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The Classical Congruent Number Problem

Definition
We say that a square-free, positive integer n is congruent if it is the
area of some right triangle with rational side lengths.

For example, 6 is a congruent number as it is the area of a
3 − 4 − 5 triangle.
Classical techniques solved the problem for n = 1, 2, 3, 5, 6, 7.
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Is 157 congruent?

This is not so simple.

In fact 157 is congruent, and Zagier computed the hypotenuse
of the “simplest” triangle with area 157 as

224403517704336969924557513090674863160948472041
8912332268928859588025535178967163570016480830

.
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A Natural Generalization of the Congruent Number Problem

Tunnell’s Theorem

Theorem (Tunnell 1983)
For a given integer n, define

An := #{x , y , z ∈ Z|n = 2x2 + y2 + 32z2},

Bn := #{x , y , z ∈ Z|n = 2x2 + y2 + 8z2},

Cn := #{x , y , z ∈ Z|n = 8x2 + 2y2 + y64z2},

Dn := #{x , y , z ∈ Z|n = 2x2 + y2 + 16z2}.

Suppose n is congruent. If n is even, then 2An = Bn, and if n is
odd then 2Cn = Dn. The converse is also true if we assume BSD.
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A Natural Generalization

Definition
Let π

3 ≤ θ ≤ π be an angle. We say that a square-free integer n is
θ-congruent if there exists a triangle whose largest angle is θ,
whose side lengths are rational, and whose area is n.

Definition
We say that an angle π/3 ≤ θ ≤ π is admissible if both sin θ and
cos θ lie in Q.

Admissible angles are parameterized by rational m >
√

3
3 by

the formulae

cos θ =
1 − m2

1 + m2 sin θ =
2m

1 + m2 .
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A Natural Generalization of the Congruent Number Problem

Aberrant and Generic Angles

It is more natural to use the m parameter in the equations;
note that m = 1 corresponds to the classical congruent
number problem.

Definition
We say that an admissible m ∈ Q is aberrant is m2 + 1 ∈ Q2.
Otherwise we say m is generic.

The aberrant m are parameterized by relatively prime u, v as

m =
�u2 − v2

2uv

�±1
.

For each aberrant m there is a unique square-free n with
nm ∈ Q2. We call this pair (n,m) aberrant.
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A Natural Generalization of the Congruent Number Problem

Ellitpic Curve Criterion and the Aberrant Case

Definition
To any admissible pair (n,m) we associate the elliptic curve

En,θm : y2 = x
�
x − n

m

�
(x + nm) .

Theorem (R 2010)
If (n,m) is aberrant, then n is θm-congruent and can be
represented by an isosceles triangle. Furthermore, all isosceles
triangles with rational side lengths correspond to the aberrant case.
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An Ellitptic Curve Criterion

Theorem (R 2010)
For any positive square-free integer n and any admissible angle θ
we have that n is θ-congruent if and only if En,θm has a rational
point (x , y) with y �= 0.

The proof is elementary and essentially the same as the proof
in the classical congruent number case when m = 1.
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Structure of Torsion Subgroups

Theorem (R 2010)

If (n,m) is aberrant, then E tors
n,θm

(Q) ∼= Z/2Z× Z/4Z. If (n,m) is
generic, then E tors

n,θm
(Q) ∼= Z/2Z× Z/2Z.

Corollary
We have that (n,m) is a congruent pair if and only if (n,m) is
aberrant or rankQ En,θm(Q) > 0.
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Proof of the Torsion Subgroup Result

Theorem (Ono)

Let E (M,N) : y2 = x3 + (M + N)x2 + MNx for M,N ∈ Z.
E (M,N)tors contains Z/2Z× Z/4Z if M and N are both
squares, or −M and N − M are both squares or −N and
M − N are both squares.
E (M,N)tors ∼= Z/2Z× Z/8Z if there exists a non-zero integer
d such that M = d2u4 and N = d2v4, or M = −d2v4 and
N = d2(u4 − v4), or M = d2(u4 − v4) and N = −d2v4 where
(u, v ,w) forms a Pythagorean triple (i.e. u2 + v2 = w2).
E (M,N)tors ∼= Z/2Z× Z/6Z if there exist integers a, b such
that a

b �∈ {−2,−1,−1
2 , 0, 1} and M = a4 + 2a3b and

N = 2ab3 + b4.
Otherwise, E (M,N)tors ∼= Z/2Z× Z/2Z.
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Examples

We remark that one can prove Tunnell-style criteria for some
specific angles. We would like to address a different problem.
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More General Problems

Question
If we fix m and let the area n vary, how often is (n,m) congruent?

Question
If we fix the n and let the angle m vary, how often is (n,m)
congruent?

To this end, let

hm(x) :=
#{1 ≤ n ≤ x , : n is θm-congruent and n is square-free}

#{1 ≤ n ≤ x : n is square-free} ,

vn(x) :=
#{m ∈ Q : h(m) ≤ n and n is θm-congruent}

#{m ∈ Q : h(m) ≤ n} .
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Density Results

Theorem (R 2010)
Suppose that X(E/Q) is finite for all elliptic curves of rank 0.
Then for each � > 0, if x �� 0 then 1

2 − � ≤ hm(x) < 1 − �

Theorem (R 2010)
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Then for each � > 0, if x �� 0 then 1

2 − � ≤ vn(x) ≤ 1 − �.
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Proof of Density Results

Conjecture (Parity)
Let E be an elliptic curve over Q and W (E ) the root number (i.e.
the sign of the functional equation). Then W (E ) = (−1)rkQ(E).

Theorem (Dokchitser and Dokchitser 2010)
For every elliptic curve E/Q, either the Parity Conjecture is true for
E or X(E/Q) contains a copy of Q/Z. In particular, the
Shafarevich-Tate Conjecture implies the Parity Conjecture.

Lemma
Assuming the Parity Conjecture, any family of elliptic curves over Q
with average root number 0 consists of at most 50% rank 0 curves.
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Proof of Density Results for a Fixed Angle

If the angle is fixed, the family is a family of quadratic twists.

It is well-known that a family of quadratic twists has average
root number 0.

Theorem (Gang Yu)
If E/Q has full 2-torsion, then a positive proportion of quadratic
twists of E have rank 0.
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A Theorem of Helfgott

Hypothesis
(A) Let P(x , y) be a homogenous polynomial. Then only for a zero
proportion of all pairs of coprime integers (x , y) do we have a prime
p > max{x , y} such that p2|P(x , y).

The abc-Conjecture implies this is true for all square-free P .
It has been proven when deg(f ) ≤ 6 for all irreducible factors.

Hypothesis

(B) Let λ(n) :=
�

p|n

(−1)νp(n) be the Liouville function. Then

λ(P(x , y)) has strong zero average over Z2.

This has been proven unconditionally for deg(P) = 1, 2, 3.
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Helfgott’s Result

Let

ME :=
�

E has mult. red. at ν

Pν , BE :=
�

E has q. bad red. at ν

Pν .

Here Pν := y if ν is the infinite place and otherwise
Pν := ydeg(Q)Q( x

y ) for the irreducible polynomial Q inducing
ν.
We say a curve has quite bad (q. bad) reduction at a place if
every quadratic twist also has bad reduction at the same place.

Theorem (Helfgott)
Let E be an elliptic curve over Q(t). Suppose ME �= 1 (i.e. E has a
point of multiplicative reduction). Suppose further that Hypothesis
A holds for BE and Hypothesis B holds for ME . Then the strong
average over Q of W (Et) of the fibres exists and is 0.
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Proof of Density Results for Fixed Area

In our case, the relevant constants are

c4 =
16n2(m2 − m + 1)(m2 + m + 1))

m2 ,

c6 =
−32n3(m − 1)(m + 1)(m2 + 2)(2m2 + 1)

m3 ,

∆ =
16n6(m2 + 1)2

m2 .

We find that ME = x2 + y2 and BE = xy(x2 + y2).
Both hypotheses are unconditional for these polynomials, so
the average root number is unconditionally zero.
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Conjectures on Rank 0 Twists

Conjecture (Goldfeld)
For any family of quadratic twists, the proportion of curves with
rank 0 is 50% and the proportion of curves with rank 1 is 50%.

Theorem (Ono-Skinner)
If E/Q is an elliptic curve, then

#{|D| ≤ X : rk(E (D)) = 0} �E
X

log X
.

Conjecture (Density)
Let E be an elliptic curve over Q(t) and generic rank n. Then only
a zero proportion of fibers have rank at least n + 2.
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Conjectural Density of Non-congruent pairs

Conjecture (R)
For each positive, square-free integer n, (n,m) is not a congruent
pair for a positive proportion of angles m.

Table: Ranks for m = 1, 2, . . . , 100

rank=0 1 2 ≥ 3
n=1 48 46 6 0
n=2 50 45 5 0
n=3 43 50 7 0
n=4 46 48 6 0
n=5 38 49 13 0
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Conclusion

For each positive rational m >
√

3
3 we have a generalization of

the congruent number problem.

A similar elliptic curve criterion holds in general as in the
classical case.
We computed the torsion subgroups for each curve.
Assuming the finiteness of X(E/Q), we proved a density
result on the number of congruent numbers when the angle or
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