Bounding the Denominators of CM-values of Certain Weak Maass Form

Eric Larson and Larry Rolen

Harvard University and Emory University

The Partition Function

- A partition of a positive integer n is any nonincreasing sequence of positive integers which sum to n.

The Partition Function

- A partition of a positive integer n is any nonincreasing sequence of positive integers which sum to n.
- The partition function $p(n)=$ the number of partitions of n.

The Partition Function

- A partition of a positive integer n is any nonincreasing sequence of positive integers which sum to n.
- The partition function $p(n)=$ the number of partitions of n.
- Hardy and Ramanujan proved the asymptotitc

$$
p(n) \sim \frac{1}{4 n \sqrt{3}} \cdot e^{\pi \sqrt{2 n / 3}} .
$$

Rademacher's Formula

- Rademacher later refined Hardy and Ramanujan's method to obtain an "exact formula" for $p(n)$:

Rademacher's Formula

- Rademacher later refined Hardy and Ramanujan's method to obtain an "exact formula" for $p(n)$:

Theorem (Rademacher)

$p(n)=2 \pi(24 n-1)^{-\frac{3}{4}} \sum_{k=1}^{\infty} \frac{A_{k}(n)}{k} \cdot I_{\frac{3}{2}}\left(\frac{\pi \sqrt{24 n-1}}{6 k}\right)$.

A Finite Formula for $p(n)$

Theorem (Bruinier-Ono)
There exists a weak Maass form $P_{p}(z)$ such that

$$
p(n)=\frac{1}{24 n-1} \sum_{Q \in \mathcal{Q}_{n}} P_{p}\left(\alpha_{Q}\right) .
$$

For each n, this is a finite sum. Moreover, each $P_{p}\left(\alpha_{Q}\right)$ is algebraic.

A Natural Question of Bruinier and Ono

Remark

They also prove that
(1) $6 \cdot(24 n-1) \cdot P\left(\alpha_{Q}\right)$ is an algebraic integer.

A Natural Question of Bruinier and Ono

Remark

They also prove that
(1) $6 \cdot(24 n-1) \cdot P\left(\alpha_{Q}\right)$ is an algebraic integer.
(2) The numbers $P\left(\alpha_{Q}\right)$, as Q varies over \mathcal{Q}_{n}, form a multiset which is a union of Galois orbits for the discriminant $-24 n+1$ ring class field.

A Natural Question of Bruinier and Ono

Remark

They also prove that
(1) $6 \cdot(24 n-1) \cdot P\left(\alpha_{Q}\right)$ is an algebraic integer.
(2) The numbers $P\left(\alpha_{Q}\right)$, as Q varies over \mathcal{Q}_{n}, form a multiset which is a union of Galois orbits for the discriminant $-24 n+1$ ring class field.

Conjecture (Bruinier-Ono)

We have that $(24 n-1) \cdot P\left(\alpha_{Q}\right)$ is an algebraic integer.

Our Results

Theorem (L-R 2011)

Suppose $F \in M_{-2}^{!}\left(\Gamma_{0}(N)\right)$ is such that the Fourier expansions of

$$
F \quad \text { and } \quad q \frac{d F}{d q}+F \cdot \frac{E_{2} E_{4}-E_{6}}{6 E_{4}}
$$

at all cusps have coefficients that are algebraic integers. Let α_{Q} be a CM point of discriminant $-24 n+1$, and let $P(z)$ be the weak Maass form

$$
P(z)=-\left(\frac{1}{2 \pi i} \cdot \frac{d}{d z}+\frac{1}{2 \pi y}\right) F(z) .
$$

Then $(24 n-1) \cdot P\left(\alpha_{Q}\right)$ is an algebraic integer.

Strategy of Proof

- Using the work of Bruinier and Ono, it suffices to show $P\left(\alpha_{Q}\right)$ is 6 -integral.

Strategy of Proof

- Using the work of Bruinier and Ono, it suffices to show $P\left(\alpha_{Q}\right)$ is 6 -integral.
- We write $P=A+B \cdot C$ where:

Strategy of Proof

- Using the work of Bruinier and Ono, it suffices to show $P\left(\alpha_{Q}\right)$ is 6 -integral.
- We write $P=A+B \cdot C$ where:

$$
A=-q \frac{d F}{d q}-\frac{1}{6} F E_{2}+\frac{F E_{6}(7 j-6912)}{6 E_{4}(j-1728)}
$$

$$
B=\frac{F E_{6} j}{E_{4}},
$$

$$
C=\frac{E_{4}}{6 E_{6} j}\left(E_{2}-\frac{3}{\pi \operatorname{Im} z}\right)-\frac{7 j-6912}{6 j(j-1728)} .
$$

Application to the Conjecture of Bruinier-Ono

- The level of F_{p} is 6 , a square-free integer, so the Atkin-Lehner involutions act transitively on the cusps.

Application to the Conjecture of Bruinier-Ono

- The level of F_{p} is 6 , a square-free integer, so the Atkin-Lehner involutions act transitively on the cusps.
- We have that F_{p} is an eigenform for the Atkin-Lehner involutions and has integral Fourier coefficients at infinity.

Application to the Conjecture of Bruinier-Ono

- The level of F_{p} is 6 , a square-free integer, so the Atkin-Lehner involutions act transitively on the cusps.
- We have that F_{p} is an eigenform for the Atkin-Lehner involutions and has integral Fourier coefficients at infinity.
- Thus, F_{p} has integral Fourier coefficients at all cusps.

Application to the Conjecture of Bruinier-Ono

- The level of F_{p} is 6 , a square-free integer, so the Atkin-Lehner involutions act transitively on the cusps.
- We have that F_{p} is an eigenform for the Atkin-Lehner involutions and has integral Fourier coefficients at infinity.
- Thus, F_{p} has integral Fourier coefficients at all cusps.
- The other condition in the theorem follows as Maass raising operators commute with Atkin-Lehner involutions.

Proof of 6-integrality of A, B

- We show that $j\left(\alpha_{Q}\right)$ is a unit at 2,3. This follows from the:

Proof of 6-integrality of A, B

- We show that $j\left(\alpha_{Q}\right)$ is a unit at 2,3. This follows from the:

Lemma (Deuring?)

Let $p \in\{2,3\}$ and E be an elliptic curve defined over a number field K having CM by an order in a quadratic field F. If E has good ordinary reduction at all primes lying over p, then $j(E)$ is coprime to p.

Proof of 6-integrality of A, B (cont.)

- By the assumptions on $F, A \cdot j \cdot(j-1728)$ and B are weakly holomorphic with integral Fourier expansions at all cusps.

Proof of 6-integrality of A, B (cont.)

- By the assumptions on $F, A \cdot j \cdot(j-1728)$ and B are weakly holomorphic with integral Fourier expansions at all cusps.
- The 6 -integrality of A, B now follows from the same argument as in Bruinier and Ono.

Classical Modular Polynomials

Definition

We say that two matrices B_{1} and B_{2} are equivalent if $B_{1}=X \cdot B_{2}$ for some $X \in \mathrm{SL}_{2}(\mathbb{Z})$.

Classical Modular Polynomials

Definition

We say that two matrices B_{1} and B_{2} are equivalent if $B_{1}=X \cdot B_{2}$ for some $X \in \mathrm{SL}_{2}(\mathbb{Z})$.

- There are finitely many equivalence classes of primitive integer matrices of determinant $-D$, which we call $M_{1}, M_{2}, \ldots, M_{n}$ with M_{1} such that $\alpha_{Q}=M_{1} \alpha_{Q}$.

Classical Modular Polynomials

Definition

We say that two matrices B_{1} and B_{2} are equivalent if $B_{1}=X \cdot B_{2}$ for some $X \in \mathrm{SL}_{2}(\mathbb{Z})$.

- There are finitely many equivalence classes of primitive integer matrices of determinant $-D$, which we call $M_{1}, M_{2}, \ldots, M_{n}$ with M_{1} such that $\alpha_{Q}=M_{1} \alpha_{Q}$.

Definition

We write $\Phi_{-D}(X, Y)$ for the classical modular polynomial:

Classical Modular Polynomials

Definition

We say that two matrices B_{1} and B_{2} are equivalent if $B_{1}=X \cdot B_{2}$ for some $X \in \mathrm{SL}_{2}(\mathbb{Z})$.

- There are finitely many equivalence classes of primitive integer matrices of determinant $-D$, which we call $M_{1}, M_{2}, \ldots, M_{n}$ with M_{1} such that $\alpha_{Q}=M_{1} \alpha_{Q}$.

Definition

We write $\Phi_{-D}(X, Y)$ for the classical modular polynomial:

$$
\Phi_{-D}(j(z), Y)=\prod_{i=1}^{n}\left(Y-j\left(M_{i} z\right)\right)
$$

Description of $C\left(\alpha_{Q}\right)$ using Modular Polynomials

- We expand $\Phi_{-D}(X, Y)$ in a power series about $X=Y=j\left(\alpha_{Q}\right)$ as

Description of $C\left(\alpha_{Q}\right)$ using Modular Polynomials

- We expand $\Phi_{-D}(X, Y)$ in a power series about $X=Y=j\left(\alpha_{Q}\right)$ as

$$
\Phi(X, Y)=\sum_{\mu, \nu} \beta_{\mu, \nu}\left(X-j\left(\alpha_{Q}\right)\right)^{\mu}\left(Y-j\left(\alpha_{Q}\right)\right)^{\nu}
$$

where $\beta_{\mu, \nu}$ is an algebraic integer. We write $\beta=\beta_{0,1}=\beta_{1,0}$.

Description of $C\left(\alpha_{Q}\right)$ using Modular Polynomials

- We expand $\Phi_{-D}(X, Y)$ in a power series about $X=Y=j\left(\alpha_{Q}\right)$ as

$$
\Phi(X, Y)=\sum_{\mu, \nu} \beta_{\mu, \nu}\left(X-j\left(\alpha_{Q}\right)\right)^{\mu}\left(Y-j\left(\alpha_{Q}\right)\right)^{\nu}
$$

where $\beta_{\mu, \nu}$ is an algebraic integer. We write $\beta=\beta_{0,1}=\beta_{1,0}$.
Theorem (Masser)
We have that $C\left(\alpha_{Q}\right)=\frac{\beta_{0,2}-\beta_{1,1}+\beta_{2,0}}{\beta}$.

Description of $C\left(\alpha_{Q}\right)$ using Modular Polynomials

- We expand $\Phi_{-D}(X, Y)$ in a power series about

$$
X=Y=j\left(\alpha_{Q}\right) \text { as }
$$

$$
\Phi(X, Y)=\sum_{\mu, \nu} \beta_{\mu, \nu}\left(X-j\left(\alpha_{Q}\right)\right)^{\mu}\left(Y-j\left(\alpha_{Q}\right)\right)^{\nu}
$$

where $\beta_{\mu, \nu}$ is an algebraic integer. We write $\beta=\beta_{0,1}=\beta_{1,0}$.
Theorem (Masser)
We have that $C\left(\alpha_{Q}\right)=\frac{\beta_{0,2}-\beta_{1,1}+\beta_{2,0}}{\beta}$.

- By definition, $\beta=\prod_{i=2}^{n}\left(j\left(\alpha_{Q}\right)-j\left(M_{i} \alpha_{Q}\right)\right)$.

Proof of 6-integrality for $C\left(\alpha_{Q}\right)$

- It suffices to show that for any prime \mathfrak{p} lying over 6 , we have $j\left(\alpha_{Q}\right) \not \equiv j\left(M_{i} \alpha_{Q}\right) \bmod \mathfrak{p}$.

Proof of 6-integrality for $C\left(\alpha_{Q}\right)$

- It suffices to show that for any prime \mathfrak{p} lying over 6 , we have $j\left(\alpha_{Q}\right) \not \equiv j\left(M_{i} \alpha_{Q}\right) \bmod \mathfrak{p}$.
- This follows from the:

Proof of 6-integrality for $C\left(\alpha_{Q}\right)$

- It suffices to show that for any prime \mathfrak{p} lying over 6 , we have $j\left(\alpha_{Q}\right) \not \equiv j\left(M_{i} \alpha_{Q}\right) \bmod \mathfrak{p}$.
- This follows from the:

Lemma (Deuring?)

Suppose \mathfrak{p} is a prime ideal of a number field K. Suppose E and E^{\prime} are two elliptic curves over K with complex multiplication by the same order R in a quadratic field F. Suppose the index $\left[\mathcal{O}_{F}: R\right]$ is coprime to the residue characteristic of \mathfrak{p}. If both curves have good ordinary reduction at \mathfrak{p} and the reduced curves are isomorphic, then E and E^{\prime} are also isomorphic.

Conclusion

Theorem (L-R 2011)

Suppose $F \in M_{-2}^{!}\left(\Gamma_{0}(N)\right)$ is such that the Fourier expansions of

$$
F \text { and } q \frac{d F}{d q}+F \cdot \frac{E_{2} E_{4}-E_{6}}{6 E_{4}}
$$

at all cusps have coefficients that are algebraic integers. Let α_{Q} be a CM point of discriminant $-24 n+1$, and let $P(z)$ be the weak Maass form

$$
P(z)=-\left(\frac{1}{2 \pi i} \cdot \frac{d}{d z}+\frac{1}{2 \pi y}\right) F(z) .
$$

Then $(24 n-1) \cdot P\left(\alpha_{Q}\right)$ is an algebraic integer.

