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Maass Forms and Quantum Modular Forms

Introduction: Modular Forms

Modular Forms

Let H denote the complex upper-half plane and Γ ≤ SL2(Z).

Definition

A weakly holomorphic modular form of weight k ∈ Z on Γ is a
holomorphic function f : H→ C such that

1 f
(
az+b
cz+d

)
= (cz + d)k f (z) for all

(
a b
c d

)
∈ Γ.

2

∣∣∣(cz + d)−k f
(
az+b
cz+d

)∣∣∣� eC ·=z for all

(
a b
c d

)
∈ SL2(Z).

Remarks

If k = 0, we call f a modular function.

We can also define modular forms of half-integral weight.
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Introduction: Modular Forms

Congruence Subgroups

We are mainly interested in modular forms on groups like:

Γ0(N) :=

{(
a b
c d

)
∈ SL2(Z) | c ≡ 0 (mod N)

}
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Introduction: Modular Forms

Fourier Expansions

Any modular form of level N has a Fourier expansion

f (z) =
∑

n�−∞
anqn,

where q := e2πiz .
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Introduction: Modular Forms

Examples

1 The j-invariant is a modular function of level 1:

j(z) = q−1 + 744 + 196884q + . . .

It parameterizes elliptic curves.

2 The weight 12 modular discriminant function is the infinite product:

∆(z) := q
∏
n≥1

(1− qn)24.

3 The weight 1
2

Jacobi theta function

θ(z) :=
∑
n∈Z

qn2

.
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Chapter 1: Singular Moduli

Singular Moduli

Singular moduli are values of modular functions at quadratic
irrationalities.

Zagier defined “traces of singular moduli”, which he proved
are often coefficients of modular forms.

We consider integrality for the polynomials arising from
non-holomorphic functions.
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Chapter 1: Singular Moduli

Traces of Singular Moduli

For a positive-definite quadratic form Q = ax2 + bxy + cy 2, let

τQ :=
−b +

√
b2 − 4ac

2a
∈ H.

Definition

Let Qd be the set of positive definite binary quadratic forms of
discriminant d. For a modular function F , define the trace:

Trd(F ) :=
∑

Q∈Qd/Γ

w−1
Q F (τQ).
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Chapter 1: Singular Moduli

An Example of Zagier’s Theory

Theorem (Zagier)

Let
J(z) := j(z)− 744

and

g(z) := θ1(z)
E4(4z)

η(4z)6
=
∑

B(d)qn

For any positive integer d ≡ 0, 3 (mod 4), we have

Tr-d (J(z)) = −B(d).
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Chapter 1: Singular Moduli

Another Example; K := ∂
(

E4E6

∆

)
Define Hd(K ; x) :=

∏
Q∈Qd/Γ

(x − K (τQ)).

H−23(K ; x) = x3−23261998x2− 3945271661
23 x−7693330369871.

H−31(K ; x) =
x3 − 3723569x2 − 61346290410

31 x + 1143159756791823.

H−39(K ; x) = x4 − 314635932x3 + 8602826222178
39 x2

−84029669803810035x + 95749227855890319016073
392 .

Remark

It appears that the third symmetric function is always an integer.
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Chapter 1: Singular Moduli

Traces for Negative Weight Forms

Recall the Maass raising operator, which raises the weight of a
Maass form by 2:

Rk := 2i
∂

∂z
+ ky−1.

For f of negative weight, ∂f is the iterated raising to weight 0.
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Chapter 1: Singular Moduli

Theorem 1

Theorem 1 (Griffin-R 2012)

Let f (z) ∈ M !
k , 0 > k ∈ 2Z have integral principal part. Denote

the nth symmetric function in the singular moduli of discriminant d
for ∂f by Sf (n; d). Let

B(n, k) :=

{
−nk

4 if nk ∈ 4Z
1
4 (−nk + 2k − 2) otherwise.

Then we have that

dB(n,k) · Sf (n; d) ∈ Z.
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Chapter 1: Singular Moduli

Special Cases

Corollary

For any f (z) ∈ M !
−2 with integral principal part, we have that

Sf (3; d) ∈ Z.

Remark

This theorem is sharp.
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Chapter 1: Singular Moduli

Sketch of Proof

Use Newton’s identities to reduce to sums of powers.

Unfortunately, powers of Maass forms are usually not finite
sums of Maass forms.
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Chapter 1: Singular Moduli

The Spectral Decomposition

Theorem (Griffin-R 2012)

Let F be a product of “raises” of modular forms. Then there are
modular forms gj ∈ M !

k−2j such that

F =
E∑
j=0

R jgj ,

Remark

The proof gives an explicit algorithm for computing the forms gj .
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Chapter 1: Singular Moduli

Sketch of Proof (cont).

Work of Duke and Jenkins allows us to study integrality of
traces for ∂f when f is a negative weight modular form.

Bounding denominators on each piece gives a näıve bound.
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Sketch of Proof (cont).
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Chapter 1: Singular Moduli

Two Intervening Problems

Obstruction 1: Certain weights in the decomposition give the
wrong denominators.

We prove a vanishing condition on which forms in the
decomposition actually appear.

Obstruction 2: The coefficients ci ,j in the previous theorem
also introduce artificial denominators.

We show that they cancel using the action of the Hecke
algebra on Poincaré series.

Q.E.D.
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Q.E.D.

Larry Rolen Maass Forms and Quantum Modular Forms



Maass Forms and Quantum Modular Forms

Chapter 1: Singular Moduli

Rankin-Cohen Brackets

Let f ∈ M !
k , g ∈ M !

`, n ∈ N. The nth Rankin-Cohen bracket is

[f , g ]
(k,`)
n :=

∑
r+s=n

(−1)r
(

n + k − 1

s

)(
n + `− 1

r

)
f (r) · g (s).

This gives a map

[·, ·](k),(`)
n : M !

k ⊗M !
` → M !

k+`+2n.
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Chapter 1: Singular Moduli

Obstruction 1: Vanishing lemma

It suffices to prove a vanishing condition for the product of
two forms.

In this case, we can expand in terms of Rankin-Cohen
brackets.

Using a calculation of Beyerl-James-Trentacoste-Xue, this
reduces to a binomial sum identity, for j odd

s∑
m=0

(−1)(j+m) ·
(m+r

j

)( s
m

)(m−r−1
r+m−j

)(−r−2s+m+j−1
m+r−j

) = 0.
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Chapter 1: Singular Moduli

Obstruction 2: Lining Up Principal Parts

Raise the Zagier lifts of the pieces to the same weight and let:

Z (τ) :=

b E+1
2 c∑

t=0

(−1)M+tRM+tZ1(g2t−1)+
M∑
t=0

(−1)M+tRM−tZ1(g2t).

By comparison with F , we observe that the holomorphic part
Z + of Z has integral principal part.

If all the coefficients of Z + are integral, then the
ci ,j -denominators will cancel.
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Chapter 1: Singular Moduli

Maass-Poincaré Series

Maass-Poincaré series provide convenient bases.

Thus, for any F (τ) =
∑

a(n)qn ∈ M !
−2k we can write

F =
∑
n<0

a(n)n1+2k f−2k,1|T (n).

The Zagier lift is equivariant with the Hecke action:

ZD(f |T (n)) = ZD(f )|T (n2).
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Chapter 1: Singular Moduli

Integrality of Coefficients

We construct a family of Hecke operators with “nice properties”.

Corollary

If fk,1|H has integer coefficients, p is ordinary for all eigenforms in
a basis of Sk , and fk,1|H ≡ 0 + O(q) (mod pn), then

fk,1|H ≡ 0 (mod pn).
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Chapter 2: Quantum Modular Forms

A Tricky Question

Consider the integral

∫ i∞

α

η(2z)2/η(z)

(z − α)3/2
dz .

Question

How does one evaluate it?
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What can we do?

Corollary

We give exact values for all of these integrals as algebraic multiples
of π by specializing one formula.
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Chapter 2: Quantum Modular Forms

Quantum Modular Forms

In 2010, Zagier defined quantum modular forms.

Functions on Q which are modular up to a “nice function”.

They have connections to: unimodal sequences, ranks, cranks,
Dedekind sums, Eichler integrals, mock theta functions . . .
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Chapter 2: Quantum Modular Forms

Defining Quantum Modular Forms

Definition

We say that a function f : Q→ C is a quantum modular form if

f (x)− f |kγ(x) = hγ(x),

where hγ(x) is a “nice” function.
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Chapter 2: Quantum Modular Forms

A “Strange” Quantum Modular Form

A striking example of quantum modularity is given by the
Kontsevich “strange function”:

F (q) =
∞∑
n=0

(1− q)(1− q2) · · · (1− qn) =
∞∑
n=0

(q; q)n.

Remark

This function is strange as it is not defined on any open subset of
C, but is well-defined at roots of unity.
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Zagier’s Result

Theorem (Zagier)

We have that eπix/12F (e2πix) is a wt. 3/2 quantum modular form.
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A New Quantum Modular Form

We consider sums of tails of other eta-quotients.

We study the vector-valued form:

H(q) =

θ1

θ2

θ3

 :=

 η(z)2/η(2z)
η(z)2/η(z/2)
η(z)2/η( z2 + 1

2 )

 .

We then associate finite versions θi ,n so that θi ,n → θi .

The corresponding “strange” function is θSi :=
∑∞

n=0 θi ,n,
which converges on some set of roots of unity.
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Chapter 2: Quantum Modular Forms

A Vector-Valued Quantum Modular Form

Theorem 2 (R-Schneider 2012)

There are q-series Gi also defined for |q| < 1 with

θSi (q−1) = Gi (q).

We find
(
θS1 , θ

S
2 , θ

S
3

)T
is a wt. 3/2 quantum modular form.
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Chapter 2: Quantum Modular Forms

Numerical Examples

Our results give finite expressions for period integrals:

Let I(α, x) :=
∫ x ·i
α+x−1

θ1(z)

(z−α)
3
2
dz .

k πi(i + 1)θS1 (ζk) I(1/k, 109)

3 πi(i + 1)(−2ζ3 + 3) ∼ −7.1250 + 18.0078i −7.1249 + 18.0078i
5 πi(i + 1)(−2ζ3

5 − 2ζ2
5 − 8ζ5 + 3) ∼ 12.078 + 35.7274i 12.078 + 35.7273i

7 πi(i + 1)(6ζ4
7 − 2ζ2

7 − 10ζ7 + 7) ∼ 52.0472 + 25.685i 52.0474 + 25.685i
9 πi(i + 1)(8ζ4

9 − 16ζ9 + 3) ∼ 76.4120− 28.9837i 76.4116− 28.9836i
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Chapter 2: Quantum Modular Forms

Zagier’s Idea

The proof comes from a “sum of tails” identity:

∞∑
n=0

(
η(24z)− q(1− q24)(1− q48) · · · (1− q24n)

)
= η(24z)D(q) + E (q)

where E (q) is a “half-derivative” of η(24z).

Thus, F (q) equals a half-derivative of η(24z) at roots of unity.

Such a half-derivative is equal to an “Eichler integral”, but
now the integral lives in H− and agrees at rationals.
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Sketch of the Proof

The modularity of Eichler integrals comes from modularity of
the original θ-functions.

Our strategy is as follows:

Strange function
Sum of tails

! Half-Derivatives
Reflection
! Eichler Integral
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Sums of Tails Identities

Let F9(z) := η(z)2/η(2z), and F10(z) := η(16z)2/η(8z).

Theorem (Andrews, Jimenez-Urroz, Ono)

As formal power series, we have

∞∑
n=0

(F9(z)− F9,n(z)) = 2F9(z)E1(z) + 2
√
θ(F9(z)),

∞∑
n=0

(F10(z)− F10,n(z)) = F10(z)E2(z) +
√
θ(F10(z)).

Here
√
θ
∑

a(n)qn :=
∑√

na(n)qn.
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Classical Eichler Integrals

For a weight k cusp form
∑

a(n)qn, k > 2, the Eichler
integral Ef is

Ef :=
∑

n1−ka(n)qn.

Recall that Ef is modular up to a period polynomial:

g(x) := ck

∫ ∞
0

f (z)(z − x)k−2 dz .
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Half-Derivatives

If k = 1/2, the Eichler integral is a “half-derivative”.

A half-integral degree period polynomial (or the integral
itself) is not well-defined.

This can be fixed by defining an integral in the lower half
plane which agrees with

√
θ(f ) at rationals.

The obstruction to modularity is not a polynomial, but it is
still a C∞-function on R.
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Proof of the Theorem

Using the sums of tails and analysis above, we can connect
our strange function to “period integrals”.

Modularity for these integrals follows from modularity of the
original vector-valued form of θ-functions.

H(z + 1) =

1 0 0
0 0 ζ12

0 ζ24 0

H(z),

H(−1/z) =
(z

i

) 1
2

 0
√

2 0

1/
√

2 0 0
0 0 1

H(z).
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Proof of the Theorem (cont.)

Extension of the strange functions to the upper half plane
(after reflection) follows from power series manipulations, e.g.

θS1 (q−1) = 2
∞∑
n=0

q2n+1(q; q)2n

(1 + q2n+1)(−q; q)2n
.
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The great anticipator of mathematics

Srinivasa Ramanujan (1887-1920)
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“Death bed letter”

“Dear Hardy, I am extremely sorry for not writing you a single
letter up to now. I discovered very interesting functions recently
which I call “Mock” ϑ-functions. Unlike the “False” ϑ-functions
(partially studied by Rogers), they enter into mathematics as
beautifully as the ordinary theta functions. I am sending you with
this letter some examples.”

Ramanujan, January 12, 1920.
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The first example

f (q) = 1 +
q

(1 + q)2
+

q4

(1 + q)2(1 + q2)2
+ . . .
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Zwegers’ Work

In his Ph.D. thesis under Zagier (’02), Zwegers investigated:

“Lerch-type” series and Mordell integrals.

Stitched them together to give non-holomorphic Jacobi forms.

“Theorem”

Ramanujan’s mock theta functions are holomorphic parts of weight
1/2 harmonic Maass forms.

Larry Rolen Maass Forms and Quantum Modular Forms



Maass Forms and Quantum Modular Forms

Chapter 3: Ramanujans Mock ϑ Functions

Zwegers’ Work

In his Ph.D. thesis under Zagier (’02), Zwegers investigated:

“Lerch-type” series and Mordell integrals.

Stitched them together to give non-holomorphic Jacobi forms.

“Theorem”

Ramanujan’s mock theta functions are holomorphic parts of weight
1/2 harmonic Maass forms.

Larry Rolen Maass Forms and Quantum Modular Forms



Maass Forms and Quantum Modular Forms

Chapter 3: Ramanujans Mock ϑ Functions

Zwegers’ Work

In his Ph.D. thesis under Zagier (’02), Zwegers investigated:

“Lerch-type” series and Mordell integrals.

Stitched them together to give non-holomorphic Jacobi forms.

“Theorem”

Ramanujan’s mock theta functions are holomorphic parts of weight
1/2 harmonic Maass forms.

Larry Rolen Maass Forms and Quantum Modular Forms



Maass Forms and Quantum Modular Forms

Chapter 3: Ramanujans Mock ϑ Functions

Zwegers’ Work

In his Ph.D. thesis under Zagier (’02), Zwegers investigated:

“Lerch-type” series and Mordell integrals.

Stitched them together to give non-holomorphic Jacobi forms.

“Theorem”

Ramanujan’s mock theta functions are holomorphic parts of weight
1/2 harmonic Maass forms.

Larry Rolen Maass Forms and Quantum Modular Forms



Maass Forms and Quantum Modular Forms

Chapter 3: Ramanujans Mock ϑ Functions

Defining Maass forms

Notation. Throughout, let z = x + iy ∈ H with x , y ∈ R.

Hyperbolic Laplacian.

∆k := −y 2

(
∂2

∂x2
+

∂2

∂y 2

)
+ iky

(
∂

∂x
+ i

∂

∂y

)
.
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Harmonic Maass forms

“Definition”

A harmonic Maass form is any smooth function f on H satisfying:

1 For all A =

(
a b
c d

)
∈ Γ ⊂ SL2(Z we have

f

(
az + b

cz + d

)
= (cz + d)k f (z).

2 We have that ∆k f = 0.
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HMFs have two parts

“Fundamental Lemma”

If f ∈ H2−k and Γ(a, x) is the incomplete Γ-function, then

f (z) =
∑

n�−∞
c+
f (n)qn +

∑
n<0

c−f (n)Γ(k − 1, 4π|n|y)qn.

l l
Holomorphic part f + Nonholomorphic part f −

Remark

The mock theta functions are examples of f +.
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So many recent applications

q-series and partitions

Modular L-functions (e.g. BSD numbers)

Eichler-Shimura theory

Probability models

Generalized Borcherds products

Moonshine for affine Lie superalgebras and M24

Donaldson invariants

Black holes

. . .
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Is there more?

Ramanujan’s last letter.

Asymptotics, near roots of unity, of “Eulerian modular forms”.

Raises one question and conjectures the answer.

Gives one example supporting his conjectured answer.

Concludes with a list of his mock theta functions.
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Ramanujan’s question

Question (Ramanujan)

Must Eulerian series with “similar asymptotics” be the sum of a
modular form and a function which is O(1) at all roots of unity?
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Ramanujan’s answer
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Ramanujan’s last words

“it is inconceivable to construct a ϑ function to cut out the
singularities of a mock theta function. . . ”

Srinivasa Ramanujan

“. . . it has not been proved that any of Ramanujan’s mock theta
functions really are mock theta functions according to his
definition.” Bruce Berndt (2012)

Theorem 3 (Griffin-Ono-R 2013)

Ramanujan’s examples satisfy his own definition. More precisely, a
mock theta function and a modular form never cut out exactly the
same singularities.
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Sketch of proof: parallel weight

Suppose a mock theta function f of weight k is cut out by a
modular form g of weight k ′.

By the Bruinier-Funke pairing, any HMF has a nonzero
principal part at some cusp.
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Sketch of proof: different weights

We have that c−f (n) are supported on finitely many square
classes, so we can kill f − with quadratic twists.

The holomorphic part doesn’t die due to subexponential
growth of coefficients (Poincaré series), giving a modular form
f̃ .

If f cut out g , then f̃ cuts out g̃ where g̃ is the result of
twisting g .

We ruled out the case k = k ′. If k 6= k ′, it is easy to show
this cannot happen for two modular forms.
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growth of coefficients (Poincaré series), giving a modular form
f̃ .

If f cut out g , then f̃ cuts out g̃ where g̃ is the result of
twisting g .

We ruled out the case k = k ′. If k 6= k ′, it is easy to show
this cannot happen for two modular forms.

Larry Rolen Maass Forms and Quantum Modular Forms



Maass Forms and Quantum Modular Forms

Conclusion

Conclusion

Here I have discussed results on:

Symmetric functions in singular moduli for nonholomorphic
modular functions.

A new example of a quantum modular form.

Ramanujan’s original definition of a mock modular form.
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Conclusion

Further results

I have also proven theorems on:

Counting number fields with bounded discriminant.

Matrices arising from finite field analogues of hypergeometric
functions.

Elliptic curves and congruent numbers.

Thank you!
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