that Ca.θq = θR(q).
Therefore we obtain the following theorem.

Theorem (Hong-Shen-W.)

The action of the twisted cyclic rotation Ca on the basis Θ(a, b, c) is given by
Ca.θπ = θη(π). In particular, this implies that η is of order n.
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Gelfand-Zetlin Coordinates

In fact, the Gelfand-Zetlin coordinates (li,j)
1≤j≤b
1≤i≤a can be expanded into a

Gelfand-Zetlin pattern for Vcωa by adding a triangle with entries c on the
left and a triangle with entries 0 at the bottom.

c c c l1,1 l1,2 l1,3 l1,4

c c l2,1 l2,2 l2,3 l2,4

c l3,1 l3,2 l3,3 l3,4

0 0 0 0

0 0 0

0 0

0

By computation we show that the tropicalization M t
i (q) can be computed

as di − di−1 using the triangle above, where di is the sum of the entries
along the ith diagonal (counting from the right).
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Gelfand-Zetlin Coordinates

Following cluster duality of Grassmannian we further prove the following
statement.

Theorem (Hong-Shen-W.)

The tropicalization M t : C onf ×n (a)
(
Zt
)
→ T∨

(
Zt
) ∼= X ∗(T ) gives the weight

of θq under the action of the maximal torus T ⊂ GLn. In particular, the basis
Θ(a, b, c) of Vcωa is compatible with the weight decomposition
Vcωa =

⊕
µ Vcωa(µ).
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Proof of CSP of Plane Partitions

#
{
π ∈ P(a, b, c)

∣∣ ηd(π) = π
}

= TrVcωa
C d
a .

The characteristic polynomial of Ca is

det (λIdn − Ca) = λn − (−1)a−1,

which has n distinct roots ζ−
a−1

2 , ζ−
a−1

2 ζ, . . . , ζ−
a−1

2 ζn−1 (ζ is a primitive
nth root of unity). Therefore Ca is conjugate to

D = Diag
(
ζ−

a−1
2 ζn−1, ζ−

a−1
2 ζn−2, . . . , ζ−

a−1
2

)
,

which implies that
TrVcωa

C d
a = TrVcωa

Dd .
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Proof CSP of Plane Partitions

The character formula tells us that

TrVλDiag
(
pqn−1, pqn−2, . . . , p

)
= p〈ωn,λ〉

∑
µ

dimVλ(µ)q〈ρ,µ〉,

where ρ = (n − 1, n − 2, . . . , 1, 0); therefore by setting q := ζd , we have

TrVcωa
Dd = q−

a(a−1)c
2

∑
µ

dimVcωa(µ)q〈ρ,µ〉.

But from the Gelfand-Zetlin pattern we also know that

dimVcωa(µ) = #
{
π ∈ P(a, b, c)

∣∣ M t(π) = µ
}

;

therefore
dimVcωa(µ)q〈ρ,µ〉 =

∑
Mt (π)=µ

q〈ρ,M
t (π)〉.
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Proof of CSP of Plane Partitions

By simple computation one can see that
〈
ρ,M t(π)

〉
is just the sum of all

entries in the Gelfand-Zetlin pattern, which is equal to a(a−1)c
2

+ |π|.

Now plug everything in, we get that for q = ζd ,

TrVcωa
C d
a =q−

a(a−1)c
2

∑
π∈P(a,b,c)

q〈ρ,M
t (π)〉

=q−
a(a−1)c

2

∑
π∈P(a,b,c)

q
a(a−1)c

2 q|π|

=
∑

π∈P(a,b,c)

q|π|,

which finishes the proof of our theorem.
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