Class Polynomials for Non-holomorphic Modular Functions

Michael Griffin and Larry Rolen

Emory University

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The Modular Invariant and its Special Values

• The *j*-function is an important example of a modular function

$$j(\tau) = q^{-1} + 744 + 196884q + 21493760q^2 + \dots$$
 $(q := e^{2\pi i \tau}).$

The Modular Invariant and its Special Values

• The *j*-function is an important example of a modular function

$$j(\tau) = q^{-1} + 744 + 196884q + 21493760q^2 + \dots \quad (q := e^{2\pi i \tau}).$$

• Singular moduli are values of the *j*-invariant at quadratic irrationalities.

The Modular Invariant and its Special Values

• The *j*-function is an important example of a modular function

$$j(\tau) = q^{-1} + 744 + 196884q + 21493760q^2 + \dots \quad (q := e^{2\pi i \tau}).$$

• Singular moduli are values of the *j*-invariant at quadratic irrationalities.

• Here are several examples:

$$j(i) = 1728,$$
 $j\left(\frac{1+i\sqrt{7}}{2}\right) = -3375,$ $j(i\sqrt{2}) = 8000.$

Classical Theory of Complex Multiplication

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• Singular moduli generate "class fields".

Classical Theory of Complex Multiplication

• Singular moduli generate "class fields".

• Strange consequence:

$$e^{\pi\sqrt{163}}=262537412640768743.99999999999925\in\mathbb{Z}+\epsilon^2.$$

Hilbert Class Polynomials

Definition

The *class polynomial* of discriminant *D* is:

Hilbert Class Polynomials

Definition

The *class polynomial* of discriminant *D* is:

$$H_D(x) := \prod_{1 \le i \le h(D)} (x - j(\tau_{D,i})) \in \mathbb{Z}[x].$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Hilbert Class Polynomials

Definition

The class polynomial of discriminant D is:

$$H_D(x) := \prod_{1 \le i \le h(D)} (x - j(\tau_{D,i})) \in \mathbb{Z}[x].$$

Theorem

For all D, $H_D(x)$ is irreducible in $\mathbb{Z}[x]$ and its splitting field is a class field.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Computing Hilbert Class Polynomials

• Computing these polynomials has a long history.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Computing Hilbert Class Polynomials

- Computing these polynomials has a long history.
- Weber defined several eponymous functions in terms of the η -function and used their properties to compute examples.

Computing Hilbert Class Polynomials

- Computing these polynomials has a long history.
- Weber defined several eponymous functions in terms of the η -function and used their properties to compute examples.
- Zagier's seminal paper Traces of Singular Moduli gives an automatic procedure for computing class polynomials.

• For every $d \ge 0$, $d \equiv 0,3 \pmod{4}$, there is a unique

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• For every $d \ge 0$, $d \equiv 0,3 \pmod{4}$, there is a unique

$$f_d(\tau) = q^{-d} + \sum_{D>0} A(D,d) q^D \in M^!_{rac{1}{2}}(4).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• For every $d \ge 0$, $d \equiv 0,3 \pmod{4}$, there is a unique

$$f_d(\tau) = q^{-d} + \sum_{D>0} A(D,d) q^D \in M^!_{rac{1}{2}}(4).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• For example,

• For every $d \ge 0$, $d \equiv 0,3 \pmod{4}$, there is a unique

$$f_d(\tau) = q^{-d} + \sum_{D>0} A(D,d) q^D \in M^!_{rac{1}{2}}(4).$$

• For example,

$$f_0 = 1 + 2q + 2q^4 + 2q^9 + \dots$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• For every $d \ge 0$, $d \equiv 0,3 \pmod{4}$, there is a unique

$$f_d(\tau) = q^{-d} + \sum_{D>0} A(D,d) q^D \in M^!_{rac{1}{2}}(4).$$

• For example,

$$f_0 = 1 + 2q + 2q^4 + 2q^9 + \dots$$

$$f_3 = q^{-3} - 248q + 26752q^4 - 85995q^5 + \dots$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

• For every $d \ge 0$, $d \equiv 0,3 \pmod{4}$, there is a unique

$$f_d(\tau) = q^{-d} + \sum_{D>0} A(D,d) q^D \in M^!_{rac{1}{2}}(4).$$

• For example,

$$f_0 = 1 + 2q + 2q^4 + 2q^9 + \dots$$

$$f_3 = q^{-3} - 248q + 26752q^4 - 85995q^5 + \dots$$

$$f_4 = q^{-4} + 492q + 143376q^4 + 565760q^5 + \dots$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

• Zagier defined "traces of singular moduli", which he proved are often coefficients of modular forms.

• Zagier defined "traces of singular moduli", which he proved are often coefficients of modular forms.

Theorem (Borcherds-Zagier) $H_D(j(\tau)) = q^{-H(d)} \prod_{n=1}^{\infty} (1-q^n)^{A(n^2,d)}.$

• Zagier defined "traces of singular moduli", which he proved are often coefficients of modular forms.

Theorem (Borcherds-Zagier)

$$H_D(j(\tau)) = q^{-H(d)} \prod_{n=1}^{\infty} (1-q^n)^{A(n^2,d)}.$$

Remark

• Zagier's theory provides a new proof of Borcherds' theorem and he shows that A(1, d) is the trace of singular moduli.

• Zagier defined "traces of singular moduli", which he proved are often coefficients of modular forms.

Theorem (Borcherds-Zagier)

$$H_D(j(\tau)) = q^{-H(d)} \prod_{n=1}^{\infty} (1-q^n)^{A(n^2,d)}.$$

Remark

- Zagier's theory provides a new proof of Borcherds' theorem and he shows that A(1, d) is the trace of singular moduli.
- **2** Zagier's work applies to a much more general class of forms.

• Zagier also defines numerous generalizations.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

• Zagier also defines numerous generalizations.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

① "Different weights".

• Zagier also defines numerous generalizations.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- ① "Different weights".
- Oifferent levels.

• Zagier also defines numerous generalizations.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- "Different weights".
- Oifferent levels.
- In the second second

- Zagier also defines numerous generalizations.
 - "Different weights".
 - Oifferent levels.
 - In the second second
- In this talk, we will be interested in the class polynomials corresponding to "negative weights".

- Zagier also defines numerous generalizations.
 - ① "Different weights".
 - Oifferent levels.
 - Interpretending of the second seco
- In this talk, we will be interested in the class polynomials corresponding to "negative weights".

Example

These appear in recent work of Bruinier-Ono on p(n).

Traces of Singular Moduli

• For a positive definite quadratic form $Q = ax^2 + bxy + cy^2$, let

Traces of Singular Moduli

• For a positive definite quadratic form $Q = ax^2 + bxy + cy^2$, let

$$au_{Q}:=rac{-b+\sqrt{b^{2}-4ac}}{2a}\in\mathbb{H}.$$

Traces of Singular Moduli

• For a positive definite quadratic form $Q = ax^2 + bxy + cy^2$, let

$$\tau_{Q} := \frac{-b + \sqrt{b^2 - 4ac}}{2a} \in \mathbb{H}.$$

Definition

Let Q_d be the set of positive definite binary quadratic forms of discriminant d. For a modular function F, define the trace:

$$\operatorname{Tr}_d(F) := \sum_{Q \in Q_d/\Gamma} w_Q^{-1} F(\tau_Q).$$

An Example of Zagier's Theory

Theorem (Zagier)

Let

$$J(z) := j(z) - 744$$

and

$$g(z) := heta_1(z) rac{E_4(4z)}{\eta(4z)^6} = \sum B(d) q^n$$

For any positive integer $d \equiv 0,3 \pmod{4}$, we have

An Example of Zagier's Theory

Theorem (Zagier)

Let

$$J(z) := j(z) - 744$$

and

$$g(z) := heta_1(z) rac{E_4(4z)}{\eta(4z)^6} = \sum B(d) q^n$$

For any positive integer $d \equiv 0,3 \pmod{4}$, we have

$$\operatorname{Tr}_{-d}(J(z)) = -B(d).$$

Another Example; $K := \frac{\partial \left(\frac{E_4 E_6}{\Delta}\right)}{\partial \left(\frac{E_4 E_6}{\Delta}\right)}$

Another Example; $K := \frac{\partial \left(\frac{E_4 E_6}{\Delta}\right)}{\partial \left(\frac{E_4 E_6}{\Delta}\right)}$

Define
$$H_d(K; x) := \prod_{Q \in Q_d/\Gamma} (x - K(\tau_Q)).$$

Another Example; $K := \frac{\partial \left(\frac{E_4 E_6}{\Delta}\right)}{\partial \left(\frac{E_4 E_6}{\Delta}\right)}$

Define
$$H_d(K; x) := \prod_{Q \in Q_d/\Gamma} (x - K(\tau_Q)).$$

• $H_{-23}(K; x) = x^3 - 23261998x^2 - \frac{3945271661}{23}x - \frac{7693330369871}{23}.$
Another Example; $K := \partial \left(\frac{E_4 E_6}{\Delta} \right)$

Define
$$H_d(K; x) := \prod_{Q \in Q_d/\Gamma} (x - K(\tau_Q)).$$

• $H_{-23}(K; x) = x^3 - 23261998x^2 - \frac{3945271661}{23}x - 7693330369871.$
• $H_{-31}(K; x) = x^3 - 3723569x^2 - \frac{61346290410}{31}x + 1143159756791823.$

Another Example; $K := \frac{\partial \left(\frac{E_4 E_6}{\Delta}\right)}{\partial \left(\frac{E_4 E_6}{\Delta}\right)}$

Define
$$H_d(K; x) := \prod_{Q \in Q_d/\Gamma} (x - K(\tau_Q)).$$

• $H_{-23}(K; x) = x^3 - 23261998x^2 - \frac{3945271661}{23}x - 7693330369871.$
• $H_{-31}(K; x) = x^3 - 3723569x^2 - \frac{61346290410}{31}x + 1143159756791823.$
• $H_{-39}(K; x) = x^4 - 314635932x^3 + \frac{8602826222178}{39}x^2 - \frac{84029669803810035x}{39^2} + \frac{95749227855890319016073}{39^2}.$

Another Example; $K := \frac{\partial \left(\frac{E_4 E_6}{\Delta}\right)}{\Delta}$

Define
$$H_d(K; x) := \prod_{Q \in Q_d/\Gamma} (x - K(\tau_Q)).$$

• $H_{-23}(K; x) = x^3 - 23261998x^2 - \frac{3945271661}{23}x - 7693330369871.$
• $H_{-31}(K; x) = x^3 - 3723569x^2 - \frac{61346290410}{31}x + 1143159756791823.$
• $H_{-39}(K; x) = x^4 - 314635932x^3 + \frac{8602826222178}{39}x^2 - \frac{84029669803810035x}{39^2} + \frac{95749227855890319016073}{39^2}.$

Remark

It appears that the third symmetric function is always an integer.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

A Natural Question

Theorem

The fields generated by these singular moduli are <u>contained</u> in the "correct" class fields.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

A Natural Question

Theorem

The fields generated by these singular moduli are <u>contained</u> in the "correct" class fields.

Question (Zagier ?)

What is the obstruction to integrality of these coefficients, and what is the pattern of their denominators?

(日)、(四)、(E)、(E)、(E)

A Natural Question

Theorem

The fields generated by these singular moduli are <u>contained</u> in the "correct" class fields.

Question (Zagier ?)

What is the obstruction to integrality of these coefficients, and what is the pattern of their denominators?

・ロト ・四ト ・ヨト ・ヨ

Answer

Our theorem predicts the correct/sharp denominators.

Traces for Negative Weight Forms

• The Maass raising operator, raises the weight by 2:

Traces for Negative Weight Forms

• The Maass raising operator, raises the weight by 2:

$$R_k := 2i\frac{\partial}{\partial z} + ky^{-1}.$$

Traces for Negative Weight Forms

• The Maass raising operator, raises the weight by 2:

$$R_k := 2i\frac{\partial}{\partial z} + ky^{-1}.$$

• For f of negative weight, ∂f is the iterated raising to weight 0.

Our Main Result

Theorem (G-R)

Let $f(z) \in M_k^!$, $0 > k \in 2\mathbb{Z}$ have integral principal part. Denote the n^{th} symmetric function in the singular moduli of discriminant d for ∂f by $S_f(n; d)$. Let

$${\mathcal B}(n,k):=egin{cases} rac{-nk}{4} & ext{if } nk\in 4{\mathbb Z}\ rac{1}{4}(-nk+2k-2) & ext{otherwise.} \end{cases}$$

Our Main Result

Theorem (G-R)

Let $f(z) \in M_k^!$, $0 > k \in 2\mathbb{Z}$ have integral principal part. Denote the n^{th} symmetric function in the singular moduli of discriminant d for ∂f by $S_f(n; d)$. Let

$$\mathsf{B}(n,k):=egin{cases} rac{-nk}{4} & ext{if } nk\in 4\mathbb{Z}\ rac{1}{4}(-nk+2k-2) & ext{otherwise.} \end{cases}$$

Then if (p, d) = 1, we have that $S_f(n; d)$ is p-integral. If p|d is good for (k, N), we have that

$$p^{B(n,k)} \cdot S_f(n; d)$$
 is p-integral.

Special Cases

Corollary

For any $f(z) \in M^!_{-2}$ with integral principal part, we have that $\mathcal{S}_f(3;d) \in \mathbb{Z}.$

Special Cases

Corollary

For any $f(z) \in M_{-2}^!$ with integral principal part, we have that

 $\mathcal{S}_f(3; d) \in \mathbb{Z}.$

Remark

This theorem is sharp.

• Use Newton's identities to reduce to sums of powers.

• Use Newton's identities to reduce to sums of powers.

• Unfortunately, powers of Maass forms are usually not finite sums of Maass forms.

Sketch of Proof

• Use Newton's identities to reduce to sums of powers.

• Unfortunately, powers of Maass forms are usually not finite sums of Maass forms.

• We prove the following fact.

The Spectral Decomposition

Theorem (G-R)

Let F be a product of "raises" of modular forms. Then there are modular forms $g_j \in M^!_{k-2j}$ such that

The Spectral Decomposition

Theorem (G-R)

Let F be a product of "raises" of modular forms. Then there are modular forms $g_j \in M^!_{k-2j}$ such that

$$F=\sum_{j=0}^{E}R^{j}g_{j},$$

The Spectral Decomposition

Theorem (G-R)

Let F be a product of "raises" of modular forms. Then there are modular forms $g_j \in M^!_{k-2j}$ such that

$$F=\sum_{j=0}^{E}R^{j}g_{j},$$

Remark

The proof gives an explicit algorithm for computing the forms g_i .

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Sketch of Proof (cont).

 Work of Duke and Jenkins allows us to study integrality of traces for ∂f when f is a negative weight modular form.

Sketch of Proof (cont).

 Work of Duke and Jenkins allows us to study integrality of traces for ∂f when f is a negative weight modular form.

• Bounding denominators on each piece gives a naïve bound.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Sketch of Proof (cont).

 Work of Duke and Jenkins allows us to study integrality of traces for ∂f when f is a negative weight modular form.

• Bounding denominators on each piece gives a naïve bound.

• However, this falls far short of our theorem.

• Obstruction 1: Certain weights in the decomposition give the wrong denominators.

• Obstruction 1: Certain weights in the decomposition give the wrong denominators.

• We prove a vanishing condition on which forms in the decomposition actually appear.

- Obstruction 1: Certain weights in the decomposition give the wrong denominators.
- We prove a vanishing condition on which forms in the decomposition actually appear.
- Obstruction 2: The coefficients $c_{i,j}$ in the previous theorem also introduce artificial denominators.

- Obstruction 1: Certain weights in the decomposition give the wrong denominators.
- We prove a vanishing condition on which forms in the decomposition actually appear.
- Obstruction 2: The coefficients $c_{i,j}$ in the previous theorem also introduce artificial denominators.
- We show that they cancel using the action of the Hecke algebra on Poincaré series.

Q.E.D.

• Using the iterated lowering operator L^n , for large n this kills F.

• Using the iterated lowering operator L^n , for large *n* this kills *F*.

• Using the intertwining properties of the Maass lowering and raising operators, we get the recursion:

- Using the iterated lowering operator L^n , for large *n* this kills *F*.
- Using the intertwining properties of the Maass lowering and raising operators, we get the recursion:

$$g_E = \frac{L^E F}{c_{E,E}},$$

- Using the iterated lowering operator L^n , for large n this kills F.
- Using the intertwining properties of the Maass lowering and raising operators, we get the recursion:

$$g_E = \frac{L^E F}{c_{E,E}},$$

$$g_i = \frac{1}{c_{i,i}} \left(L^i F - \sum_{j=i+1}^E c_{i,j} R^{j-i} g_j \right)$$

- Using the iterated lowering operator L^n , for large n this kills F.
- Using the intertwining properties of the Maass lowering and raising operators, we get the recursion:

$$g_E = \frac{L^E F}{c_{E,E}},$$

$$g_i = \frac{1}{c_{i,i}} \left(L^i F - \sum_{j=i+1}^E c_{i,j} R^{j-i} g_j \right).$$

Here

$$c_{i,j} := \frac{j!(-k+j+i)!}{(j-i)!(-k+j)!}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ のへで

Work of Duke and Jenkins

Let

$\mathrm{Tr}_{d,D}^*(f) := (-1)^{\lfloor \frac{\hat{s}-1}{2} \rfloor} |d|^{\frac{-\hat{s}}{2}} |D|^{\frac{\hat{s}-1}{2}} \, \mathrm{Tr}_{d,D}(\partial f).$

Work of Duke and Jenkins

• Let
$$\mathsf{Tr}^*_{d,D}(f) := (-1)^{\lfloor \frac{s}{2} \rfloor} |d|^{\frac{-s}{2}} |D|^{\frac{s-1}{2}} \operatorname{Tr}_{d,D}(\partial f).$$

• They define the *D*th Zagier lift of *f*:

$$\mathfrak{Z}_D(f):=\sum_{m\geq 0}b(m)q^{-m}+\sum_{dD<0}\mathsf{Tr}^*_{d,D}(f)q^{|d|}.$$

Duke and Jenkins' Theorem

Theorem (Duke-Jenkins)

Suppose that $f \in M_k^!$, $k \le 0$. If $f \in \mathbb{Z}[[q]]$, then $\mathfrak{Z}(f)$ is a half-integral weight modular form with integral coefficients.

A Useful Vanishing Criterion

Definition

Let $0 > k \in 2\mathbb{Z}$ and $n \in \mathbb{N}$. We say *m* is a bad weight for (k, n) if *m* is of the form kn + 4i + 2 for $0 \le i \le -\frac{k}{2} - 1$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

A Useful Vanishing Criterion

Definition

Let $0 > k \in 2\mathbb{Z}$ and $n \in \mathbb{N}$. We say *m* is a bad weight for (k, n) if *m* is of the form kn + 4i + 2 for $0 \le i \le -\frac{k}{2} - 1$.

Theorem (G-R)

Let $f \in M_k^!$ and consider the product $F = (\partial f)^n$. Decompose $F = \sum \partial(g_i)$. Then if g_i has bad weight for (k, n), $g_i \equiv 0$.
Rankin-Cohen Brackets

• Let $f \in M_k^!$, $g \in M_\ell^!$, $n \in \mathbb{N}$. The n^{th} Rankin-Cohen bracket is

Rankin-Cohen Brackets

• Let $f \in M_k^!$, $g \in M_\ell^!$, $n \in \mathbb{N}$. The n^{th} Rankin-Cohen bracket is

$$[f,g]_n^{(k,\ell)} := \sum_{r+s=n} (-1)^r \binom{n+k-1}{s} \binom{n+\ell-1}{r} f^{(r)} \cdot g^{(s)}.$$

Rankin-Cohen Brackets

• Let $f \in M_k^!$, $g \in M_\ell^!$, $n \in \mathbb{N}$. The n^{th} Rankin-Cohen bracket is $[f,g]_n^{(k,\ell)} := \sum_{r+s=n} (-1)^r \binom{n+k-1}{s} \binom{n+\ell-1}{r} f^{(r)} \cdot g^{(s)}.$

• This gives an (essentially unique) map

$$[\cdot,\cdot]_n^{(k),(\ell)}: M_k^!\otimes M_\ell^! \to M_{k+\ell+2n}^!$$

Products of Two Forms

• We need a vanishing condition for the product of two forms.

Products of Two Forms

• We need a vanishing condition for the product of two forms.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

• We can expand in terms of Rankin-Cohen brackets.

Products of Two Forms

- We need a vanishing condition for the product of two forms.
- We can expand in terms of Rankin-Cohen brackets.
- Using a calculation of Beyerl-James-Trentacoste-Xue, this reduces to a binomial sum identity, for *j* odd

$$\sum_{m=0}^{s} (-1)^{(j+m)} \cdot \frac{\binom{m+r}{j}\binom{s}{m}\binom{m-r-1}{r+m-j}}{\binom{-r-2s+m+j-1}{m+r-j}} = 0.$$

Obstruction 2: Lining Up Principal Parts

• Raise the Zagier lifts of the pieces to the same weight and let:

$$Z(\tau) := \sum_{t=0}^{\lfloor \frac{E+1}{2} \rfloor} (-1)^{M+t} R^{M+t} \mathfrak{Z}_1(g_{2t-1}) + \sum_{t=0}^{M} (-1)^{M+t} R^{M-t} \mathfrak{Z}_1(g_{2t}).$$

Obstruction 2: Lining Up Principal Parts

• Raise the Zagier lifts of the pieces to the same weight and let:

$$Z(\tau) := \sum_{t=0}^{\lfloor \frac{E+1}{2} \rfloor} (-1)^{M+t} R^{M+t} \mathfrak{Z}_1(g_{2t-1}) + \sum_{t=0}^{M} (-1)^{M+t} R^{M-t} \mathfrak{Z}_1(g_{2t}).$$

• By comparison with *F*, we observe that the holomorphic part *Z*⁺ of *Z* has integral principal part.

Obstruction 2: Lining Up Principal Parts

• Raise the Zagier lifts of the pieces to the same weight and let:

$$Z(\tau) := \sum_{t=0}^{\lfloor \frac{E+1}{2} \rfloor} (-1)^{M+t} R^{M+t} \mathfrak{Z}_1(g_{2t-1}) + \sum_{t=0}^{M} (-1)^{M+t} R^{M-t} \mathfrak{Z}_1(g_{2t}).$$

- By comparison with *F*, we observe that the holomorphic part *Z*⁺ of *Z* has integral principal part.
- If all the coefficients of Z^+ are integral, then the $c_{i,j}$ -denominators will cancel.

• Maass-Poincaré series provide convenient bases.

- Maass-Poincaré series provide convenient bases.
- Thus, for any $F(au) = \sum a(n)q^n \in M^!_{-2k}$ we can write

- Maass-Poincaré series provide convenient bases.
- Thus, for any $F(au) = \sum a(n)q^n \in M^!_{-2k}$ we can write

$$F = \sum_{n < 0} a(n) n^{1+2k} f_{-2k,1} | T(n).$$

- Maass-Poincaré series provide convenient bases.
- Thus, for any $F(au) = \sum a(n)q^n \in M^!_{-2k}$ we can write

$$F = \sum_{n < 0} a(n) n^{1+2k} f_{-2k,1} | T(n).$$

• The Zagier lift is equivariant with the Hecke action:

$$\mathfrak{Z}_D(f|T(n)) = \mathfrak{Z}_D(f)|T(n^2).$$

- ロ ト - 4 回 ト - 4 □ - 4

• For the next few slides, we suppose k and n are positive integers with k even.

• For the next few slides, we suppose k and n are positive integers with k even.

• We assume p is ordinary for all eigenforms in a basis of S_k .

(日) (日) (日) (日) (日) (日) (日) (日)

Theorem (G-R)

Then is a Hecke operator \mathfrak{H}_n such that

Theorem (G-R)

Then is a Hecke operator \mathfrak{H}_n such that

$$f_{2-k,1}|\mathfrak{H}_n\in M^!_{2-k},$$

Theorem (G-R)

Then is a Hecke operator \mathfrak{H}_n such that

$$f_{2-k,1}|\mathfrak{H}_n\in M^!_{2-k}, \qquad f_{k,1}|\mathfrak{H}_n\in\mathbb{Z}((q),$$

Theorem (G-R)

Then is a Hecke operator \mathfrak{H}_n such that

$$f_{2-k,1}|\mathfrak{H}_n\in M^!_{2-k}, \qquad f_{k,1}|\mathfrak{H}_n\in\mathbb{Z}((q),$$

and $f_{k,1}|\mathfrak{H}_n \equiv q^{-1} + O(q) \pmod{p^n}$. Any such \mathfrak{H}_n satisfies:

Theorem (G-R)

Then is a Hecke operator \mathfrak{H}_n such that

$$f_{2-k,1}|\mathfrak{H}_n \in M^!_{2-k}, \qquad f_{k,1}|\mathfrak{H}_n \in \mathbb{Z}((q),$$

and $f_{k,1}|\mathfrak{H}_n \equiv q^{-1} + O(q) \pmod{p^n}$. Any such \mathfrak{H}_n satisfies:

If f_{2−k,1}|H is weakly holomorphic and f_{k,1}|H has integer coefficients, then

Theorem (G-R)

Then is a Hecke operator \mathfrak{H}_n such that

$$f_{2-k,1}|\mathfrak{H}_n \in M^!_{2-k}, \qquad f_{k,1}|\mathfrak{H}_n \in \mathbb{Z}((q),$$

and $f_{k,1}|\mathfrak{H}_n \equiv q^{-1} + O(q) \pmod{p^n}$. Any such \mathfrak{H}_n satisfies:

• If $f_{2-k,1}|H$ is weakly holomorphic and $f_{k,1}|H$ has integer coefficients, then $(f_{k,1}|\mathfrak{H}_n)|H \equiv f_{k,1}|H \pmod{p^n}$.

Theorem (G-R)

Then is a Hecke operator \mathfrak{H}_n such that

$$f_{2-k,1}|\mathfrak{H}_n \in M^!_{2-k}, \qquad f_{k,1}|\mathfrak{H}_n \in \mathbb{Z}((q),$$

and $f_{k,1}|\mathfrak{H}_n \equiv q^{-1} + O(q) \pmod{p^n}$. Any such \mathfrak{H}_n satisfies:

• If $f_{2-k,1}|H$ is weakly holomorphic and $f_{k,1}|H$ has integer coefficients, then $(f_{k,1}|\mathfrak{H}_n)|H \equiv f_{k,1}|H \pmod{p^n}$.

2 If \mathfrak{H}_n and \mathfrak{H}'_n are two such operators, then

$$f_{k,1}|\mathfrak{H}_n \equiv f_{k,1}|\mathfrak{H}'_n \pmod{p^n}.$$

Theorem (G-R)

Then is a Hecke operator \mathfrak{H}_n such that

$$f_{2-k,1}|\mathfrak{H}_n \in M^!_{2-k}, \qquad f_{k,1}|\mathfrak{H}_n \in \mathbb{Z}((q),$$

and $f_{k,1}|\mathfrak{H}_n \equiv q^{-1} + O(q) \pmod{p^n}$. Any such \mathfrak{H}_n satisfies:

If f_{2-k,1}|H is weakly holomorphic and f_{k,1}|H has integer coefficients, then (f_{k,1}|𝔅_n) |H ≡ f_{k,1}|H (mod pⁿ).

2 If \mathfrak{H}_n and \mathfrak{H}'_n are two such operators, then

$$f_{k,1}|\mathfrak{H}_n \equiv f_{k,1}|\mathfrak{H}'_n \pmod{p^n}.$$

• If $(f_{k,1}|\mathfrak{H}_n) | H \equiv 0 + O(q) \pmod{p^m}$ for some $m \le n$, then $(f_{k,1}|\mathfrak{H}_n) | H \equiv 0 \pmod{p^m}$.

Corollary

If $f_{k,1}|H$ has integer coefficients, p is ordinary for all eigenforms in a basis of S_k , and $f_{k,1}|H \equiv 0 + O(q) \pmod{p^n}$, then

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Corollary

If $f_{k,1}|H$ has integer coefficients, p is ordinary for all eigenforms in a basis of S_k , and $f_{k,1}|H \equiv 0 + O(q) \pmod{p^n}$, then

 $f_{k,1}|H\equiv 0\pmod{p^n}.$

Corollary

If $f_{k,1}|H$ has integer coefficients, p is ordinary for all eigenforms in a basis of S_k , and $f_{k,1}|H \equiv 0 + O(q) \pmod{p^n}$, then

$$f_{k,1}|H\equiv 0\pmod{p^n}.$$

• The holomorphic part of $\mathcal{Z}_D(f)$ has integral principal part.

Corollary

If $f_{k,1}|H$ has integer coefficients, p is ordinary for all eigenforms in a basis of S_k , and $f_{k,1}|H \equiv 0 + O(q) \pmod{p^n}$, then

$$f_{k,1}|H\equiv 0\pmod{p^n}.$$

- The holomorphic part of $\mathcal{Z}_D(f)$ has integral principal part.
- Use induction to extend the corollary to linear combinations.

Our Main Theorem

Theorem (G-R)

Let $f(z) \in M_k^!$, $0 > k \in 2\mathbb{Z}$ have integral principal part. Denote the n^{th} symmetric function in the singular moduli of discriminant d for ∂f by $S_f(n; d)$. Let

$${\mathcal B}(n,k):=egin{cases} rac{-nk}{4} & ext{if } nk\in 4{\mathbb Z}\ rac{1}{4}(-nk+2k-2) & ext{otherwise}. \end{cases}$$

Our Main Theorem

Theorem (G-R)

Let $f(z) \in M_k^!$, $0 > k \in 2\mathbb{Z}$ have integral principal part. Denote the n^{th} symmetric function in the singular moduli of discriminant d for ∂f by $S_f(n; d)$. Let

$$\mathsf{B}(n,k):=egin{cases} rac{-nk}{4} & ext{if } nk\in 4\mathbb{Z}\ rac{1}{4}(-nk+2k-2) & ext{otherwise.} \end{cases}$$

Then if (p, d) = 1, we have that $S_f(n; d)$ is p-integral. If p|d is good for (k, N), we have that

$$p^{B(n,k)} \cdot S_f(n; d)$$
 is p-integral.