Counting Number Fields by Discriminant and Point Counting on Varieties

Eric Larson and Larry Rolen
Harvard University and Emory University

The General Problem

- Fix a transitive permutation group $G \leq S_{n}$ and a fixed positive integer n.

The General Problem

- Fix a transitive permutation group $G \leq S_{n}$ and a fixed positive integer n.
- Let $N(n, G, X)=\#\{K:[K: \mathbb{Q}]=n, \operatorname{Gal}(K / \mathbb{Q})=$ G, and $\left.\left|D_{K}\right| \leq X\right\}$.

The General Problem

- Fix a transitive permutation group $G \leq S_{n}$ and a fixed positive integer n.
- Let $N(n, G, X)=\#\{K:[K: \mathbb{Q}]=n, \operatorname{Gal}(K / \mathbb{Q})=$ G, and $\left.\left|D_{K}\right| \leq X\right\}$.

Question

What are the asymptotics of this function?

Previous Results

- When $n=2$, this is essentially trivial.

Previous Results

- When $n=2$, this is essentially trivial.
- By parameterizing number fields by binary cubic forms, Davenport and Heilbronn find the first order term for $n=3$.

Previous Results

- When $n=2$, this is essentially trivial.
- By parameterizing number fields by binary cubic forms, Davenport and Heilbronn find the first order term for $n=3$.

Remark

This can bound average sizes of 3-parts of class numbers of quadratic fields and Selmer groups of elliptic curves.

Previous Results

- When $n=2$, this is essentially trivial.
- By parameterizing number fields by binary cubic forms, Davenport and Heilbronn find the first order term for $n=3$.

Remark

This can bound average sizes of 3-parts of class numbers of quadratic fields and Selmer groups of elliptic curves.

- Using "higher composition laws", Bhargava has studied the cases $G=S_{4}, S_{5}$.

Our Work

Theorem (L-R 2011)
We have

$$
N\left(n, A_{n}, X\right) \ll_{n} X^{\frac{n^{2}-2}{4(n-1)}} \cdot \log (X)^{2 n+1}
$$

Progress in the D_{5} case

Theorem (L-R 2011)

To any quintic number field K with Galois group D_{5}, there corresponds a triple (A, B, C) with $A, B \in \mathcal{O}_{\mathbb{Q}[\sqrt{5}]}$ and $C \in \mathbb{Z}$, such that

$$
\mathrm{Nm}_{\mathbb{Q}}^{\mathbb{Q}[\sqrt{5}]}\left(B^{2}-4 \cdot \bar{A} \cdot A^{2}\right)=5 \cdot C^{2}
$$

and which satisfies the following under any archimedean valuation:

$$
|A| \ll D_{K}^{\frac{1}{4}}, \quad|B| \ll D_{K}^{\frac{3}{3}}, \quad \text { and } \quad|C| \ll D_{K}^{\frac{3}{4}} .
$$

Conversely, the triple (A, B, C) uniquely determines K.

Progress in the D_{5} case

Theorem (L-R 2011)

To any quintic number field K with Galois group D_{5}, there corresponds a triple (A, B, C) with $A, B \in \mathcal{O}_{\mathbb{Q}[\sqrt{5}]}$ and $C \in \mathbb{Z}$, such that

$$
N m_{\mathbb{Q}}^{\mathbb{Q} \sqrt{5}]}\left(B^{2}-4 \cdot \bar{A} \cdot A^{2}\right)=5 \cdot C^{2}
$$

and which satisfies the following under any archimedean valuation:

$$
|A| \ll D_{K}^{\frac{1}{4}}, \quad|B| \ll D_{K}^{\frac{3}{3}}, \quad \text { and } \quad|C| \ll D_{K}^{\frac{3}{4}} .
$$

Conversely, the triple (A, B, C) uniquely determines K.

Remark

We also provide numerical evidence that $N\left(5, D_{5}, X\right) \ll X^{\frac{2}{3}}$.

General Method of Point Counting

- If K is a primitive extension of $\mathbb{Q}, K=\mathbb{Q}(\alpha)$, then the characteristic polynomial for α determines K.

General Method of Point Counting

- If K is a primitive extension of $\mathbb{Q}, K=\mathbb{Q}(\alpha)$, then the characteristic polynomial for α determines K.
- By Minkowski theory, there is an element $\alpha \in \mathcal{O}_{K}$ with

$$
|\alpha| \ll D_{K}^{\frac{1}{2(n-1)}}, \operatorname{Tr}(\alpha)=0 .
$$

General Method of Point Counting

- If K is a primitive extension of $\mathbb{Q}, K=\mathbb{Q}(\alpha)$, then the characteristic polynomial for α determines K.
- By Minkowski theory, there is an element $\alpha \in \mathcal{O}_{K}$ with

$$
|\alpha| \ll D_{K}^{\frac{1}{2(n-1)}}, \operatorname{Tr}(\alpha)=0 .
$$

- Let $R=\mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]^{G} /\left(s_{1}\right)$ where $s_{1}=x_{1}+\ldots+x_{n}$.

General Method of Point Counting

- If K is a primitive extension of $\mathbb{Q}, K=\mathbb{Q}(\alpha)$, then the characteristic polynomial for α determines K.
- By Minkowski theory, there is an element $\alpha \in \mathcal{O}_{K}$ with

$$
|\alpha| \ll D_{K}^{\frac{1}{2(n-1)}}, \operatorname{Tr}(\alpha)=0 .
$$

- Let $R=\mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]^{G} /\left(s_{1}\right)$ where $s_{1}=x_{1}+\ldots+x_{n}$.
- Every pair (K, α) gives a \mathbb{Z}-point of $\operatorname{Spec} R$ with bounded coordinates.

The Case of D_{5}

- Recall that it suffices to understand bounded \mathbb{Z}-points of

$$
\text { Spec } \mathbb{Q}\left[x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right]^{D_{5}} /\left(x_{1}+x_{2}+x_{3}+x_{4}+x_{5}\right) .
$$

The Case of D_{5}

- Recall that it suffices to understand bounded \mathbb{Z}-points of

$$
\text { Spec } \mathbb{Q}\left[x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right]^{D_{5}} /\left(x_{1}+x_{2}+x_{3}+x_{4}+x_{5}\right) .
$$

- Let $V_{j}:=\sum_{i=1}^{5} \zeta^{i j} x_{i}$.

The Case of D_{5}

- Recall that it suffices to understand bounded \mathbb{Z}-points of

$$
\text { Spec } \mathbb{Q}\left[x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right]^{D_{5}} /\left(x_{1}+x_{2}+x_{3}+x_{4}+x_{5}\right) .
$$

- Let $V_{j}:=\sum_{i=1}^{5} \zeta^{i j} x_{i}$.
- Now define:

$$
\begin{aligned}
& A=V_{2} \cdot V_{3} \\
& B=V_{1} \cdot V_{2}^{2}+V_{3}^{2} \cdot V_{4} \\
& C=\frac{1}{\sqrt{5}} \cdot\left(V_{1} \cdot V_{2}^{2}-V_{3}^{2} \cdot V_{4}\right) \cdot\left(V_{2} \cdot V_{4}^{2}-V_{1}^{2} \cdot V_{3}\right) .
\end{aligned}
$$

The Norm Equation for D_{5}

- The expressions A, B, and C are invariant under D_{5}.

The Norm Equation for D_{5}

- The expressions A, B, and C are invariant under D_{5}.
- The generators of D_{5} act by $V_{j} \mapsto V_{5-j}$ and $V_{j} \mapsto \zeta^{j} V_{j}$.

The Norm Equation for D_{5}

- The expressions A, B, and C are invariant under D_{5}.
- The generators of D_{5} act by $V_{j} \mapsto V_{5-j}$ and $V_{j} \mapsto \zeta^{j} V_{j}$.
- This easily gives the norm equation in the theorem.

The Norm Equation for D_{5}

- The expressions A, B, and C are invariant under D_{5}.
- The generators of D_{5} act by $V_{j} \mapsto V_{5-j}$ and $V_{j} \mapsto \zeta^{j} V_{j}$.
- This easily gives the norm equation in the theorem.
- The fact that (A, B, C) uniquely determines K can be shown using the expressions for V_{i} explicitly.

Numerical Data and Remarks

- This log plot and a regression analysis give strong evidence that $N\left(5, D_{5}, X\right) \ll X^{\frac{2}{3}}$. The data goes up to $X=3162277$.

The Case of A_{n}

- The current best bounds on $N\left(n, A_{n}, X\right)$ follow from bounds on $N(d, X)$, the number of degree d fields with $\left|D_{K}\right| \leq X$.

The Case of A_{n}

- The current best bounds on $N\left(n, A_{n}, X\right)$ follow from bounds on $N(d, X)$, the number of degree d fields with $\left|D_{K}\right| \leq X$.
- It is a "folk" conjecture (Linnik?) that $N(d, X) \sim X$.

The Case of A_{n}

- The current best bounds on $N\left(n, A_{n}, X\right)$ follow from bounds on $N(d, X)$, the number of degree d fields with $\left|D_{K}\right| \leq X$.
- It is a "folk" conjecture (Linnik?) that $N(d, X) \sim X$.
- For $6 \leq n \leq 84393$, the best previous bound is due to Schmidt

$$
N\left(n, A_{n}, X\right) \ll X^{\frac{n+2}{4}}
$$

The Case of A_{n}

- The current best bounds on $N\left(n, A_{n}, X\right)$ follow from bounds on $N(d, X)$, the number of degree d fields with $\left|D_{K}\right| \leq X$.
- It is a "folk" conjecture (Linnik?) that $N(d, X) \sim X$.
- For $6 \leq n \leq 84393$, the best previous bound is due to Schmidt

$$
N\left(n, A_{n}, X\right) \ll X^{\frac{n+2}{4}}
$$

- For large n, Ellenberg and Venkatesh obtain:

The Case of A_{n}

- The current best bounds on $N\left(n, A_{n}, X\right)$ follow from bounds on $N(d, X)$, the number of degree d fields with $\left|D_{K}\right| \leq X$.
- It is a "folk" conjecture (Linnik?) that $N(d, X) \sim X$.
- For $6 \leq n \leq 84393$, the best previous bound is due to Schmidt

$$
N\left(n, A_{n}, X\right) \ll X^{\frac{n+2}{4}}
$$

- For large n, Ellenberg and Venkatesh obtain:

$$
N\left(n, A_{n}, X\right) \ll\left(X \cdot B_{n}\right)^{\exp (C \log \sqrt{n})}
$$

Our Result

Theorem (L-R 2011)
We have that $N\left(n, A_{n}, X\right) \ll X^{\frac{n^{2}-2}{4(n-1)}} \cdot \log (X)^{2 n+1}$.

Our Result

Theorem (L-R 2011)
We have that $N\left(n, A_{n}, X\right) \ll X^{\frac{n^{2}-2}{4(n-1)}} \cdot \log (X)^{2 n+1}$.

- This bound is about $X^{\frac{1}{4}}$ better than Schmidt's bound.

Our Result

Theorem (L-R 2011)
We have that $N\left(n, A_{n}, X\right) \ll X^{\frac{n^{2}-2}{4(n-1)}} \cdot \log (X)^{2 n+1}$.

- This bound is about $X^{\frac{1}{4}}$ better than Schmidt's bound.
- This is the best-known bound for $6 \leq n \leq 84393$.

Our Result

Theorem (L-R 2011)

We have that $N\left(n, A_{n}, X\right) \ll X^{\frac{n^{2}-2}{4(n-1)}} \cdot \log (X)^{2 n+1}$.

- This bound is about $X^{\frac{1}{4}}$ better than Schmidt's bound.
- This is the best-known bound for $6 \leq n \leq 84393$.
- By a conjecture of Malle, we expect that $N\left(n, A_{N}, X\right) \stackrel{?}{\sim} X^{\frac{1}{2}}$.

Sketch of Proof

- The ring of A_{n}-invariant functions is generated by the symmetric functions and the square root of the discriminant.

Sketch of Proof

- The ring of A_{n}-invariant functions is generated by the symmetric functions and the square root of the discriminant.
- It suffices to count \mathbb{Z}-points on

Sketch of Proof

- The ring of A_{n}-invariant functions is generated by the symmetric functions and the square root of the discriminant.
- It suffices to count \mathbb{Z}-points on

$$
R:=\mathbb{Z}\left[s_{1}, s_{2}, \ldots, s_{n}, D\right] /\left(D^{2}=\operatorname{Disc}\left(t^{n}+s_{2} t^{n-2}+\cdots \pm s_{n}\right)\right)
$$

Sketch of Proof

- The ring of A_{n}-invariant functions is generated by the symmetric functions and the square root of the discriminant.
- It suffices to count \mathbb{Z}-points on

$$
\begin{aligned}
& R:=\mathbb{Z}\left[s_{1}, s_{2}, \ldots, s_{n}, D\right] /\left(D^{2}=\operatorname{Disc}\left(t^{n}+s_{2} t^{n-2}+\cdots \pm s_{n}\right)\right), \\
& \text { with }\left|s_{j}\right| \ll X^{\frac{j}{2(n-1)}} \quad \text { and } \quad|D| \ll X^{\frac{n}{4}} .
\end{aligned}
$$

Sketch of Proof

- The ring of A_{n}-invariant functions is generated by the symmetric functions and the square root of the discriminant.
- It suffices to count \mathbb{Z}-points on

$$
\begin{aligned}
& R:=\mathbb{Z}\left[s_{1}, s_{2}, \ldots, s_{n}, D\right] /\left(D^{2}=\operatorname{Disc}\left(t^{n}+s_{2} t^{n-2}+\cdots \pm s_{n}\right)\right), \\
& \text { with }\left|s_{j}\right| \ll X^{\frac{j}{2(n-1)}} \quad \text { and } \quad|D| \ll X^{\frac{n}{4}} .
\end{aligned}
$$

- The case when n is even is easier; we will use covering spaces to prove it when n is odd.

The Case when n is Even

- By fixing $s_{2}, s_{3}, \ldots, s_{n-1}$, we can view $\operatorname{Spec} R$ as a fibration of plane curves over \mathbb{A}^{n-2}.

The Case when n is Even

- By fixing $s_{2}, s_{3}, \ldots, s_{n-1}$, we can view $\operatorname{Spec} R$ as a fibration of plane curves over \mathbb{A}^{n-2}.
- Each of these curves is the zero locus of a polynomial $D^{2}=$ a polynomial of odd degree in s_{n}.

The Case when n is Even

- By fixing $s_{2}, s_{3}, \ldots, s_{n-1}$, we can view $\operatorname{Spec} R$ as a fibration of plane curves over \mathbb{A}^{n-2}.
- Each of these curves is the zero locus of a polynomial

$$
D^{2}=\text { a polynomial of odd degree in } s_{n} .
$$

- In particular, these curves are all geometrically irreducible.

Pila's Bound and the Proof when n is even

Theorem (Pila 1996)

Let Γ be a geometrically irreducible plane curve of degree $d \geq 2$ and let S be a square of side $N \geq 2$ in the plane with sides parallel to the coordinate axes.

Pila's Bound and the Proof when n is even

Theorem (Pila 1996)

Let Γ be a geometrically irreducible plane curve of degree $d \geq 2$ and let S be a square of side $N \geq 2$ in the plane with sides parallel to the coordinate axes.
Then the number of integral points on Γ inside S is at most

Pila's Bound and the Proof when n is even

Theorem (Pila 1996)

Let Γ be a geometrically irreducible plane curve of degree $d \geq 2$ and let S be a square of side $N \geq 2$ in the plane with sides parallel to the coordinate axes.
Then the number of integral points on Γ inside S is at most

$$
(3 d)^{4 d+8} N^{\frac{1}{d}}(\log N)^{2 d+3} .
$$

Pila's Bound and the Proof when n is even

Theorem (Pila 1996)

Let Γ be a geometrically irreducible plane curve of degree $d \geq 2$ and let S be a square of side $N \geq 2$ in the plane with sides parallel to the coordinate axes.
Then the number of integral points on Γ inside S is at most

$$
(3 d)^{4 d+8} N^{\frac{1}{d}}(\log N)^{2 d+3}
$$

- This immediately implies the result when n is even.

The Case when n is Odd

- For n odd, we control when the curves are geometrically reducible.

The Case when n is Odd

- For n odd, we control when the curves are geometrically reducible.

Definition

We say two polynomials $f, g \in \mathbb{C}[z]$ are equivalent if $f(z)=g(a z+b)$ for some $a \in \mathbb{C}^{\times}$and $b \in \mathbb{C}$.

The Case when n is Odd

- For n odd, we control when the curves are geometrically reducible.

Definition

We say two polynomials $f, g \in \mathbb{C}[z]$ are equivalent if $f(z)=g(a z+b)$ for some $a \in \mathbb{C}^{\times}$and $b \in \mathbb{C}$.

Definition

We say that c is a critical value of a polynomial f if $c=f(d)$ for some d with $f^{\prime}(d)=0$.

Two Lemmas on Critical Values

Lemma

Fix a finite set of points $S \subset \mathbb{C}$ and an integer d. Then there are finitely many equivalence classes of polynomials of degree d whose set of critical values is contained in S.

Two Lemmas on Critical Values

Lemma

Fix a finite set of points $S \subset \mathbb{C}$ and an integer d. Then there are finitely many equivalence classes of polynomials of degree d whose set of critical values is contained in S.

Lemma

Let n be an integer. For any monic polynomial $p(z) \in \mathbb{C}[z]$ of degree $n-1$, there are only finitely many values of $\left(a_{2}, a_{3}, \cdots, a_{n-1}\right) \in \mathbb{C}^{n-2}$ such that $p(z)$ is the discriminant of the polynomial

$$
q(t)=t^{n}+a_{2} t^{n-2}+\cdots+a_{n-1} t-z
$$

Two Lemmas on Critical Values

Lemma

Fix a finite set of points $S \subset \mathbb{C}$ and an integer d. Then there are finitely many equivalence classes of polynomials of degree d whose set of critical values is contained in S.

Lemma

Let n be an integer. For any monic polynomial $p(z) \in \mathbb{C}[z]$ of degree $n-1$, there are only finitely many values of $\left(a_{2}, a_{3}, \cdots, a_{n-1}\right) \in \mathbb{C}^{n-2}$ such that $p(z)$ is the discriminant of the polynomial

$$
q(t)=t^{n}+a_{2} t^{n-2}+\cdots+a_{n-1} t-z
$$

- The proofs follow using basic theory of covering spaces.

Proof of Theorem when n is even

- Our curve is geometrically reducible iff $p(y)=\operatorname{disc}\left(t^{n}+s_{2} t^{n-2}+\cdots \pm s_{n-1} t-y\right)$ is a perfect square.

Proof of Theorem when n is even

- Our curve is geometrically reducible iff $p(y)=\operatorname{disc}\left(t^{n}+s_{2} t^{n-2}+\cdots \pm s_{n-1} t-y\right)$ is a perfect square.
- The coefficients of $p(y)$ are regular functions in $s_{2}, s_{3}, \ldots, s_{n-1}$ and the induced $\operatorname{map} \mathbb{A}^{n-2} \rightarrow \mathbb{A}^{n-1}$ is a finite map by the previous lemma.

Proof of Theorem when n is even

- Our curve is geometrically reducible iff $p(y)=\operatorname{disc}\left(t^{n}+s_{2} t^{n-2}+\cdots \pm s_{n-1} t-y\right)$ is a perfect square.
- The coefficients of $p(y)$ are regular functions in $s_{2}, s_{3}, \ldots, s_{n-1}$ and the induced $\operatorname{map} \mathbb{A}^{n-2} \rightarrow \mathbb{A}^{n-1}$ is a finite map by the previous lemma.
- The locus of $\left(b_{1}, b_{2}, \ldots, b_{n-1}\right) \in \mathbb{A}^{n-1}$ such that $t^{n-1}+b_{1} t^{n-2}+\cdots+b_{n-1}$ is a perfect square is a Zariski-closed set of dimension $\frac{n-1}{2}$.

Proof of Theorem when n is even

- Our curve is geometrically reducible iff $p(y)=\operatorname{disc}\left(t^{n}+s_{2} t^{n-2}+\cdots \pm s_{n-1} t-y\right)$ is a perfect square.
- The coefficients of $p(y)$ are regular functions in $s_{2}, s_{3}, \ldots, s_{n-1}$ and the induced $\operatorname{map} \mathbb{A}^{n-2} \rightarrow \mathbb{A}^{n-1}$ is a finite map by the previous lemma.
- The locus of $\left(b_{1}, b_{2}, \ldots, b_{n-1}\right) \in \mathbb{A}^{n-1}$ such that $t^{n-1}+b_{1} t^{n-2}+\cdots+b_{n-1}$ is a perfect square is a Zariski-closed set of dimension $\frac{n-1}{2}$.
- The proof now follows in a similar way as when n is even.

Conclusion

Theorem (L-R 2011)
We have that $N\left(n, A_{n}, X\right) \ll X^{\frac{n^{2}-2}{4(n-1)}} \cdot \log (X)^{2 n+1}$.

Conclusion

Theorem (L-R 2011)

We have that $N\left(n, A_{n}, X\right) \ll X^{\frac{n^{2}-2}{4(n-1)}} \cdot \log (X)^{2 n+1}$.

Theorem

To any quintic number field K with Galois group D_{5}, there corresponds a triple (A, B, C) with $A, B \in \mathcal{O}_{\mathbb{Q}[\sqrt{5}]}$ and $C \in \mathbb{Z}$, such that

$$
\begin{equation*}
\mathrm{Nm}_{\mathbb{Q}}^{\mathbb{Q}[\sqrt{5}]}\left(B^{2}-4 \cdot \bar{A} \cdot A^{2}\right)=5 \cdot C^{2} \tag{1}
\end{equation*}
$$

and which satisfies the following under any archimedean valuation:

$$
\begin{equation*}
|A| \ll D_{K}^{\frac{1}{4}}, \quad|B| \ll D_{K}^{\frac{3}{8}}, \quad \text { and } \quad|C| \ll D_{K}^{\frac{1}{2}} \tag{2}
\end{equation*}
$$

Conversely, the triple (A, B, C) uniquely determines K.

