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Class Polynomials for Non-holomorphic Modular Functions

The Modular Invariant and its Special Values

The j-function is an important example of a modular function

j(τ) = q−1 +744+196884q +21493760q2 +. . . (q := e2πiτ ).

Singular moduli are values of the j-invariant at quadratic
irrationalities.

Here are several examples:

j(i) = 1728, j
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Classical Theory of Complex Multiplication

Singular moduli generate “class fields”.

Strange consequence:

eπ
√

163 = 262537412640768743.99999999999925 ∈ Z + ε2.
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Hilbert Class Polynomials

Definition

The class polynomial of discriminant D is:

HD(x) :=
∏

1≤i≤h(D)

(x − j(τD,i )) ∈ Z[x ].

Theorem

For all D, HD(x) is irreducible in Z[x ] and its splitting field is a
class field.
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Computing Hilbert Class Polynomials

Computing these polynomials has a long history.

Weber defined several eponymous functions in terms of the
η-function and used their properties to compute examples.

Zagier’s seminal paper Traces of Singular Moduli gives an
automatic procedure for computing class polynomials.
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Zagier Grids

For every d ≥ 0, d ≡ 0, 3 (mod 4), there is a unique

fd(τ) = q−d +
∑
D>0

A(D, d)qD ∈ M !
1
2
(4).

For example,

f0 = 1 + 2q + 2q4 + 2q9 + . . .

f3 = q−3 − 248q + 26752q4 − 85995q5 + . . .

f4 = q−4 + 492q + 143376q4 + 565760q5 + . . .
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Class Polynomials for Non-holomorphic Modular Functions

Borcherds Products

Zagier defined “traces of singular moduli”, which he proved
are often coefficients of modular forms.

Theorem (Borcherds-Zagier)

HD (j(τ)) = q−H(d)
∞∏
n=1

(1− qn)A(n2,d).

Remark

1 Zagier’s theory provides a new proof of Borcherds’ theorem
and he shows that A(1, d) is the trace of singular moduli.

2 Zagier’s work applies to a much more general class of forms.
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Generalizations

Zagier also defines numerous generalizations.

1 “Different weights”.
2 Different levels.
3 “Twisted” traces.

In this talk, we will be interested in the class polynomials
corresponding to “negative weights”.

Example

These appear in recent work of Bruinier-Ono on p(n).
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Traces of Singular Moduli

For a positive definite quadratic form Q = ax2 + bxy + cy 2, let

τQ :=
−b +

√
b2 − 4ac

2a
∈ H.

Definition

Let Qd be the set of positive definite binary quadratic forms of
discriminant d. For a modular function F , define the trace:

Trd(F ) :=
∑

Q∈Qd/Γ

w−1
Q F (τQ).
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An Example of Zagier’s Theory

Theorem (Zagier)

Let
J(z) := j(z)− 744

and

g(z) := θ1(z)
E4(4z)

η(4z)6
=
∑

B(d)qn

For any positive integer d ≡ 0, 3 (mod 4), we have

Tr-d (J(z)) = −B(d).
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Another Example; K := ∂
(

E4E6

∆

)

Define Hd(K ; x) :=
∏

Q∈Qd/Γ

(x − K (τQ)).

H−23(K ; x) = x3−23261998x2− 3945271661
23 x−7693330369871.

H−31(K ; x) =
x3 − 3723569x2 − 61346290410

31 x + 1143159756791823.

H−39(K ; x) = x4 − 314635932x3 + 8602826222178
39 x2

−84029669803810035x + 95749227855890319016073
392 .

Remark

It appears that the third symmetric function is always an integer.
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A Natural Question

Theorem

The fields generated by these singular moduli are contained in the
“correct” class fields.

Question (Zagier ?)

What is the obstruction to integrality of these coefficients, and
what is the pattern of their denominators?

Answer

Our theorem predicts the correct/sharp denominators.
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Traces for Negative Weight Forms

The Maass raising operator, raises the weight by 2:

Rk := 2i
∂

∂z
+ ky−1.

For f of negative weight, ∂f is the iterated raising to weight 0.
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Our Main Result

Theorem (G-R)

Let f (z) ∈ M !
k , 0 > k ∈ 2Z have integral principal part. Denote

the nth symmetric function in the singular moduli of discriminant d
for ∂f by Sf (n; d). Let

B(n, k) :=

{
−nk

4 if nk ∈ 4Z
1
4 (−nk + 2k − 2) otherwise.

Then if (p, d) = 1, we have that Sf (n; d) is p-integral. If p|d is
good for (k,N), we have that

pB(n,k) · Sf (n; d) is p-integral.
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Special Cases

Corollary

For any f (z) ∈ M !
−2 with integral principal part, we have that

Sf (3; d) ∈ Z.

Remark

This theorem is sharp.
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Use Newton’s identities to reduce to sums of powers.

Unfortunately, powers of Maass forms are usually not finite
sums of Maass forms.

We prove the following fact.
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The Spectral Decomposition

Theorem (G-R)

Let F be a product of “raises” of modular forms. Then there are
modular forms gj ∈ M !

k−2j such that

F =
E∑
j=0

R jgj ,

Remark

The proof gives an explicit algorithm for computing the forms gj .
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Sketch of Proof (cont).

Work of Duke and Jenkins allows us to study integrality of
traces for ∂f when f is a negative weight modular form.

Bounding denominators on each piece gives a näıve bound.

However, this falls far short of our theorem.
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However, this falls far short of our theorem.



Class Polynomials for Non-holomorphic Modular Functions

Two Intervening Problems

Obstruction 1: Certain weights in the decomposition give the
wrong denominators.

We prove a vanishing condition on which forms in the
decomposition actually appear.

Obstruction 2: The coefficients ci ,j in the previous theorem
also introduce artificial denominators.

We show that they cancel using the action of the Hecke
algebra on Poincaré series.

Q.E.D.
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Proof of the Spectral Decomposition

Using the iterated lowering operator Ln, for large n this kills F .

Using the intertwining properties of the Maass lowering and
raising operators, we get the recursion:

gE =
LEF

cE ,E
,

gi =
1

ci ,i

LiF −
E∑

j=i+1

ci ,jR
j−igj

 .

Here

ci ,j :=
j!(−k + j + i)!

(j − i)!(−k + j)!
.
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ci ,jR
j−igj

 .

Here

ci ,j :=
j!(−k + j + i)!

(j − i)!(−k + j)!
.



Class Polynomials for Non-holomorphic Modular Functions

Proof of the Spectral Decomposition

Using the iterated lowering operator Ln, for large n this kills F .

Using the intertwining properties of the Maass lowering and
raising operators, we get the recursion:

gE =
LEF

cE ,E
,

gi =
1

ci ,i

LiF −
E∑

j=i+1

ci ,jR
j−igj

 .

Here

ci ,j :=
j!(−k + j + i)!

(j − i)!(−k + j)!
.



Class Polynomials for Non-holomorphic Modular Functions

Work of Duke and Jenkins

Let
Tr∗d ,D(f ) := (−1)b

ŝ−1
2
c|d |

−ŝ
2 |D|

ŝ−1
2 Trd ,D(∂f ).

They define the Dth Zagier lift of f :

ZD(f ) :=
∑
m≥0

b(m)q−m +
∑
dD<0

Tr∗d ,D(f )q|d |.
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Duke and Jenkins’ Theorem

Theorem (Duke-Jenkins)

Suppose that f ∈ M !
k , k ≤ 0. If f ∈ Z[[q]], then Z(f ) is a

half-integral weight modular form with integral coefficients.
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A Useful Vanishing Criterion

Definition

Let 0 > k ∈ 2Z and n ∈ N. We say m is a bad weight for (k , n) if
m is of the form kn + 4i + 2 for 0 ≤ i ≤ −k

2 − 1.

Theorem (G-R)

Let f ∈ M !
k and consider the product F = (∂f )n. Decompose

F =
∑
∂(gi ). Then if gi has bad weight for (k , n), gi ≡ 0.
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Rankin-Cohen Brackets

Let f ∈ M !
k , g ∈ M !

`, n ∈ N. The nth Rankin-Cohen bracket is

[f , g ]
(k,`)
n :=

∑
r+s=n

(−1)r
(

n + k − 1

s

)(
n + `− 1

r

)
f (r) · g (s).

This gives an (essentially unique) map

[·, ·](k),(`)
n : M !

k ⊗M !
` → M !

k+`+2n.
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Products of Two Forms

We need a vanishing condition for the product of two forms.

We can expand in terms of Rankin-Cohen brackets.

Using a calculation of Beyerl-James-Trentacoste-Xue, this
reduces to a binomial sum identity, for j odd

s∑
m=0

(−1)(j+m) ·
(m+r

j

)( s
m

)(m−r−1
r+m−j

)(−r−2s+m+j−1
m+r−j

) = 0.
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Obstruction 2: Lining Up Principal Parts

Raise the Zagier lifts of the pieces to the same weight and let:

Z (τ) :=

b E+1
2 c∑

t=0

(−1)M+tRM+tZ1(g2t−1)+
M∑
t=0

(−1)M+tRM−tZ1(g2t).

By comparison with F , we observe that the holomorphic part
Z + of Z has integral principal part.

If all the coefficients of Z + are integral, then the
ci ,j -denominators will cancel.
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Maass-Poincaré Series

Maass-Poincaré series provide convenient bases.

Thus, for any F (τ) =
∑

a(n)qn ∈ M !
−2k we can write

F =
∑
n<0

a(n)n1+2k f−2k,1|T (n).

The Zagier lift is equivariant with the Hecke action:

ZD(f |T (n)) = ZD(f )|T (n2).
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Hypotheses

For the next few slides, we suppose k and n are positive
integers with k even.

We assume p is ordinary for all eigenforms in a basis of Sk .
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p-adic Properties

Theorem (G-R)

Then is a Hecke operator Hn such that

f2−k,1|Hn ∈ M !
2−k , fk,1|Hn ∈ Z((q),

and fk,1|Hn ≡ q−1 + O(q) (mod pn). Any such Hn satisfies:

1 If f2−k,1|H is weakly holomorphic and fk,1|H has integer
coefficients, then (fk,1|Hn) |H ≡ fk,1|H (mod pn).

2 If Hn and H′n are two such operators, then

fk,1|Hn ≡ fk,1|H′n (mod pn).

3 If (fk,1|Hn) |H ≡ 0 + O(q) (mod pm) for some m ≤ n, then
(fk,1|Hn) |H ≡ 0 (mod pm).
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Integrality of Coefficients

Corollary

If fk,1|H has integer coefficients, p is ordinary for all eigenforms in
a basis of Sk , and fk,1|H ≡ 0 + O(q) (mod pn), then

fk,1|H ≡ 0 (mod pn).

The holomorphic part of ZD(f ) has integral principal part.

Use induction to extend the corollary to linear combinations.



Class Polynomials for Non-holomorphic Modular Functions

Integrality of Coefficients

Corollary

If fk,1|H has integer coefficients, p is ordinary for all eigenforms in
a basis of Sk , and fk,1|H ≡ 0 + O(q) (mod pn), then

fk,1|H ≡ 0 (mod pn).

The holomorphic part of ZD(f ) has integral principal part.

Use induction to extend the corollary to linear combinations.



Class Polynomials for Non-holomorphic Modular Functions

Integrality of Coefficients

Corollary

If fk,1|H has integer coefficients, p is ordinary for all eigenforms in
a basis of Sk , and fk,1|H ≡ 0 + O(q) (mod pn), then

fk,1|H ≡ 0 (mod pn).

The holomorphic part of ZD(f ) has integral principal part.

Use induction to extend the corollary to linear combinations.



Class Polynomials for Non-holomorphic Modular Functions

Integrality of Coefficients

Corollary

If fk,1|H has integer coefficients, p is ordinary for all eigenforms in
a basis of Sk , and fk,1|H ≡ 0 + O(q) (mod pn), then

fk,1|H ≡ 0 (mod pn).

The holomorphic part of ZD(f ) has integral principal part.

Use induction to extend the corollary to linear combinations.



Class Polynomials for Non-holomorphic Modular Functions

Our Main Theorem

Theorem (G-R)

Let f (z) ∈ M !
k , 0 > k ∈ 2Z have integral principal part. Denote

the nth symmetric function in the singular moduli of discriminant d
for ∂f by Sf (n; d). Let

B(n, k) :=

{
−nk

4 if nk ∈ 4Z
1
4 (−nk + 2k − 2) otherwise.

Then if (p, d) = 1, we have that Sf (n; d) is p-integral. If p|d is
good for (k,N), we have that

pB(n,k) · Sf (n; d) is p-integral.
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