Bounding the Denominators of CM-values of Certain Weak Maass Form

Eric Larson and Larry Rolen

Harvard University and Emory University

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Bounding the Denominators of CM-values of Certain Weak Maass Form

The Partition Function

• A *partition* of a positive integer *n* is any nonincreasing sequence of positive integers which sum to *n*.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Bounding the Denominators of CM-values of Certain Weak Maass Form

The Partition Function

- A *partition* of a positive integer *n* is any nonincreasing sequence of positive integers which sum to *n*.
- The partition function p(n) = the number of partitions of n.

The Partition Function

- A *partition* of a positive integer *n* is any nonincreasing sequence of positive integers which sum to *n*.
- The partition function p(n) = the number of partitions of n.
- Hardy and Ramanujan proved the asymptotitc

$$p(n) \sim \frac{1}{4n\sqrt{3}} \cdot e^{\pi\sqrt{2n/3}}$$

Bounding the Denominators of CM-values of Certain Weak Maass Form

Rademacher's Formula

 Rademacher later refined Hardy and Ramanujan's method to obtain an "exact formula" for p(n):

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Rademacher's Formula

 Rademacher later refined Hardy and Ramanujan's method to obtain an "exact formula" for p(n):

Theorem (Rademacher)

$$p(n) = 2\pi (24n-1)^{-\frac{3}{4}} \sum_{k=1}^{\infty} \frac{A_k(n)}{k} \cdot I_{\frac{3}{2}} \left(\frac{\pi \sqrt{24n-1}}{6k} \right)$$

A Finite Formula for p(n)

Theorem (Bruinier-Ono)

There exists a weak Maass form $P_p(z)$ such that

$$p(n) = \frac{1}{24n-1} \sum_{Q \in \mathcal{Q}_n} P_p(\alpha_Q).$$

For each n, this is a finite sum. Moreover, each $P_p(\alpha_Q)$ is algebraic.

A Natural Question of Bruinier and Ono

Remark

They also prove that

•
$$6 \cdot (24n-1) \cdot P(\alpha_Q)$$
 is an algebraic integer.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

A Natural Question of Bruinier and Ono

Remark

They also prove that

- $6 \cdot (24n-1) \cdot P(\alpha_Q)$ is an algebraic integer.
- The numbers P(α_Q), as Q varies over Q_n, form a multiset which is a union of Galois orbits for the discriminant -24n + 1 ring class field.

A Natural Question of Bruinier and Ono

Remark

They also prove that

- $6 \cdot (24n-1) \cdot P(\alpha_Q)$ is an algebraic integer.
- The numbers P(α_Q), as Q varies over Q_n, form a multiset which is a union of Galois orbits for the discriminant -24n + 1 ring class field.

Conjecture (Bruinier-Ono)

We have that $(24n - 1) \cdot P(\alpha_Q)$ is an algebraic integer.

Our Results

Theorem (L-R 2011)

Suppose $F \in M^!_{-2}(\Gamma_0(N))$ is such that the Fourier expansions of

$$F$$
 and $q\frac{dF}{dq} + F \cdot \frac{E_2 E_4 - E_6}{6E_4}$

at all cusps have coefficients that are algebraic integers. Let α_Q be a CM point of discriminant -24n + 1, and let P(z) be the weak Maass form

$$P(z) = -\left(rac{1}{2\pi i} \cdot rac{d}{dz} + rac{1}{2\pi y}
ight)F(z).$$

Then $(24n - 1) \cdot P(\alpha_Q)$ is an algebraic integer.

Strategy of Proof

Using the work of Bruinier and Ono, it suffices to show P(α_Q) is 6-integral.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Strategy of Proof

• Using the work of Bruinier and Ono, it suffices to show $P(\alpha_Q)$ is 6-integral.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• We write $P = A + B \cdot C$ where:

Strategy of Proof

- Using the work of Bruinier and Ono, it suffices to show P(α_Q) is 6-integral.
- We write $P = A + B \cdot C$ where:

$$A = -q rac{dF}{dq} - rac{1}{6} F E_2 + rac{F E_6 (7j - 6912)}{6 E_4 (j - 1728)},$$

$$B=\frac{FE_6j}{E_4},$$

$$C = \frac{E_4}{6E_6j} \left(E_2 - \frac{3}{\pi \operatorname{Im} z} \right) - \frac{7j - 6912}{6j(j - 1728)}.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• The level of F_p is 6, a square-free integer, so the Atkin-Lehner involutions act transitively on the cusps.

• The level of F_p is 6, a square-free integer, so the Atkin-Lehner involutions act transitively on the cusps.

 We have that F_p is an eigenform for the Atkin-Lehner involutions and has integral Fourier coefficients at infinity.

• The level of F_p is 6, a square-free integer, so the Atkin-Lehner involutions act transitively on the cusps.

- We have that F_p is an eigenform for the Atkin-Lehner involutions and has integral Fourier coefficients at infinity.
- Thus, F_p has integral Fourier coefficients at all cusps.

- The level of F_p is 6, a square-free integer, so the Atkin-Lehner involutions act transitively on the cusps.
- We have that F_p is an eigenform for the Atkin-Lehner involutions and has integral Fourier coefficients at infinity.
- Thus, F_p has integral Fourier coefficients at all cusps.
- The other condition in the theorem follows as Maass raising operators commute with Atkin-Lehner involutions.

Bounding the Denominators of CM-values of Certain Weak Maass Form

Proof of 6-integrality of A, B

• We show that $j(\alpha_Q)$ is a unit at 2,3. This follows from the:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ● ● ●

Proof of 6-integrality of A, B

• We show that $j(\alpha_Q)$ is a unit at 2,3. This follows from the:

Lemma (Deuring?)

Let $p \in \{2,3\}$ and E be an elliptic curve defined over a number field K having CM by an order in a quadratic field F. If E has good ordinary reduction at all primes lying over p, then j(E) is coprime to p.

Bounding the Denominators of CM-values of Certain Weak Maass Form

Proof of 6-integrality of A, B (cont.)

• By the assumptions on F, $A \cdot j \cdot (j - 1728)$ and B are weakly holomorphic with integral Fourier expansions at all cusps.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Proof of 6-integrality of A, B (cont.)

- By the assumptions on F, $A \cdot j \cdot (j 1728)$ and B are weakly holomorphic with integral Fourier expansions at all cusps.
- The 6-integrality of *A*, *B* now follows from the same argument as in Bruinier and Ono.

Definition

We say that two matrices B_1 and B_2 are equivalent if $B_1 = X \cdot B_2$ for some $X \in SL_2(\mathbb{Z})$.

Definition

We say that two matrices B_1 and B_2 are equivalent if $B_1 = X \cdot B_2$ for some $X \in SL_2(\mathbb{Z})$.

 There are finitely many equivalence classes of primitive integer matrices of determinant -D, which we call M₁, M₂,..., M_n with M₁ such that α_Q = M₁α_Q.

Definition

We say that two matrices B_1 and B_2 are equivalent if $B_1 = X \cdot B_2$ for some $X \in SL_2(\mathbb{Z})$.

 There are finitely many equivalence classes of primitive integer matrices of determinant -D, which we call M₁, M₂,..., M_n with M₁ such that α_Q = M₁α_Q.

Definition

We write $\Phi_{-D}(X, Y)$ for the classical modular polynomial:

Definition

We say that two matrices B_1 and B_2 are equivalent if $B_1 = X \cdot B_2$ for some $X \in SL_2(\mathbb{Z})$.

 There are finitely many equivalence classes of primitive integer matrices of determinant -D, which we call M₁, M₂,..., M_n with M₁ such that α_Q = M₁α_Q.

Definition

We write $\Phi_{-D}(X, Y)$ for the classical modular polynomial:

$$\Phi_{-D}(j(z), Y) = \prod_{i=1}^{n} (Y - j(M_i z)).$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

• We expand $\Phi_{-D}(X, Y)$ in a power series about $X = Y = j(\alpha_Q)$ as

• We expand $\Phi_{-D}(X, Y)$ in a power series about $X = Y = j(\alpha_Q)$ as

$$\Phi(X,Y) = \sum_{\mu,\nu} \beta_{\mu,\nu} (X - j(\alpha_Q))^{\mu} (Y - j(\alpha_Q))^{\nu},$$

where $\beta_{\mu,\nu}$ is an algebraic integer. We write $\beta = \beta_{0,1} = \beta_{1,0}$.

• We expand $\Phi_{-D}(X, Y)$ in a power series about $X = Y = j(\alpha_Q)$ as

$$\Phi(X,Y) = \sum_{\mu,\nu} \beta_{\mu,\nu} (X - j(\alpha_Q))^{\mu} (Y - j(\alpha_Q))^{\nu},$$

where $\beta_{\mu,\nu}$ is an algebraic integer. We write $\beta = \beta_{0,1} = \beta_{1,0}$.

Theorem (Masser)

We have that
$$C(\alpha_Q) = \frac{\beta_{0,2} - \beta_{1,1} + \beta_{2,0}}{\beta}$$
.

• We expand $\Phi_{-D}(X, Y)$ in a power series about $X = Y = j(\alpha_Q)$ as

$$\Phi(X,Y) = \sum_{\mu,\nu} \beta_{\mu,\nu} (X - j(\alpha_Q))^{\mu} (Y - j(\alpha_Q))^{\nu},$$

where $\beta_{\mu,\nu}$ is an algebraic integer. We write $\beta = \beta_{0,1} = \beta_{1,0}$.

Theorem (Masser)

We have that
$$C(\alpha_Q) = \frac{\beta_{0,2} - \beta_{1,1} + \beta_{2,0}}{\beta}$$
.

• By definition,
$$\beta = \prod_{i=2}^{n} (j(\alpha_Q) - j(M_i \alpha_Q)).$$

Proof of 6-integrality for $C(\alpha_Q)$

• It suffices to show that for any prime \mathfrak{p} lying over 6, we have $j(\alpha_Q) \not\equiv j(M_i \alpha_Q) \mod \mathfrak{p}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Proof of 6-integrality for $C(\alpha_Q)$

• It suffices to show that for any prime \mathfrak{p} lying over 6, we have $j(\alpha_Q) \not\equiv j(M_i \alpha_Q) \mod \mathfrak{p}$.

• This follows from the:

Proof of 6-integrality for $C(\alpha_Q)$

- It suffices to show that for any prime \mathfrak{p} lying over 6, we have $j(\alpha_Q) \not\equiv j(M_i \alpha_Q) \mod \mathfrak{p}$.
- This follows from the:

Lemma (Deuring?)

Suppose \mathfrak{p} is a prime ideal of a number field K. Suppose E and E' are two elliptic curves over K with complex multiplication by the same order R in a quadratic field F. Suppose the index $[\mathcal{O}_F : R]$ is coprime to the residue characteristic of \mathfrak{p} . If both curves have good ordinary reduction at \mathfrak{p} and the reduced curves are isomorphic, then E and E' are also isomorphic.

Conclusion

Theorem (L-R 2011)

Suppose $F \in M_{-2}^!(\Gamma_0(N))$ is such that the Fourier expansions of

$$F \quad and \quad q\frac{dF}{dq} + F \cdot \frac{E_2 E_4 - E_6}{6E_4}$$

at all cusps have coefficients that are algebraic integers. Let α_Q be a CM point of discriminant -24n + 1, and let P(z) be the weak Maass form

$$P(z) = -\left(rac{1}{2\pi i} \cdot rac{d}{dz} + rac{1}{2\pi y}
ight)F(z).$$

Then $(24n - 1) \cdot P(\alpha_Q)$ is an algebraic integer.