Counting Number Fields by Discriminant and Point Counting on Varieties

Counting Number Fields by Discriminant and Point Counting on Varieties

Eric Larson and Larry Rolen

Harvard University and Emory University

Counting Number Fields by Discriminant and Point Counting on Varieties

The General Problem

Fix a transitive permutation group G ≤ S_n and a fixed positive integer n.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The General Problem

- Fix a transitive permutation group $G \le S_n$ and a fixed positive integer *n*.
- Let $N(n, G, X) = \#\{K : [K : \mathbb{Q}] = n, \operatorname{Gal}(K/\mathbb{Q}) = G$, and $|D_K| \le X\}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The General Problem

- Fix a transitive permutation group $G \le S_n$ and a fixed positive integer *n*.
- Let $N(n, G, X) = \#\{K : [K : \mathbb{Q}] = n, \operatorname{Gal}(K/\mathbb{Q}) = G$, and $|D_K| \le X\}$.

Question

What are the asymptotics of this function?

Counting Number Fields by Discriminant and Point Counting on Varieties

Previous Results

• When n = 2, this is essentially trivial.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Previous Results

- When n = 2, this is essentially trivial.
- By parameterizing number fields by binary cubic forms, Davenport and Heilbronn find the first order term for n = 3.

Previous Results

- When n = 2, this is essentially trivial.
- By parameterizing number fields by binary cubic forms, Davenport and Heilbronn find the first order term for n = 3.

・ロト ・四ト ・ヨト ・ヨト ・ヨ

Remark

This can bound average sizes of 3-parts of class numbers of quadratic fields and Selmer groups of elliptic curves.

Previous Results

- When n = 2, this is essentially trivial.
- By parameterizing number fields by binary cubic forms, Davenport and Heilbronn find the first order term for n = 3.

Remark

This can bound average sizes of 3-parts of class numbers of quadratic fields and Selmer groups of elliptic curves.

• Using "higher composition laws", Bhargava has studied the cases $G = S_4, S_5$.

(日) (同) (三) (三) (三) (○) (○)

Counting Number Fields by Discriminant and Point Counting on Varieties

Our Work

Theorem (L-R 2011)

We have

$$N(n, A_n, X) \ll_n X^{\frac{n^2-2}{4(n-1)}} \cdot \log(X)^{2n+1}.$$

Progress in the D_5 case

Theorem (L-R 2011)

To any quintic number field K with Galois group D_5 , there corresponds a triple (A, B, C) with $A, B \in \mathcal{O}_{\mathbb{Q}[\sqrt{5}]}$ and $C \in \mathbb{Z}$, such that

$$\operatorname{Nm}_{\mathbb{Q}}^{\mathbb{Q}[\sqrt{5}]}\left(B^{2}-4\cdot\bar{A}\cdot A^{2}\right)=5\cdot C^{2}$$

and which satisfies the following under any archimedean valuation:

$$|A| \ll D_K^{\frac{1}{4}}, \quad |B| \ll D_K^{\frac{3}{8}}, \quad and \quad |C| \ll D_K^{\frac{3}{4}}.$$

Conversely, the triple (A, B, C) uniquely determines K.

Progress in the D_5 case

Theorem (L-R 2011)

To any quintic number field K with Galois group D_5 , there corresponds a triple (A, B, C) with $A, B \in \mathcal{O}_{\mathbb{Q}[\sqrt{5}]}$ and $C \in \mathbb{Z}$, such that

$$\operatorname{\mathsf{Nm}}^{\mathbb{Q}[\sqrt{5}]}_{\mathbb{Q}}\left(B^2-4\cdotar{A}\cdot A^2
ight)=5\cdot C^2$$

and which satisfies the following under any archimedean valuation:

$$|A| \ll D_K^{rac{1}{4}}, \quad |B| \ll D_K^{rac{3}{8}}, \quad and \quad |C| \ll D_K^{rac{3}{4}}.$$

Conversely, the triple (A, B, C) uniquely determines K.

Remark

We also provide numerical evidence that $N(5, D_5, X) \ll X^{\frac{2}{3}}$.

If K is a primitive extension of Q, K = Q(α), then the characteristic polynomial for α determines K.

- If K is a primitive extension of Q, K = Q(α), then the characteristic polynomial for α determines K.
- By Minkowski theory, there is an element $\alpha \in \mathcal{O}_{\mathcal{K}}$ with

$$|\alpha| \ll D_K^{\frac{1}{2(n-1)}}, \ \operatorname{Tr}(\alpha) = 0.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- If K is a primitive extension of Q, K = Q(α), then the characteristic polynomial for α determines K.
- By Minkowski theory, there is an element $\alpha \in \mathcal{O}_{\mathcal{K}}$ with

$$|\alpha| \ll D_{\mathcal{K}}^{\frac{1}{2(n-1)}}, \ \operatorname{Tr}(\alpha) = 0.$$

• Let $R = \mathbb{Z}[x_1, ..., x_n]^G / (s_1)$ where $s_1 = x_1 + ... + x_n$.

- If K is a primitive extension of Q, K = Q(α), then the characteristic polynomial for α determines K.
- By Minkowski theory, there is an element $\alpha \in \mathcal{O}_{\mathcal{K}}$ with

$$|\alpha| \ll D_K^{\frac{1}{2(n-1)}}, \ \operatorname{Tr}(\alpha) = 0.$$

(日) (同) (三) (三) (三) (○) (○)

- Let $R = \mathbb{Z}[x_1, ..., x_n]^G/(s_1)$ where $s_1 = x_1 + ... + x_n$.
- Every pair (K, α) gives a Z-point of Spec R with bounded coordinates.

The Case of D_5

 \bullet Recall that it suffices to understand bounded $\mathbb Z\text{-points}$ of

Spec $\mathbb{Q}[x_1, x_2, x_3, x_4, x_5]^{D_5}/(x_1 + x_2 + x_3 + x_4 + x_5).$

The Case of D_5

 \bullet Recall that it suffices to understand bounded $\mathbb{Z}\text{-points}$ of

Spec
$$\mathbb{Q}[x_1, x_2, x_3, x_4, x_5]^{D_5}/(x_1 + x_2 + x_3 + x_4 + x_5).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• Let
$$V_j := \sum_{i=1}^5 \zeta^{ij} x_i$$
.

The Case of D_5

 \bullet Recall that it suffices to understand bounded $\mathbb{Z}\text{-points}$ of

Spec
$$\mathbb{Q}[x_1, x_2, x_3, x_4, x_5]^{D_5}/(x_1 + x_2 + x_3 + x_4 + x_5).$$

• Let
$$V_j := \sum_{i=1}^5 \zeta^{ij} x_i$$
.

• Now define:

$$\begin{aligned} A &= V_2 \cdot V_3 \\ B &= V_1 \cdot V_2^2 + V_3^2 \cdot V_4 \\ C &= \frac{1}{\sqrt{5}} \cdot (V_1 \cdot V_2^2 - V_3^2 \cdot V_4) \cdot (V_2 \cdot V_4^2 - V_1^2 \cdot V_3) \end{aligned}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Counting Number Fields by Discriminant and Point Counting on Varieties

The Norm Equation for D_5

• The expressions A, B, and C are invariant under D_5 .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Counting Number Fields by Discriminant and Point Counting on Varieties

The Norm Equation for D_5

- The expressions A, B, and C are invariant under D_5 .
- The generators of D_5 act by $V_j \mapsto V_{5-j}$ and $V_j \mapsto \zeta^j V_j$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The Norm Equation for D_5

- The expressions A, B, and C are invariant under D_5 .
- The generators of D_5 act by $V_j \mapsto V_{5-j}$ and $V_j \mapsto \zeta^j V_j$.

• This easily gives the norm equation in the theorem.

The Norm Equation for D_5

- The expressions A, B, and C are invariant under D_5 .
- The generators of D_5 act by $V_j \mapsto V_{5-j}$ and $V_j \mapsto \zeta^j V_j$.
- This easily gives the norm equation in the theorem.
- The fact that (A, B, C) uniquely determines K can be shown using the expressions for V_i explicitly.

Numerical Data and Remarks

 This log plot and a regression analysis give strong evidence that N(5, D₅, X) ≪ X^{2/3}. The data goes up to X = 3162277.

 The current best bounds on N(n, A_n, X) follow from bounds on N(d, X), the number of degree d fields with |D_K| ≤ X.

(日) (日) (日) (日) (日) (日) (日) (日)

 The current best bounds on N(n, A_n, X) follow from bounds on N(d, X), the number of degree d fields with |D_K| ≤ X.

• It is a "folk" conjecture (Linnik?) that $N(d, X) \sim X$.

- The current best bounds on N(n, A_n, X) follow from bounds on N(d, X), the number of degree d fields with |D_K| ≤ X.
- It is a "folk" conjecture (Linnik?) that $N(d, X) \sim X$.
- For $6 \le n \le 84393$, the best previous bound is due to Schmidt

 $N(n,A_n,X)\ll X^{\frac{n+2}{4}}.$

- The current best bounds on N(n, A_n, X) follow from bounds on N(d, X), the number of degree d fields with |D_K| ≤ X.
- It is a "folk" conjecture (Linnik?) that $N(d, X) \sim X$.
- For $6 \le n \le 84393$, the best previous bound is due to Schmidt

$$N(n,A_n,X)\ll X^{\frac{n+2}{4}}.$$

• For large n, Ellenberg and Venkatesh obtain:

- The current best bounds on N(n, A_n, X) follow from bounds on N(d, X), the number of degree d fields with |D_K| ≤ X.
- It is a "folk" conjecture (Linnik?) that $N(d, X) \sim X$.
- For $6 \le n \le 84393$, the best previous bound is due to Schmidt

$$N(n,A_n,X)\ll X^{\frac{n+2}{4}}.$$

• For large *n*, Ellenberg and Venkatesh obtain:

$$N(n, A_n, X) \ll (X \cdot B_n)^{\exp(C \log \sqrt{n})}$$

Counting Number Fields by Discriminant and Point Counting on Varieties

Our Result

Theorem (L-R 2011)

We have that $N(n, A_n, X) \ll X^{\frac{n^2-2}{4(n-1)}} \cdot \log(X)^{2n+1}$.

Counting Number Fields by Discriminant and Point Counting on Varieties

Our Result

Theorem (L-R 2011)

We have that $N(n, A_n, X) \ll X^{rac{n^2-2}{4(n-1)}} \cdot \log(X)^{2n+1}$.

• This bound is about $X^{\frac{1}{4}}$ better than Schmidt's bound.

Our Result

Theorem (L-R 2011)

We have that $N(n, A_n, X) \ll X^{rac{n^2-2}{4(n-1)}} \cdot \log(X)^{2n+1}$.

• This bound is about $X^{\frac{1}{4}}$ better than Schmidt's bound.

• This is the best-known bound for $6 \le n \le 84393$.

Our Result

Theorem (L-R 2011)

We have that $N(n, A_n, X) \ll X^{\frac{n^2-2}{4(n-1)}} \cdot \log(X)^{2n+1}$.

- This bound is about $X^{\frac{1}{4}}$ better than Schmidt's bound.
- This is the best-known bound for $6 \le n \le 84393$.
- By a conjecture of Malle, we expect that $N(n, A_N, X) \stackrel{?}{\sim} X^{\frac{1}{2}}$.

(日) (同) (三) (三) (三) (○) (○)

• The ring of A_n-invariant functions is generated by the symmetric functions and the square root of the discriminant.

• The ring of A_n -invariant functions is generated by the symmetric functions and the square root of the discriminant.

 $\bullet\,$ It suffices to count $\mathbb Z\text{-points}$ on

- The ring of A_n-invariant functions is generated by the symmetric functions and the square root of the discriminant.
- $\bullet\,$ It suffices to count $\mathbb Z\text{-points}$ on

$$R := \mathbb{Z}[s_1, s_2, \dots, s_n, D]/(D^2 = \mathsf{Disc}(t^n + s_2 t^{n-2} + \dots \pm s_n)),$$

- The ring of A_n-invariant functions is generated by the symmetric functions and the square root of the discriminant.
- It suffices to count $\mathbb{Z}\text{-points}$ on

$$R := \mathbb{Z}[s_1, s_2, \dots, s_n, D]/(D^2 = \mathsf{Disc}(t^n + s_2 t^{n-2} + \dots \pm s_n)),$$

with
$$|s_j| \ll X^{\frac{j}{2(n-1)}}$$
 and $|D| \ll X^{\frac{n}{4}}$.

- The ring of A_n-invariant functions is generated by the symmetric functions and the square root of the discriminant.
- It suffices to count $\mathbb{Z}\text{-points}$ on

$$R := \mathbb{Z}[s_1, s_2, \dots, s_n, D]/(D^2 = \mathsf{Disc}(t^n + s_2 t^{n-2} + \dots \pm s_n)),$$

with
$$|s_i| \ll X^{\frac{j}{2(n-1)}}$$
 and $|D| \ll X^{\frac{n}{4}}$.

• The case when *n* is even is easier; we will use covering spaces to prove it when *n* is odd.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The Case when n is Even

 By fixing s₂, s₃,..., s_{n-1}, we can view Spec R as a fibration of plane curves over Aⁿ⁻².

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The Case when n is Even

- By fixing s₂, s₃,..., s_{n-1}, we can view Spec R as a fibration of plane curves over Aⁿ⁻².
- Each of these curves is the zero locus of a polynomial

 $D^2 =$ a polynomial of odd degree in s_n .

The Case when n is Even

- By fixing s₂, s₃,..., s_{n-1}, we can view Spec R as a fibration of plane curves over Aⁿ⁻².
- Each of these curves is the zero locus of a polynomial

 $D^2 =$ a polynomial of odd degree in s_n .

• In particular, these curves are all geometrically irreducible.

Theorem (Pila 1996)

Let Γ be a geometrically irreducible plane curve of degree $d \ge 2$ and let S be a square of side $N \ge 2$ in the plane with sides parallel to the coordinate axes.

Theorem (Pila 1996)

Let Γ be a geometrically irreducible plane curve of degree $d \ge 2$ and let S be a square of side $N \ge 2$ in the plane with sides parallel to the coordinate axes.

Then the number of integral points on Γ inside S is at most

Theorem (Pila 1996)

Let Γ be a geometrically irreducible plane curve of degree $d \ge 2$ and let S be a square of side $N \ge 2$ in the plane with sides parallel to the coordinate axes.

Then the number of integral points on Γ inside S is at most

 $(3d)^{4d+8}N^{\frac{1}{d}}(\log N)^{2d+3}.$

Theorem (Pila 1996)

Let Γ be a geometrically irreducible plane curve of degree $d \ge 2$ and let S be a square of side $N \ge 2$ in the plane with sides parallel to the coordinate axes.

Then the number of integral points on Γ inside S is at most

 $(3d)^{4d+8}N^{\frac{1}{d}}(\log N)^{2d+3}.$

• This immediately implies the result when *n* is even.

The Case when n is Odd

• For *n* odd, we control when the curves are geometrically reducible.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

The Case when n is Odd

• For *n* odd, we control when the curves are geometrically reducible.

Definition

We say two polynomials $f, g \in \mathbb{C}[z]$ are equivalent if f(z) = g(az + b) for some $a \in \mathbb{C}^{\times}$ and $b \in \mathbb{C}$.

The Case when n is Odd

• For *n* odd, we control when the curves are geometrically reducible.

Definition

We say two polynomials $f, g \in \mathbb{C}[z]$ are equivalent if f(z) = g(az + b) for some $a \in \mathbb{C}^{\times}$ and $b \in \mathbb{C}$.

Definition

We say that c is a critical value of a polynomial f if c = f(d) for some d with f'(d) = 0.

Two Lemmas on Critical Values

Lemma

Fix a finite set of points $S \subset \mathbb{C}$ and an integer d. Then there are finitely many equivalence classes of polynomials of degree d whose set of critical values is contained in S.

Two Lemmas on Critical Values

Lemma

Fix a finite set of points $S \subset \mathbb{C}$ and an integer d. Then there are finitely many equivalence classes of polynomials of degree d whose set of critical values is contained in S.

Lemma

Let n be an integer. For any monic polynomial $p(z) \in \mathbb{C}[z]$ of degree n - 1, there are only finitely many values of $(a_2, a_3, \dots, a_{n-1}) \in \mathbb{C}^{n-2}$ such that p(z) is the discriminant of the polynomial

$$q(t) = t^n + a_2 t^{n-2} + \cdots + a_{n-1} t - z.$$

Two Lemmas on Critical Values

Lemma

Fix a finite set of points $S \subset \mathbb{C}$ and an integer d. Then there are finitely many equivalence classes of polynomials of degree d whose set of critical values is contained in S.

Lemma

Let n be an integer. For any monic polynomial $p(z) \in \mathbb{C}[z]$ of degree n - 1, there are only finitely many values of $(a_2, a_3, \dots, a_{n-1}) \in \mathbb{C}^{n-2}$ such that p(z) is the discriminant of the polynomial

$$q(t) = t^{n} + a_{2}t^{n-2} + \cdots + a_{n-1}t - z.$$

◆□▶ ◆圖▶ ★ 圖▶ ★ 圖▶ / 圖 / のへで

• The proofs follow using basic theory of covering spaces.

• Our curve is geometrically reducible iff $p(y) = \operatorname{disc}(t^n + s_2 t^{n-2} + \cdots \pm s_{n-1} t - y)$ is a perfect square.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Our curve is geometrically reducible iff $p(y) = \operatorname{disc}(t^n + s_2 t^{n-2} + \cdots \pm s_{n-1} t y)$ is a perfect square.
- The coefficients of p(y) are regular functions in s₂, s₃, ..., s_{n-1} and the induced map Aⁿ⁻² → Aⁿ⁻¹ is a finite map by the previous lemma.

- Our curve is geometrically reducible iff $p(y) = \operatorname{disc}(t^n + s_2 t^{n-2} + \cdots \pm s_{n-1}t y)$ is a perfect square.
- The coefficients of p(y) are regular functions in s₂, s₃,..., s_{n-1} and the induced map Aⁿ⁻² → Aⁿ⁻¹ is a finite map by the previous lemma.

• The locus of $(b_1, b_2, \ldots, b_{n-1}) \in \mathbb{A}^{n-1}$ such that $t^{n-1} + b_1 t^{n-2} + \cdots + b_{n-1}$ is a perfect square is a Zariski-closed set of dimension $\frac{n-1}{2}$.

- Our curve is geometrically reducible iff $p(y) = \operatorname{disc}(t^n + s_2 t^{n-2} + \cdots \pm s_{n-1}t y)$ is a perfect square.
- The coefficients of p(y) are regular functions in s₂, s₃,..., s_{n-1} and the induced map Aⁿ⁻² → Aⁿ⁻¹ is a finite map by the previous lemma.
- The locus of $(b_1, b_2, \ldots, b_{n-1}) \in \mathbb{A}^{n-1}$ such that $t^{n-1} + b_1 t^{n-2} + \cdots + b_{n-1}$ is a perfect square is a Zariski-closed set of dimension $\frac{n-1}{2}$.
- The proof now follows in a similar way as when *n* is even.

Conclusion

Theorem (L-R 2011)

We have that
$$N(n, A_n, X) \ll X^{\frac{n^2-2}{4(n-1)}} \cdot \log(X)^{2n+1}$$
.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Conclusion

Theorem (L-R 2011)

We have that
$$N(n, A_n, X) \ll X^{rac{n^2-2}{4(n-1)}} \cdot \log(X)^{2n+1}$$

Theorem

To any quintic number field K with Galois group D_5 , there corresponds a triple (A, B, C) with $A, B \in \mathcal{O}_{\mathbb{Q}[\sqrt{5}]}$ and $C \in \mathbb{Z}$, such that

$$\operatorname{Nm}_{\mathbb{Q}}^{\mathbb{Q}[\sqrt{5}]}\left(B^{2}-4\cdot\bar{A}\cdot A^{2}\right)=5\cdot C^{2} \tag{1}$$

and which satisfies the following under any archimedean valuation:

$$|A| \ll D_K^{\frac{1}{4}}, \quad |B| \ll D_K^{\frac{3}{8}}, \quad \text{and} \quad |C| \ll D_K^{\frac{1}{2}}.$$
 (2)

Conversely, the triple (A, B, C) uniquely determines K.