Ramanujan's Deathbed Letter

Larry Rolen

Emory University

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The great anticipator of mathematics

Srinivasa Ramanujan (1887-1920)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

"Death bed letter"

Dear Hardy,

"I am extremely sorry for not writing you a single letter up to now. I discovered very interesting functions recently which I call "Mock" ϑ -functions. Unlike the "False" ϑ -functions (partially studied by Rogers), they enter into mathematics as beautifully as the ordinary theta functions. I am sending you with this letter some examples."

Ramanujan, January 12, 1920.

The first example

$$f(q) = 1 + rac{q}{(1+q)^2} + rac{q^4}{(1+q)^2(1+q^2)^2} + \dots$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Freeman Dyson (1987)

"The mock theta-functions give us tantalizing hints of a grand synthesis still to be discovered.

"The mock theta-functions give us tantalizing hints of a grand synthesis still to be discovered....This remains a challenge for the future..."

Ramanujan's deathbed letter Back to the future

In his Ph.D. thesis under Zagier ('02), Zwegers investigated:

Ramanujan's deathbed letter Back to the future

In his Ph.D. thesis under Zagier ('02), Zwegers investigated:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• "Lerch-type" series and Mordell integrals.

In his Ph.D. thesis under Zagier ('02), Zwegers investigated:

- "Lerch-type" series and Mordell integrals.
- Stitched them together give non-holomorphic Jacobi forms.

The future is now

In his Ph.D. thesis under Zagier ('02), Zwegers investigated:

- "Lerch-type" series and Mordell integrals.
- Stitched them together give non-holomorphic Jacobi forms.

"Theorem"

Ramanujan's mock theta functions are holomorphic parts of weight 1/2 harmonic Maass forms.

Defining Maass forms

Notation. Throughout, let $z = x + iy \in \mathbb{H}$ with $x, y \in \mathbb{R}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Defining Maass forms

Notation. Throughout, let $z = x + iy \in \mathbb{H}$ with $x, y \in \mathbb{R}$.

Hyperbolic Laplacian.

$$\Delta_k := -y^2 \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right) + iky \left(\frac{\partial}{\partial x} + i \frac{\partial}{\partial y} \right).$$

Harmonic Maass forms

"Definition"

A harmonic Maass form is any smooth function f on \mathbb{H} satisfying:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Harmonic Maass forms

"Definition"

A harmonic Maass form is any smooth function f on \mathbb{H} satisfying: **1** For all $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma \subset SL_2(\mathbb{Z})$ we have

$$f\left(\frac{az+b}{cz+d}\right) = (cz+d)^k f(z).$$

Harmonic Maass forms

"Definition"

A harmonic Maass form is any smooth function f on \mathbb{H} satisfying: • For all $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma \subset SL_2(\mathbb{Z})$ we have

$$f\left(\frac{az+b}{cz+d}\right) = (cz+d)^k f(z).$$

2 We have that $\Delta_k f = 0$.

Harmonic Maass forms

"Definition"

A harmonic Maass form is any smooth function f on \mathbb{H} satisfying: • For all $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma \subset SL_2(\mathbb{Z})$ we have

$$f\left(\frac{az+b}{cz+d}\right) = (cz+d)^k f(z).$$

2 We have that $\Delta_k f = 0$.

Remark

Modular forms are holomorphic functions which satisfy (1).

Ramanujan's deathbed letter Back to the future

Maass forms

HMFs have two parts $(q:=e^{2\pi i z})$

Fundamental Lemma

If $f \in H_{2-k}$ and $\Gamma(a, x)$ is the incomplete Γ -function, then

$$f(z) = \sum_{n \gg -\infty} c_f^+(n)q^n + \sum_{n < 0} c_f^-(n)\Gamma(k - 1, 4\pi |n|y)q^n.$$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow$$
Holomorphic part f^+ Nonholomorphic part f^-

Ramanujan's deathbed letter Back to the future _____

Maass forms

HMFs have two parts $(q := e^{2\pi i z})$

Fundamental Lemma

If $f \in H_{2-k}$ and $\Gamma(a, x)$ is the incomplete Γ -function, then

$$f(z) = \sum_{n \gg -\infty} c_f^+(n)q^n + \sum_{n < 0} c_f^-(n)\Gamma(k-1, 4\pi |n|y)q^n.$$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow$$
Holomorphic part f^+ Nonholomorphic part f^-

Remark

The mock theta functions are examples of f^+ .

So many recent applications

- *q*-series and partitions
- Modular L-functions (e.g. BSD numbers)
- Eichler-Shimura Theory
- Probability models
- Generalized Borcherds Products
- Moonshine for affine Lie superalgebras and M₂₄

- Donaldson invariants
- Black holes

• . . .

Is there more?

• Asymptotics, near roots of unity, of "Eulerian" modular forms.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• Asymptotics, near roots of unity, of "Eulerian" modular forms.

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト の Q @

• Raises one question and conjectures the answer.

• Asymptotics, near roots of unity, of "Eulerian" modular forms.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Raises **one** question and conjectures the answer.
- Gives one example supporting his conjectured answer.

• Asymptotics, near roots of unity, of "Eulerian" modular forms.

- Raises **one** question and conjectures the answer.
- Gives one example supporting his conjectured answer.
- Concludes with a list of his mock theta functions.

Ramanujan's question

Question (Ramanujan)

Must Eulerian series with "similar asymptotics" be the sum of a modular form and a function which is O(1) at all roots of unity?

Ramanujan's Answer

The answer is it is not necessarily so When it is not so I call the function Mock D- function. I have not proved rigorously that it is not necessarily rd. But I have constructed a number of examples in which it is not in - conceivable to construct a I fine - tion to cut out the singularitoes

▲□▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ - ヨ - の々で

Ramanujan's "Example"

I have proved that if $f(\mathbf{2}) = 1 + \frac{2}{(1+2)^2} + \frac{24}{(1+2)^2(1+2^2)^2}$ then f(2) + (1-2)(1-23)(1-25) (1-21)+29/4 - 22/9+) at all the = O(1) at all the points q = -1, 2 = -1, 2 = -1, 2 = -1, 2 = -1, 1 = -1, 2 = -1, 1 = -1, 2 = and at the same time $f(2) = (1-2)(1-2^2)(1-2^2)...(1-22+22^2-.)$ = O(1)at all the points g=-1, g'=-1, 2'=-1, Also obverously f(2) = O(1) at all the points y=1, $y^2=1$, $y^5=1$, $z^5=1$, ...

Ramanujan's "Near Miss Example"

Define the mock theta f(q) and the modular form b(q) by

$$f(q) := 1 + \sum_{n=1}^{\infty} rac{q^{n^2}}{(1+q)^2(1+q^2)^2\cdots(1+q^n)^2},$$

$$b(q) := (1-q)(1-q^3)(1-q^5)\cdots imes \left(1-2q+2q^4-2q^9+\cdots
ight).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Ramanujan's "Near Miss Example"

Define the mock theta f(q) and the modular form b(q) by

$$f(q) := 1 + \sum_{n=1}^{\infty} \frac{q^{n^2}}{(1+q)^2(1+q^2)^2\cdots(1+q^n)^2},$$

$$b(q) := (1-q)(1-q^3)(1-q^5)\cdots imes \left(1-2q+2q^4-2q^9+\cdots
ight).$$

Conjecture (Ramanujan)

If q approaches an even order 2k root of unity, then

$$f(q) - (-1)^k b(q) = O(1).$$

Numerics

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Numerics

As $q \rightarrow -1$, we have

$$f(-0.994) \sim -1.10^{31}, \ f(-0.996) \sim -1.10^{46}, \ f(-0.998) \sim -6.10^{90},$$

Numerics

As $q \rightarrow -1$, we have

 $f(-0.994) \sim -1.10^{31}, \ f(-0.996) \sim -1.10^{46}, \ f(-0.998) \sim -6.10^{90},$

$$f(-0.998185) \sim -Googol$$

Numerics continued...

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Numerics continued...

Amazingly, Ramanujan's guess gives:

q	-0.990	-0.992	-0.994	-0.996	-0.998
f(q) + b(q)	3.961	3.969	3.976	3.984	3.992

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Numerics continued...

Amazingly, Ramanujan's guess gives:

q	-0.990	-0.992	-0.994	-0.996	-0.998
f(q) + b(q)	3.961	3.969	3.976	3.984	3.992

This suggests that

$$\lim_{q\to -1}(f(q)+b(q))=4.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

As
$$q \rightarrow i$$

As
$$q \rightarrow i$$

q	0.992 <i>i</i>	0.994 <i>i</i>	0.996 <i>i</i>
f(q)	$2 \cdot 10^6 - 4.6 \cdot 10^6 i$	$2 \cdot 10^8 - 4 \cdot 10^8 i$	$1.0 \cdot 10^{12} - 2 \cdot 10^{12}i$
f(q) - b(q)	$\sim 0.05 + 3.85i$	\sim 0.04 + 3.89 <i>i</i>	$\sim 0.03 + 3.92i$

As
$$q \rightarrow i$$

q	0.992 <i>i</i>	0.994 <i>i</i>	0.996 <i>i</i>
f(q)	$2 \cdot 10^6 - 4.6 \cdot 10^6 i$	$2 \cdot 10^8 - 4 \cdot 10^8 i$	$1.0 \cdot 10^{12} - 2 \cdot 10^{12}i$
f(q) - b(q)	$\sim 0.05 + 3.85i$	\sim 0.04 + 3.89 <i>i</i>	$\sim 0.03 + 3.92i$

This suggests that

$$\lim_{q\to i}(f(q)-b(q))=4i.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Natural Questions

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Natural Questions

Question

If he is right, then what are the mysterious O(1) numbers in

$$\lim_{q\to \zeta} (f(q)-(-1)^k b(q))=O(1)?$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Finite sums of roots of unity.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Finite sums of roots of unity.

Theorem (Folsom, Ono, Rhoades) If ζ is an even 2k order root of unity, then $\lim_{q \to \zeta} (f(q) - (-1)^k b(q)) = -4 \sum_{n=0}^{k-1} (1+\zeta)^2 (1+\zeta^2)^2 \cdots (1+\zeta^n)^2 \zeta^{n+1}.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Finite sums of roots of unity.

Theorem (Folsom, Ono, Rhoades) If ζ is an even 2k order root of unity, then

$$\lim_{q \to \zeta} (f(q) - (-1)^k b(q)) = -4 \sum_{n=0}^{k-1} (1+\zeta)^2 (1+\zeta^2)^2 \cdots (1+\zeta^n)^2 \zeta^{n+1}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Remark

This Theorem follows from "quantum" modularity.

"it is inconceivable to construct a ϑ function to cut out the singularities of a mock theta function..."

Srinivasa Ramanujan

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

"it is inconceivable to construct a ϑ function to cut out the singularities of a mock theta function..."

Srinivasa Ramanujan

"...it has not been **proved** that **any** of Ramanujan's mock theta functions really are mock theta functions according to his definition." Bruce Berndt (2012)

"it is inconceivable to construct a ϑ function to cut out the singularities of a mock theta function..."

Srinivasa Ramanujan

"...it has not been **proved** that **any** of Ramanujan's mock theta functions really are mock theta functions according to his definition." Bruce Berndt (2012)

Theorem (G-Ono-Rolen (2013))

Ramanujan's examples satisfy his own definition.

"it is inconceivable to construct a ϑ function to cut out the singularities of a mock theta function..."

Srinivasa Ramanujan

"...it has not been **proved** that **any** of Ramanujan's mock theta functions really are mock theta functions according to his definition." Bruce Berndt (2012)

Theorem (G-Ono-Rolen (2013))

Ramanujan's examples satisfy his own definition. More precisely, a mock theta function and a modular form never cut out exactly the same singularities.