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The General Problem

Fix a transitive permutation group G ≤ Sn and a fixed
positive integer n.

Let N(n,G ,X ) = #{K : [K : Q] = n, Gal(K/Q) =
G , and |DK | ≤ X}.

Question

What are the asymptotics of this function?
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Previous Results

When n = 2, this is essentially trivial.

By parameterizing number fields by binary cubic forms,
Davenport and Heilbronn find the first order term for n = 3.

Remark

This can bound average sizes of 3-parts of class numbers of
quadratic fields and Selmer groups of elliptic curves.

Using “higher composition laws”, Bhargava has studied the
cases G = S4, S5.
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Our Work

Theorem (L-R 2011)

We have

N(n,An,X ) �n X
n2−2

4(n−1) · log(X )2n+1.
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Progress in the D5 case

Theorem (L-R 2011)

To any quintic number field K with Galois group D5, there
corresponds a triple (A,B ,C ) with A,B ∈ OQ[

√
5]
and C ∈ Z, such

that
NmQ[

√
5]

Q
�
B2

− 4 · Ā · A2
�
= 5 · C 2

and which satisfies the following under any archimedean valuation:

|A| � D
1

4

K , |B | � D
3

8

K , and |C | � D
3

4

K .

Conversely, the triple (A,B ,C ) uniquely determines K.

Remark

We also provide numerical evidence that N(5,D5,X ) � X
2

3 .
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General Method of Point Counting

If K is a primitive extension of Q, K = Q(α), then the
characteristic polynomial for α determines K .

By Minkowski theory, there is an element α ∈ OK with

|α| � D
1

2(n−1)

K , Tr(α) = 0.

Let R = Z[x1, . . . , xn]G/(s1) where s1 = x1 + . . .+ xn.

Every pair (K ,α) gives a Z-point of SpecR with bounded
coordinates.
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The Case of D5

Recall that it suffices to understand bounded Z-points of

SpecQ[x1, x2, x3, x4, x5]
D5/(x1 + x2 + x3 + x4 + x5).

Let Vj :=
�

5

i=1
ζ ijxi .

Now define:

A = V2 · V3

B = V1 · V
2

2 + V 2

3 · V4

C =
1
√
5
· (V1 · V

2

2 − V 2

3 · V4) · (V2 · V
2

4 − V 2

1 · V3).
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The Norm Equation for D5

The expressions A, B , and C are invariant under D5.

The generators of D5 act by Vj �→ V5−j and Vj �→ ζ jVj .

This easily gives the norm equation in the theorem.

The fact that (A,B ,C ) uniquely determines K can be shown
using the expressions for Vi explicitly.
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Numerical Data and Remarks

This log plot and a regression analysis give strong evidence
that N(5,D5,X ) � X

2

3 . The data goes up to X = 3162277.
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The Case of An

The current best bounds on N(n,An,X ) follow from bounds
on N(d ,X ), the number of degree d fields with |DK | ≤ X .

It is a “folk” conjecture (Linnik?) that N(d ,X ) ∼ X .

For 6 ≤ n ≤ 84393, the best previous bound is due to Schmidt

N(n,An,X ) � X
n+2

4 .

For large n, Ellenberg and Venkatesh obtain:

N(n,An,X ) � (X · Bn)
exp(C log

√
n).
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Our Result

Theorem (L-R 2011)

We have that N(n,An,X ) � X
n2−2

4(n−1) · log(X )2n+1.

This bound is about X
1

4 better than Schmidt’s bound.

This is the best-known bound for 6 ≤ n ≤ 84393.

By a conjecture of Malle, we expect that N(n,AN ,X )
?
∼ X

1

2 .
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Sketch of Proof

The ring of An-invariant functions is generated by the
symmetric functions and the square root of the discriminant.

It suffices to count Z-points on

R := Z[s1, s2, . . . , sn,D]/
�
D2 = Disc(tn + s2t

n−2 + · · · ± sn)
�
,

with |sj | � X
j

2(n−1) and |D| � X
n
4 .

The case when n is even is easier; we will use covering spaces
to prove it when n is odd.
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The Case when n is Even

By fixing s2, s3, . . . , sn−1, we can view SpecR as a fibration of
plane curves over An−2.

Each of these curves is the zero locus of a polynomial

D2 = a polynomial of odd degree in sn.

In particular, these curves are all geometrically irreducible.
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Pila’s Bound and the Proof when n is even

Theorem (Pila 1996)

Let Γ be a geometrically irreducible plane curve of degree d ≥ 2
and let S be a square of side N ≥ 2 in the plane with sides parallel
to the coordinate axes.

Then the number of integral points on Γ inside S is at most

(3d)4d+8N
1

d (logN)2d+3.

This immediately implies the result when n is even.
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The Case when n is Odd

For n odd, we control when the curves are geometrically
reducible.

Definition

We say two polynomials f , g ∈ C[z ] are equivalent if
f (z) = g(az + b) for some a ∈ C× and b ∈ C.

Definition

We say that c is a critical value of a polynomial f if c = f (d) for
some d with f �(d) = 0.
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Two Lemmas on Critical Values

Lemma

Fix a finite set of points S ⊂ C and an integer d. Then there are
finitely many equivalence classes of polynomials of degree d whose
set of critical values is contained in S.

Lemma

Let n be an integer. For any monic polynomial p(z) ∈ C[z ] of
degree n − 1, there are only finitely many values of
(a2, a3, · · · , an−1) ∈ Cn−2 such that p(z) is the discriminant of the
polynomial

q(t) = tn + a2t
n−2 + · · ·+ an−1t − z .

The proofs follow using basic theory of covering spaces.
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Proof of Theorem when n is even

Our curve is geometrically reducible iff
p(y) = disc(tn + s2tn−2 + · · · ± sn−1t − y) is a perfect square.

The coefficients of p(y) are regular functions in
s2, s3, . . . , sn−1 and the induced map An−2 → An−1 is a finite
map by the previous lemma.

The locus of (b1, b2, . . . , bn−1) ∈ An−1 such that
tn−1 + b1tn−2 + · · ·+ bn−1 is a perfect square is a
Zariski-closed set of dimension n−1

2
.

The proof now follows in a similar way as when n is even.
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