Cyclic Sieving Phenomenon of Plane Partitions and Cluster Duality of Grassmannian

Daping Weng

Yale University

March 2018

Joint work with Jiuzu Hong and Linhui Shen

Table of Contents

1 Cyclic Sieving Phenomenon of Plane Partitions

2 Decorated Grassmannian and Decorated Configuration Space

3 Cluster Duality of Grassmannian

4 Proof of CSP of Plane Partitions

Table of Contents

1 Cyclic Sieving Phenomenon of Plane Partitions

2 Decorated Grassmannian and Decorated Configuration Space

3 Cluster Duality of Grassmannian

4 Proof of CSP of Plane Partitions

Throughout this talk, let a, b, c be three positive integers and let $n:=a+b$.

Cyclic Sieving Phenomenon

Definition
Let S be a finite set. Let g be a permutation on S that is of order m. Let $F(q)$ be a polynomial in q. We say that the triple $(S, g, F(q))$ exhibits the cyclic sieving phenomenon (CSP) if the fixed point set cardinality $\# S^{g^{d}}$ is equal to the polynomial evaluation $F\left(\zeta^{d}\right)$ for all $d \geq 0$ where ζ is a primitive m th root of unity.

Cyclic Sieving Phenomenon

Definition

Let S be a finite set. Let g be a permutation on S that is of order m. Let $F(q)$ be a polynomial in q. We say that the triple $(S, g, F(q))$ exhibits the cyclic sieving phenomenon (CSP) if the fixed point set cardinality $\# S^{g^{d}}$ is equal to the polynomial evaluation $F\left(\zeta^{d}\right)$ for all $d \geq 0$ where ζ is a primitive m th root of unity.

Example

Let $[n]:=\{1, \ldots, n\}$ and let $\binom{[n]}{k}$ be the set of k-element subsets of $[n]$. Consider the cyclic shift $R: i \mapsto i+1 \bmod n$ on $[n]$ and the induced action on $\binom{[n]}{k}$. It is known that the triple $\left(\binom{[n]}{k}, R,\left[\begin{array}{l}n \\ k\end{array}\right]_{q}\right)$ exhibits CSP, where $\left[\begin{array}{c}n \\ k\end{array}\right]_{q}$ is the quantum binomial coefficient.

Cyclic Sieving Phenomenon

Definition

Let S be a finite set. Let g be a permutation on S that is of order m. Let $F(q)$ be a polynomial in q. We say that the triple $(S, g, F(q))$ exhibits the cyclic sieving phenomenon (CSP) if the fixed point set cardinality $\# S^{g^{d}}$ is equal to the polynomial evaluation $F\left(\zeta^{d}\right)$ for all $d \geq 0$ where ζ is a primitive m th root of unity.

Example

Let $[n]:=\{1, \ldots, n\}$ and let $\binom{[n]}{k}$ be the set of k-element subsets of $[n]$. Consider the cyclic shift $R: i \mapsto i+1 \bmod n$ on $[n]$ and the induced action on $\binom{[n]}{k}$. It is known that the triple $\left(\binom{[n]}{k}, R,\left[\begin{array}{l}n \\ k\end{array}\right]_{q}\right)$ exhibits CSP, where $\left[\begin{array}{c}n \\ k\end{array}\right]_{q}$ is the quantum binomial coefficient.

Although the definition of CSP seems very combinatorial, many proofs of known CSP involve quite a bit of geometric representation theory. Please see Sagan's survey [Sag11] for more detailed examples.

Plane Partitions

Definition

An $a \times b$ plane partition is an $a \times b$ matrix π with non-negative integer entries such that every row is non-increasing from left to right and every column is non-increasing from top to bottom.

Plane Partitions

Definition

An $a \times b$ plane partition is an $a \times b$ matrix π with non-negative integer entries such that every row is non-increasing from left to right and every column is non-increasing from top to bottom.

Example

Here's an example of a 2×3 plane partition.

3	2	2
3	1	0

Plane Partitions

Definition

An $a \times b$ plane partition is an $a \times b$ matrix π with non-negative integer entries such that every row is non-increasing from left to right and every column is non-increasing from top to bottom.

Example

Here's an example of a 2×3 plane partition.

3	2	2
3	1	0

Remark. Think of a plane partition as a 3d Young diagram.

Plane Partitions

- Denote the collection of $a \times b$ plane partitions with entries no bigger than some $c>0$ by $P(a, b, c)$.

Plane Partitions

- Denote the collection of $a \times b$ plane partitions with entries no bigger than some $c>0$ by $P(a, b, c)$.
- For a plane partition π, define

$$
|\pi|:=\sum_{i, j} \pi_{i, j}
$$

Plane Partitions

- Denote the collection of $a \times b$ plane partitions with entries no bigger than some $c>0$ by $P(a, b, c)$.
- For a plane partition π, define

$$
|\pi|:=\sum_{i, j} \pi_{i, j}
$$

- For any triple (a, b, c), define

$$
M_{a, b, c}(q):=\sum_{\pi \in P(a, b, c)} q^{|\pi|}
$$

Plane Partitions

- Denote the collection of $a \times b$ plane partitions with entries no bigger than some $c>0$ by $P(a, b, c)$.
- For a plane partition π, define

$$
|\pi|:=\sum_{i, j} \pi_{i, j}
$$

■ For any triple (a, b, c), define

$$
M_{a, b, c}(q):=\sum_{\pi \in P(a, b, c)} q^{|\pi|}
$$

- In [Rob16], Roby defined a toggling operation η on a plane partition π by changing each entry from bottom to top in each column and from left to right across all columns according to

$$
\pi_{i, j}^{\prime}=\min \left\{\pi_{i-1, j}, \pi_{i, j-1}\right\}+\max \left\{\pi_{i+1, j}, \pi_{i, j+1}\right\}-\pi_{i, j}
$$

Plane Partitions

Example

Here's an example of $\eta(\pi)$ for some plane partition $\pi \in P(2,3,6)$.

Plane Partitions

Example

Here's an example of $\eta(\pi)$ for some plane partition $\pi \in P(2,3,6)$.

Plane Partitions

Example

Here's an example of $\eta(\pi)$ for some plane partition $\pi \in P(2,3,6)$.

Plane Partitions

Example

Here's an example of $\eta(\pi)$ for some plane partition $\pi \in P(2,3,6)$.

Plane Partitions

Example

Here's an example of $\eta(\pi)$ for some plane partition $\pi \in P(2,3,6)$.

Plane Partitions

Example

Here's an example of $\eta(\pi)$ for some plane partition $\pi \in P(2,3,6)$.

Plane Partitions

Example

Here's an example of $\eta(\pi)$ for some plane partition $\pi \in P(2,3,6)$.

Plane Partitions

Example

Here's an example of $\eta(\pi)$ for some plane partition $\pi \in P(2,3,6)$.

6 6
6 65 5 3 1 0 0

Theorem (Hong-Shen-W.)

The toggling operation η has order $n=a+b$, and the triple ($\left.P(a, b, c), \eta, M_{a, b, c}(q)\right)$ exhibits CSP.

Decorated Grassmannian

Definition

The decorated Grassmannian is defined to be

$$
\mathscr{G} r_{a}(n):=\mathrm{SL}_{a} \backslash \operatorname{Mat}_{a, n}^{\text {full rank }} \quad \mathscr{G} r_{a}^{\times}(n):=\mathrm{SL}_{a} \backslash \operatorname{Mat}_{a, n}^{\times}
$$

where superscript \times indicates an additional consecutive general position condition.

Decorated Grassmannian

Definition

The decorated Grassmannian is defined to be

$$
\mathscr{G} r_{a}(n):=\mathrm{SL}_{a} \backslash \mathrm{Mat}_{\mathrm{a}, n}^{\text {full rank }} \quad \mathscr{G} r_{\mathrm{a}}^{\times}(n):=\mathrm{SL}_{a} \backslash \mathrm{Mat}_{\mathrm{a}, n}^{\times}
$$

where superscript \times indicates an additional consecutive general position condition.

■ Elements of $\mathscr{G} r_{a}(n)$ can be represented by the a-fold exterior product α of the row vectors of a matrix in $\mathrm{Mat}_{a, n}$.

Decorated Grassmannian

Definition

The decorated Grassmannian is defined to be

$$
\mathscr{G} r_{a}(n):=\mathrm{SL}_{a} \backslash \mathrm{Mat}_{\mathrm{a}, n}^{\text {full rank }} \quad \mathscr{G} r_{\mathrm{a}}^{\times}(n):=\mathrm{SL}_{a} \backslash \mathrm{Mat}_{\mathrm{a}, n}^{\times}
$$

where superscript \times indicates an additional consecutive general position condition.

■ Elements of $\mathscr{G} r_{a}(n)$ can be represented by the a-fold exterior product α of the row vectors of a matrix in Mata,n.

- $\mathcal{O}\left(\mathscr{G} r_{a}(n)\right)$ is generated by Plücker coordinates Δ_{g} for any $g \in \bigwedge^{a} \mathbb{C}^{n}$, which is defined by

$$
\Delta_{g}(\alpha):=\langle g, \alpha\rangle .
$$

Decorated Grassmannian

- There is a \mathbb{G}_{m}-action on $\mathscr{G} r_{a}(n)$ defined by $t . \alpha:=t \alpha$; with respect to this \mathbb{G}_{m}-action

$$
\mathcal{O}\left(\mathscr{G} r_{a}(n)\right)=\bigoplus_{c>0} \mathcal{O}\left(\mathscr{G} r_{a}(n)\right)_{c}, \quad \mathcal{O}\left(\mathscr{G} r_{a}(n)\right)_{c}=V_{c \omega_{a}},
$$

where $V_{c \omega_{a}}$ is a representation of GL_{n}.

Decorated Grassmannian

- There is a \mathbb{G}_{m}-action on $\mathscr{G} r_{a}(n)$ defined by $t . \alpha:=t \alpha$; with respect to this \mathbb{G}_{m}-action

$$
\mathcal{O}\left(\mathscr{G} r_{a}(n)\right)=\bigoplus_{c>0} \mathcal{O}\left(\mathscr{G} r_{a}(n)\right)_{c}, \quad \mathcal{O}\left(\mathscr{G} r_{a}(n)\right)_{c}=V_{c \omega_{a}},
$$

where $V_{c \omega_{a}}$ is a representation of GL_{n}.

- There is a boundary divisor $D=\bigcup_{i} D_{i}$ such that $\mathscr{G} r_{a}^{\times}(n)=\mathscr{G} r_{a}(n) \backslash D$.

Decorated Grassmannian

■ There is a \mathbb{G}_{m}-action on $\mathscr{G} r_{a}(n)$ defined by $t . \alpha:=t \alpha$; with respect to this \mathbb{G}_{m}-action

$$
\mathcal{O}\left(\mathscr{G} r_{a}(n)\right)=\bigoplus_{c>0} \mathcal{O}\left(\mathscr{G} r_{a}(n)\right)_{c}, \quad \mathcal{O}\left(\mathscr{G} r_{a}(n)\right)_{c}=V_{c \omega_{a}},
$$

where $V_{c \omega_{a}}$ is a representation of GL_{n}.
■ There is a boundary divisor $D=\bigcup_{i} D_{i}$ such that $\mathscr{G} r_{a}^{\times}(n)=\mathscr{G} r_{a}(n) \backslash D$.

- Define a twisted cyclic rotation

$$
C_{a}:=\left(\begin{array}{cc}
0 & (-1)^{a-1} \\
\operatorname{Id}_{n-1} & 0
\end{array}\right) \in \mathrm{GL}_{n}
$$

which acts on Mat ${ }_{a, n}^{\text {full rank }}$ by matrix multiplication on the right. This action descends to an action of C_{a} on $\mathscr{G} r_{a}(n)$ and induces an action of C_{a} on $\mathcal{O}\left(\mathscr{G} r_{a}(n)\right)$ that is compatible with the GL_{n}-action.

Decorated Grassmannian

■ Consider the maximal torus $T \subset \mathrm{GL}_{n}$ consisting of invertible diagonal matrices, which acts on Mat ${ }_{a, n}^{\text {full rank }}$ by matrix multiplication on the right. This action descends to an action of T on $\mathscr{G} r_{a}(n)$ and induces an action of T on $\mathcal{O}\left(\mathscr{G} r_{a}(n)\right)$ that is compatible with the GL_{n}-action. Thus by using such T-action we can further decompose $\mathcal{O}\left(\mathscr{G} r_{a}(n)\right)_{c} \cong V_{c \omega_{a}}$ into weight spaces

$$
V_{c \omega_{a}}=\bigoplus_{\mu} V_{c \omega_{a}}(\mu) .
$$

Decorated Grassmannian

■ Consider the maximal torus $T \subset \mathrm{GL}_{n}$ consisting of invertible diagonal matrices, which acts on Mat $\mathrm{f}_{a, n}^{\text {full rank }}$ by matrix multiplication on the right. This action descends to an action of T on $\mathscr{G} r_{a}(n)$ and induces an action of T on $\mathcal{O}\left(\mathscr{G} r_{a}(n)\right)$ that is compatible with the GL_{n}-action. Thus by using such T-action we can further decompose $\mathcal{O}\left(\mathscr{G} r_{a}(n)\right)_{c} \cong V_{c \omega_{a}}$ into weight spaces

$$
V_{c \omega_{a}}=\bigoplus_{\mu} V_{c \omega_{a}}(\mu)
$$

■ A result of Scott [Sco06] can be generalized to show that $\mathcal{O}\left(\mathscr{G} r_{a}^{\times}(n)\right) \cong \operatorname{up}\left(\mathscr{A}_{a, n}\right)$ for some cluster variety $\mathscr{A}_{a, n}$.

Decorated Configuration Space

Motivated by an idea of Goncharov, we define decorated configuration space as follows.

Definition

The decorated configuration space $\mathscr{C} o n f_{n}^{\times}(a)$ is defined to be

$$
\mathrm{GL}_{a} \backslash\left\{\left(\phi_{i}: I_{i} \cong I_{i-1}, l_{i} \subset \mathbb{C}^{a}\right)_{i=1}^{n}\right\}
$$

with an additional consecutive general position condition.

Decorated Configuration Space

- By composing all the ϕ_{i} in a decorated configuration we obtain its monodromy; its twisted monodromy $P: \mathscr{C} \circ n f_{n}^{\times}(a) \rightarrow \mathbb{G}_{m}$ is deifned to be $(-1)^{a-1}$ multiple of the monodromy.

Decorated Configuration Space

- By composing all the ϕ_{i} in a decorated configuration we obtain its monodromy; its twisted monodromy $P: \mathscr{C} \circ n f_{n}^{\times}(a) \rightarrow \mathbb{G}_{m}$ is deifned to be $(-1)^{a-1}$ multiple of the monodromy.
- For each i define $\vartheta_{i}: \mathscr{C o n f}{ }_{n}^{\times}(a) \rightarrow \mathbb{A}^{1}$ to be the number such that

$$
\phi_{i-a+1}\left(v_{i-a+1}\right)-\vartheta_{i} v_{i-a} \in \operatorname{Span}\left\{I_{i-a+2}, \ldots, I_{i}\right\} ;
$$

then define the potential function

$$
\mathcal{W}:=\sum_{i=1}^{n} \vartheta_{i}
$$

Decorated Configuration Space

- By composing all the ϕ_{i} in a decorated configuration we obtain its monodromy; its twisted monodromy $P: \mathscr{C} \circ n f_{n}^{\times}(a) \rightarrow \mathbb{G}_{m}$ is deifned to be $(-1)^{a-1}$ multiple of the monodromy.
■ For each i define $\vartheta_{i}: \mathscr{C}$ onf $n_{n}^{\times}(a) \rightarrow \mathbb{A}^{1}$ to be the number such that

$$
\phi_{i-a+1}\left(v_{i-a+1}\right)-\vartheta_{i} v_{i-a} \in \operatorname{Span}\left\{I_{i-a+2}, \ldots, I_{i}\right\} ;
$$

then define the potential function

$$
\mathcal{W}:=\sum_{i=1}^{n} \vartheta_{i}
$$

- There is a cyclic rotation R acting on \mathscr{C} onf ${ }_{n}^{\times}(a)$ defined by

$$
\left[\phi_{1}, I_{1}, \phi_{2}, I_{2}, \ldots, \phi_{n}, I_{n}\right] \mapsto\left[\phi_{n}, I_{n}, \phi_{1}, I_{1}, \ldots, \phi_{n-1}, I_{n-1}\right] .
$$

Decorated Configuration Space

- By fixing a volume form ω on \mathbb{C}^{a}, for each i we define a regular function $M_{i}: \mathscr{C}$ onf $f_{n}^{\times}(a) \rightarrow \mathbb{G}_{m}$ by

$$
M_{i}:=\frac{\omega\left(\phi_{i-a+1}\left(v_{i-a+1}\right) \wedge \cdots \wedge \phi_{i}\left(v_{i}\right)\right)}{\omega\left(v_{i-a+1} \wedge \cdots \wedge v_{i}\right)} .
$$

This gives rise to a map

$$
M: \mathscr{C} \text { onf }_{n}^{\times}(a) \rightarrow T^{\vee}
$$

where T^{\vee} is the torus dual to the maximal torus $T \subset \mathrm{GL}_{n}$.

Decorated Configuration Space

- By fixing a volume form ω on \mathbb{C}^{a}, for each i we define a regular function $M_{i}: \mathscr{C}$ onf $f_{n}^{\times}(a) \rightarrow \mathbb{G}_{m}$ by

$$
M_{i}:=\frac{\omega\left(\phi_{i-a+1}\left(v_{i-a+1}\right) \wedge \cdots \wedge \phi_{i}\left(v_{i}\right)\right)}{\omega\left(v_{i-a+1} \wedge \cdots \wedge v_{i}\right)} .
$$

This gives rise to a map

$$
M: \mathscr{C} o n f_{n}^{\times}(a) \rightarrow T^{\vee}
$$

where T^{\vee} is the torus dual to the maximal torus $T \subset \mathrm{GL}_{n}$.
■ We prove that $\mathcal{O}\left(\mathscr{C}\right.$ onf $\left.{ }_{n}^{\times}(a)\right) \cong \operatorname{up}\left(\mathscr{X}_{a, n}\right)$ for some cluster variety $\mathscr{X}_{a, n}$.

Summary of the Duality between Decorated Spaces

$\left\{\begin{array}{l}\text { decorated Grassmannian } \mathscr{G} r_{a}^{\times}(n) \\ \text { a } \mathbb{G}_{m} \text {-action on } \mathscr{G} r_{a}(n) \\ \text { boundary divisors } D=\bigcup_{i} D_{i} \\ \text { twisted cyclic rotation } C_{a} \\ \text { an action by } T \subset G L_{n} \text { on } \mathscr{G} r_{a}(n)\end{array}\right\}$

$\left\{\begin{array}{l}\text { decorated configuration space } \mathscr{C} \text { onf } f_{n}^{\times}(a) \\ \text { twisted monodromy } P: \mathscr{C} \text { onf } \\ \text { potential function } \mathcal{W}=\sum_{i}(a) \rightarrow \mathscr{G}_{m} \\ \text { cyclic rotation } R \\ \text { a projection } \mathscr{C} \text { onf } f_{n}^{\times}(a) \rightarrow T^{\vee}\end{array}\right\}$

Summary of the Duality between Decorated Spaces

$$
\left\{\begin{array}{l}
\text { decorated Grassmannian } \mathscr{G} r_{a}^{\times}(n) \\
\text { a } \mathbb{G}_{m} \text {-action on } \mathscr{G} r_{a}(n) \\
\text { boundary divisors } D=\bigcup_{i} D_{i} \\
\text { twisted cyclic rotation } C_{a} \\
\text { an action by } T \subset G L_{n} \text { on } \mathscr{G} r_{a}(n)
\end{array}\right\} \quad \mathscr{A} \text {-side }
$$

$\left\{\begin{array}{l}\text { decorated configuration space } \mathscr{C} \text { onf } f_{n}^{\times}(a) \\ \text { twisted monodromy } P: \mathscr{C} \text { onf } \\ \text { potential function } \mathcal{W}=\sum_{i}(a) \rightarrow \mathscr{G}_{m} \\ \text { cyclic rotation } R \\ \text { a projection } \mathscr{C} \text { onf } f_{n}^{\times}(a) \rightarrow T^{\vee}\end{array}\right\}$

Summary of the Duality between Decorated Spaces

$\left\{\begin{array}{l}\text { decorated Grassmannian } \mathscr{G} r_{a}^{\times}(n) \\ \text { a } \mathbb{G}_{m} \text {-action on } \mathscr{G} r_{a}(n) \\ \text { boundary divisors } D=\bigcup_{i} D_{i} \\ \text { twisted cyclic rotation } C_{a} \\ \text { an action by } T \subset G L_{n} \text { on } \mathscr{G} r_{a}(n)\end{array}\right\} \quad \mathscr{A}$-side

\mathscr{X}-side
$\left\{\begin{array}{l}\text { decorated configuration space } \mathscr{C} \text { onf } f_{n}^{\times}(a) \\ \text { twisted monodromy } P: \mathscr{C} \text { onf } \\ \text { potential function } \mathcal{W}=\sum_{i}(a) \rightarrow \mathscr{G}_{m} \\ \text { cyclic rotation } R \\ \text { a projection } \mathscr{C} \text { onf } f_{n}^{\times}(a) \rightarrow T^{\vee}\end{array}\right\}$

Cluster Structures on the Decorated Spaces

Up to codimension $2, \mathscr{G} r_{a}^{\times}(n) \cong \mathscr{A}_{a, n}$ and $\mathscr{C} o n f_{n}^{\times}(a) \cong \mathscr{X}_{a, n}$, where $\left(\mathscr{A}_{a, n}, \mathscr{X}_{a, n}\right)$ is the cluster ensemble associated to some quiver $Q_{a, n}$. Below is what $Q_{3,7}$ looks like.

Cluster Structures on the Decorated Spaces

Up to codimension $2, \mathscr{G} r_{a}^{\times}(n) \cong \mathscr{A}_{a, n}$ and \mathscr{C} onf $f_{n}^{\times}(a) \cong \mathscr{X}_{a, n}$, where $\left(\mathscr{A}_{a, n}, \mathscr{X}_{a, n}\right)$ is the cluster ensemble associated to some quiver $Q_{a, n}$. Below is what $Q_{3,7}$ looks like.

Set of Tropical Points

Definition

Given a positive space X (i.e., an algebraic variety with a semifield of rational functions $P(X)$) and a semifield S, the set of S-points of X is defined to be

$$
X(S):=\operatorname{Hom}_{\text {semifield }}(P(X), S)
$$

Set of Tropical Points

Definition

Given a positive space X (i.e., an algebraic variety with a semifield of rational functions $P(X)$) and a semifield S, the set of S-points of X is defined to be

$$
X(S):=\operatorname{Hom}_{\text {semifield }}(P(X), S)
$$

Example

Consider an algebraic torus T with $P(T)$ defined to be the semifield generated by its characters inside the field of rational functions. Then for any semifield S, the set of S-points $T(S)$ can be identified with $X_{*}(T) \otimes_{\mathbb{Z}} S$ where $X_{*}(T)$ denotes the cocharacter lattice of T.

Set of Tropical Points

Definition

Given a positive space X (i.e., an algebraic variety with a semifield of rational functions $P(X)$) and a semifield S, the set of S-points of X is defined to be

$$
X(S):=\operatorname{Hom}_{\text {semifield }}(P(X), S)
$$

Example

Consider an algebraic torus T with $P(T)$ defined to be the semifield generated by its characters inside the field of rational functions. Then for any semifield S, the set of S-points $T(S)$ can be identified with $X_{*}(T) \otimes_{\mathbb{Z}} S$ where $X_{*}(T)$ denotes the cocharacter lattice of T.

Cluster varieties (both type \mathscr{A} and type \mathscr{X}) are known to be positive spaces, and an important set of tropical points in our story is $\mathscr{X}\left(\mathbb{Z}^{t}\right)$, where \mathbb{Z}^{t} is the semifield of tropical integers $\left(\mathbb{Z}^{t}, \min ,+\right)$.

Cluster Duality

Fock and Goncharov conjectured the following statement in [FG09].

Conjecture (Fock-Goncharov Cluster Duality)

For a quiver Q, up $\left(\mathscr{A}_{Q}\right)$ admits a canonical basis parametrized by $\mathscr{X}_{Q}\left(\mathbb{Z}^{t}\right)$ and $\operatorname{up}\left(\mathscr{X}_{Q}\right)$ admits a canonical basis parametrized by $\mathscr{A}_{Q}\left(\mathbb{Z}^{t}\right)$.

Cluster Duality

Fock and Goncharov conjectured the following statement in [FG09].

Conjecture (Fock-Goncharov Cluster Duality)

For a quiver Q, up $\left(\mathscr{A}_{Q}\right)$ admits a canonical basis parametrized by $\mathscr{X}_{Q}\left(\mathbb{Z}^{t}\right)$ and $\operatorname{up}\left(\mathscr{X}_{Q}\right)$ admits a canonical basis parametrized by $\mathscr{A}_{Q}\left(\mathbb{Z}^{t}\right)$.

Gross, Hacking, Keel, and Kontsevich gave a sufficient condition for the Fock-Goncharov cluster duality conjecture in [GHKK14], which can be reformulated as follows.

Theorem (Gross-Hacking-Keel-Kontsevich)

The full Fock-Goncharov cluster duality holds for the cluster ensemble $\left(\mathscr{A}_{Q}, \mathscr{X}_{Q}\right)$ if the following two conditions are satisfied:

- a cluster Donaldson-Thomas transformation (defined by Goncharov and Shen in [GS18]) exists on $\mathscr{X}_{Q}^{\text {uf }}$;
- the canonical map $p: \mathscr{A}_{Q} \rightarrow \mathscr{X}_{Q}^{\text {uf }}$ is surjective.

Cluster Duality of Grassmannian

- In the case of the cluster ensemble ($\left.\mathscr{A}_{a, n}, \mathscr{X}_{a, n}\right)$, the cluster variety $\mathscr{X}_{a, n}^{\mathrm{uf}} \cong \operatorname{Conf}_{n}^{\times}(a)$, which is the configuration space of lines without isomorphisms between them, and the cluster Donaldson-Thomas transformation was constructed in [Wen18].

Cluster Duality of Grassmannian

- In the case of the cluster ensemble $\left(\mathscr{A}_{a, n}, \mathscr{X}_{a, n}\right)$, the cluster variety $\mathscr{X}_{a, n}^{\mathrm{uf}} \cong \operatorname{Conf}_{n}^{\times}(a)$, which is the configuration space of lines without isomorphisms between them, and the cluster Donaldson-Thomas transformation was constructed in [Wen18].
- The surjectivity of the p map follows from surjectivity of π and the following commutative diagram.

Here π is defined by taking the configuration of the spans of the column vectors of a matrix representative in $\operatorname{Mat}_{a, n}^{\times}$.

Cluster Duality of Grassmannian

Theorem (Hong-Shen-W.)

The Fock-Goncharov cluster duality holds on the cluster ensemble $\left(\mathscr{A}_{a, n}, \mathscr{X}_{a, n}\right) \cong\left(\mathscr{G}_{a}{ }^{\times}(n), \mathscr{C} o n f_{n}^{\times}(a)\right)$. In particular,

$$
\begin{gathered}
\mathcal{O}\left(\mathscr{G} r_{a}^{\times}(n)\right)=\bigoplus_{q \in \mathscr{C} o n f_{n}^{\times}(a)\left(\mathbb{Z}^{t}\right)} \theta_{q}, \\
\mathcal{O}\left(\mathscr{C} \circ n f_{n}^{\times}(a)\right)=\bigoplus_{p \in \mathscr{G} r_{a}^{\times}(n)\left(\mathbb{Z}^{t}\right)} \vartheta_{p} .
\end{gathered}
$$

Cluster Duality of Grassmannian

Theorem (Hong-Shen-W.)

The Fock-Goncharov cluster duality holds on the cluster ensemble $\left(\mathscr{A}_{a, n}, \mathscr{X}_{a, n}\right) \cong\left(\mathscr{G} r_{a}^{\times}(n), \mathscr{C} o n f_{n}^{\times}(a)\right)$. In particular,

$$
\begin{gathered}
\mathcal{O}\left(\mathscr{G} r_{a}^{\times}(n)\right)=\bigoplus_{q \in \mathscr{C} o n f_{n}^{\times}(a)\left(\mathbb{Z}^{t}\right)} \theta_{q}, \\
\mathcal{O}\left(\mathscr{C} \circ n f_{n}^{\times}(a)\right)=\bigoplus_{p \in \mathscr{G} r_{a}^{\times}(n)\left(\mathbb{Z}^{t}\right)} \vartheta_{p} .
\end{gathered}
$$

Remark. The regular functions ϑ_{i} we defined on \mathscr{C} onf $f_{n}^{\times}(a)$ are precisely the basis vectors corresponding to the basic lamination of the frozen vertices of $Q_{a, n}$.

Gelfand-Zetlin Coordinates

- Using the quiver $Q_{a, n}$, we get a coordinate system $\left\{x_{0,0}\right\} \cup\left\{x_{i, j}\right\}_{1 \leq i \leq a}^{1 \leq j \leq b}$ on $\mathscr{C} \circ \operatorname{lf}_{n}^{\times}(a)\left(\mathbb{Z}^{t}\right) \cong \mathbb{Z}^{a b+1}$.

Gelfand-Zetlin Coordinates

- Using the quiver $Q_{a, n}$, we get a coordinate system $\left\{x_{0,0}\right\} \cup\left\{x_{i, j}\right\}_{1 \leq i \leq a}^{1 \leq j \leq b}$ on \mathscr{C} onf $_{n}^{\times}(a)\left(\mathbb{Z}^{t}\right) \cong \mathbb{Z}^{a b+1}$.
- Define the Gelfand-Zetlin coordinates on $\mathscr{C o n f}{ }_{n}^{\times}(a)\left(\mathbb{Z}^{t}\right)$ to be

$$
I_{i, j}:=\sum_{i \leq k, j \leq 1} x_{k, l} .
$$

$x_{0,0}$				
	$x_{1,1}$	$x_{1,2}$	$x_{1,3}$	$x_{1,4}$
	$x_{2,1}$	$x_{2,2}$	$x_{2,3}$	$x_{2,4}$
	$x_{3,1}$	$x_{3,2}$	$x_{3,3}$	$x_{3,4}$

Gelfand-Zetlin Coordinates

- Using the quiver $Q_{a, n}$, we get a coordinate system $\left\{x_{0,0}\right\} \cup\left\{x_{i, j}\right\}_{1 \leq i \leq a}^{1 \leq j \leq b}$ on $\mathscr{C} \circ \operatorname{onf}_{n}^{\times}(a)\left(\mathbb{Z}^{t}\right) \cong \mathbb{Z}^{a b+1}$.
- Define the Gelfand-Zetlin coordinates on $\mathscr{C o n f}{ }_{n}^{\times}(a)\left(\mathbb{Z}^{t}\right)$ to be

$$
I_{i, j}:=\sum_{i \leq k, j \leq 1} x_{k, l} .
$$

Gelfand-Zetlin Coordinates

- A result of Gross, Hacking, Keel, and Kontsevich on partial compactification [GHKK14] implies that a basis vector θ_{q} can be extended to a regular function after adding the boundary divisor $D=\bigcup_{i} D_{i}$ if and only if $\mathcal{W}^{t}(q) \geq 0$.

Gelfand-Zetlin Coordinates

- A result of Gross, Hacking, Keel, and Kontsevich on partial compactification [GHKK14] implies that a basis vector θ_{q} can be extended to a regular function after adding the boundary divisor $D=\bigcup_{i} D_{i}$ if and only if $\mathcal{W}^{t}(q) \geq 0$.
- By computation we show that the condition $\mathcal{W}^{t}(q) \geq 0$ is equivalent to the non-increasing condition on rows and columns of the matrix $\left(l_{i, j}\right)_{1 \leq i \leq a}^{1 \leq i \leq b}$ plus the condition that $l_{i, j} \leq I_{0,0}$ for all indices (i, j).

Gelfand-Zetlin Coordinates

- A result of Gross, Hacking, Keel, and Kontsevich on partial compactification [GHKK14] implies that a basis vector θ_{q} can be extended to a regular function after adding the boundary divisor $D=\bigcup_{i} D_{i}$ if and only if $\mathcal{W}^{t}(q) \geq 0$.
- By computation we show that the condition $\mathcal{W}^{t}(q) \geq 0$ is equivalent to the non-increasing condition on rows and columns of the matrix $\left(I_{i, j}\right)_{1 \leq i \leq a}^{1 \leq i \leq b}$ plus the condition that $l_{i, j} \leq I_{0,0}$ for all indices (i, j).
- We also show that the weight of a basis vector θ_{q} under the \mathbb{G}_{m}-action is precisely $P^{t}(q)=I_{0,0}$.

Gelfand-Zetlin Coordinates

- A result of Gross, Hacking, Keel, and Kontsevich on partial compactification [GHKK14] implies that a basis vector θ_{q} can be extended to a regular function after adding the boundary divisor $D=\bigcup_{i} D_{i}$ if and only if $\mathcal{W}^{t}(q) \geq 0$.
- By computation we show that the condition $\mathcal{W}^{t}(q) \geq 0$ is equivalent to the non-increasing condition on rows and columns of the matrix $\left(I_{i, j}\right)_{1 \leq i \leq i \leq a}^{1 \leq b}$ plus the condition that $I_{i, j} \leq I_{0,0}$ for all indices (i, j).
■ We also show that the weight of a basis vector θ_{q} under the \mathbb{G}_{m}-action is precisely $P^{t}(q)=I_{0,0}$.

Theorem (Hong-Shen-W.)

Define $\Theta(a, b, c):=\left\{\theta_{q} \mid \mathcal{W}^{t}(q) \geq 0, P^{t}(q)=c\right\}$. Then $\Theta(a, b, c)$ is a basis of the irreducible representation $V_{c \omega_{a}} \cong \mathcal{O}\left(\mathscr{G} r_{a}(n)\right)_{c}$, and there is a natural bijection between $\Theta(a, b, c)$ and plane partitions $P(a, b, c)$.

Gelfand-Zetlin Coordinates

In [GSV10], Gekhtman, Shapiro, and Vainshtein observed that the rotation R on \mathscr{C} onf $n_{n}^{\times}(a)$ is in fact a cluster transformation which can be realized by a sequence of mutations in the order similar to the toggling operation η.

Gelfand-Zetlin Coordinates

In [GSV10], Gekhtman, Shapiro, and Vainshtein observed that the rotation R on \mathscr{C} onf ${ }_{n}^{\times}(a)$ is in fact a cluster transformation which can be realized by a sequence of mutations in the order similar to the toggling operation η.

Gelfand-Zetlin Coordinates

In [GSV10], Gekhtman, Shapiro, and Vainshtein observed that the rotation R on \mathscr{C} onf ${ }_{n}^{\times}(a)$ is in fact a cluster transformation which can be realized by a sequence of mutations in the order similar to the toggling operation η.

Gelfand-Zetlin Coordinates

In [GSV10], Gekhtman, Shapiro, and Vainshtein observed that the rotation R on \mathscr{C} onf ${ }_{n}^{\times}(a)$ is in fact a cluster transformation which can be realized by a sequence of mutations in the order similar to the toggling operation η.

Gelfand-Zetlin Coordinates

In [GSV10], Gekhtman, Shapiro, and Vainshtein observed that the rotation R on \mathscr{C} onf ${ }_{n}^{\times}(a)$ is in fact a cluster transformation which can be realized by a sequence of mutations in the order similar to the toggling operation η.

Gelfand-Zetlin Coordinates

In [GSV10], Gekhtman, Shapiro, and Vainshtein observed that the rotation R on \mathscr{C} onf ${ }_{n}^{\times}(a)$ is in fact a cluster transformation which can be realized by a sequence of mutations in the order similar to the toggling operation η.

Gelfand-Zetlin Coordinates

In [GSV10], Gekhtman, Shapiro, and Vainshtein observed that the rotation R on \mathscr{C} onf ${ }_{n}^{\times}(a)$ is in fact a cluster transformation which can be realized by a sequence of mutations in the order similar to the toggling operation η.

Gelfand-Zetlin Coordinates

In [GSV10], Gekhtman, Shapiro, and Vainshtein observed that the rotation R on \mathscr{C} onf ${ }_{n}^{\times}(a)$ is in fact a cluster transformation which can be realized by a sequence of mutations in the order similar to the toggling operation η.

Gelfand-Zetlin Coordinates

- $I_{0,0}=P^{t}$ is invariant under the action of R.

Gelfand-Zetlin Coordinates

- $I_{0,0}=P^{t}$ is invariant under the action of R.
- By computation we show that the induced action of R on the Gelfand-Zetlin coordinates $\left(I_{i, j}\right)_{1 \leq i \leq a}^{1 \leq j \leq b}$ is given precisely by the toggling operation η.

Gelfand-Zetlin Coordinates

- $I_{0,0}=P^{t}$ is invariant under the action of R.
- By computation we show that the induced action of R on the Gelfand-Zetlin coordinates $\left(I_{i, j}\right)_{1 \leq i \leq a}^{1 \leq j \leq b}$ is given precisely by the toggling operation η.

■ Following the cluster duality of Grassmannian we prove that $C_{a} \cdot \theta_{q}=\theta_{R(q)}$. Therefore we obtain the following theorem.

Gelfand-Zetlin Coordinates

- $I_{0,0}=P^{t}$ is invariant under the action of R.
- By computation we show that the induced action of R on the Gelfand-Zetlin coordinates $\left(I_{i, j}\right)_{1 \leq i \leq a}^{1 \leq j \leq b}$ is given precisely by the toggling operation η.

■ Following the cluster duality of Grassmannian we prove that $C_{a} \cdot \theta_{q}=\theta_{R(q)}$. Therefore we obtain the following theorem.

Theorem (Hong-Shen-W.)

The action of the twisted cyclic rotation C_{a} on the basis $\Theta(a, b, c)$ is given by $C_{a} \cdot \theta_{\pi}=\theta_{\eta(\pi)}$. In particular, this implies that η is of order n.

Gelfand-Zetlin Coordinates

- In fact, the Gelfand-Zetlin coordinates $\left(I_{i, j}\right)_{1 \leq i \leq a}^{1 \leq i \leq b}$ can be expanded into a Gelfand-Zetlin pattern for $V_{c \omega_{a}}$ by adding a triangle with entries c on the left and a triangle with entries 0 at the bottom.

Gelfand-Zetlin Coordinates

- In fact, the Gelfand-Zetlin coordinates $\left(I_{i, j}\right)_{1 \leq i \leq a}^{1 \leq j \leq b}$ can be expanded into a Gelfand-Zetlin pattern for $V_{c \omega_{a}}$ by adding a triangle with entries c on the left and a triangle with entries 0 at the bottom.

- By computation we show that the tropicalization $M_{i}^{t}(q)$ can be computed as $d_{i}-d_{i-1}$ using the triangle above, where d_{i} is the sum of the entries along the ith diagonal (counting from the right).

Gelfand-Zetlin Coordinates

Following cluster duality of Grassmannian we further prove the following statement.

Theorem (Hong-Shen-W.)

The tropicalization $M^{t}: \mathscr{C}$ onf $f_{n}^{\times}(a)\left(\mathbb{Z}^{t}\right) \rightarrow T^{\vee}\left(\mathbb{Z}^{t}\right) \cong X^{*}(T)$ gives the weight of θ_{q} under the action of the maximal torus $T \subset \mathrm{GL}_{n}$. In particular, the basis $\Theta(a, b, c)$ of $V_{c \omega_{a}}$ is compatible with the weight decomposition
$V_{c \omega_{a}}=\bigoplus_{\mu} V_{c \omega_{a}}(\mu)$.

Proof of CSP of Plane Partitions

- $\#\left\{\pi \in P(a, b, c) \mid \eta^{d}(\pi)=\pi\right\}=\operatorname{Tr}_{c \omega_{a}} C_{a}^{d}$.

Proof of CSP of Plane Partitions

■ $\#\left\{\pi \in P(a, b, c) \mid \eta^{d}(\pi)=\pi\right\}=\operatorname{Tr}_{v_{c \omega_{a}}} C_{a}^{d}$.

- The characteristic polynomial of C_{a} is

$$
\operatorname{det}\left(\lambda \operatorname{Id}_{n}-C_{a}\right)=\lambda^{n}-(-1)^{a-1}
$$

which has n distinct roots $\zeta^{-\frac{a-1}{2}}, \zeta^{-\frac{a-1}{2}} \zeta, \ldots, \zeta^{-\frac{a-1}{2}} \zeta^{n-1}(\zeta$ is a primitive nth root of unity). Therefore C_{a} is conjugate to

$$
D=\operatorname{Diag}\left(\zeta^{-\frac{a-1}{2}} \zeta^{n-1}, \zeta^{-\frac{a-1}{2}} \zeta^{n-2}, \ldots, \zeta^{-\frac{a-1}{2}}\right)
$$

which implies that

$$
\operatorname{Tr}^{v_{c \omega_{a}}} C_{a}^{d}=\operatorname{Tr} v_{c \omega_{a}} D^{d}
$$

Proof CSP of Plane Partitions

- The character formula tells us that

$$
\operatorname{Tr}_{V_{\lambda}} \operatorname{Diag}\left(p q^{n-1}, p q^{n-2}, \ldots, p\right)=p^{\left\langle\omega_{n}, \lambda\right\rangle} \sum_{\mu} \operatorname{dim} V_{\lambda}(\mu) q^{\langle\rho, \mu\rangle}
$$

where $\rho=(n-1, n-2, \ldots, 1,0)$; therefore by setting $q:=\zeta^{d}$, we have

$$
\operatorname{Tr}_{v_{c \omega_{a}}} D^{d}=q^{-\frac{a(a-1) c}{2}} \sum_{\mu} \operatorname{dim} V_{c \omega_{a}}(\mu) q^{\langle\rho, \mu\rangle}
$$

Proof CSP of Plane Partitions

- The character formula tells us that

$$
\operatorname{Tr}_{V_{\lambda}} \operatorname{Diag}\left(p q^{n-1}, p q^{n-2}, \ldots, p\right)=p^{\left\langle\omega_{n}, \lambda\right\rangle} \sum_{\mu} \operatorname{dim} V_{\lambda}(\mu) q^{\langle\rho, \mu\rangle}
$$

where $\rho=(n-1, n-2, \ldots, 1,0)$; therefore by setting $q:=\zeta^{d}$, we have

$$
\operatorname{Tr}_{V_{c \omega_{a}}} D^{d}=q^{-\frac{a(a-1) c}{2}} \sum_{\mu} \operatorname{dim} V_{c \omega_{a}}(\mu) q^{\langle\rho, \mu\rangle}
$$

- But from the Gelfand-Zetlin pattern we also know that

$$
\operatorname{dim} V_{c \omega_{a}}(\mu)=\#\left\{\pi \in P(a, b, c) \mid M^{t}(\pi)=\mu\right\} ;
$$

therefore

$$
\operatorname{dim} V_{c \omega_{a}}(\mu) q^{\langle\rho, \mu\rangle}=\sum_{M^{t}(\pi)=\mu} q^{\left\langle\rho, M^{t}(\pi)\right\rangle}
$$

Proof of CSP of Plane Partitions

- By simple computation one can see that $\left\langle\rho, M^{t}(\pi)\right\rangle$ is just the sum of all entries in the Gelfand-Zetlin pattern, which is equal to $\frac{a(a-1) c}{2}+|\pi|$.

Proof of CSP of Plane Partitions

- By simple computation one can see that $\left\langle\rho, M^{t}(\pi)\right\rangle$ is just the sum of all entries in the Gelfand-Zetlin pattern, which is equal to $\frac{a(a-1) c}{2}+|\pi|$.
■ Now plug everything in, we get that for $q=\zeta^{d}$,

$$
\begin{aligned}
\operatorname{Tr} v_{c \omega_{a}} C_{a}^{d} & =q^{-\frac{a(a-1) c}{2}} \sum_{\pi \in P(a, b, c)} q^{\left\langle\rho, M^{t}(\pi)\right\rangle} \\
& =q^{-\frac{a(a-1) c}{2}} \sum_{\pi \in P(a, b, c)} q^{\frac{a(a-1) c}{2}} q^{|\pi|} \\
& =\sum_{\pi \in P(a, b, c)} q^{|\pi|}
\end{aligned}
$$

which finishes the proof of our theorem.

Bibliography

V. Fock and A. Goncharov, Cluster ensembles, quantization and the dilogarithm, Annales Scientifiques de l'École Normale Supérieure, Série 4: Volume 42 no. 6 (2009), 865-930, arXiv:math/0311245.
M. Gross, P. Hacking, S. Keel, and M. Kontsevich, Canonical bases for cluster algebras, Preprint (2014), arXiv:1411.1394.
A. Goncharov and L. Shen, Donaldson-Thomas transformations for moduli spaces of G-local systems, Advances in Mathematics (2018), 225-348, arXiv:1602.06479.
M. Gekhtman, M. Shapiro, and A. Vainshtein, Cluster algebras and Poisson geometry, AMS Surveys and Monographs 167, 2010.
T. Roby, Dynamical algebraic combinatorics and the homomesy phnonmenon, in Andrew Beveridge, et. al., Recent Trends in Combinatorics, IMA Volumes in Math. and its Appl. (2016), 619-652.
B. Sagan, The cyclic sieving phenomenon: a survey, London Math. Soc. Lecture Note Ser. Vol.392, (Cambridge Univ. Press, Cambridge) (2011), 183-233, arXiv:1008.0790.
J. Scott, Grassmannians and cluster algebras, Proceedings of the London Mathematical Society, Volumne 92, Issue 2 (2006), 345-380, arXiv:math/0311148.
D. Weng, Cluster Donaldson-Thomas transformations of Grassmannians and double Bruhat cells, PhD thesis (2018).

