Class Polynomials for Non-holomorphic Modular Functions

Michael Griffin and Larry Rolen

Emory University

The Modular Invariant and its Special Values

- The j-function is an important example of a modular function

$$
j(\tau)=q^{-1}+744+196884 q+21493760 q^{2}+\ldots \quad\left(q:=e^{2 \pi i \tau}\right)
$$

The Modular Invariant and its Special Values

- The j-function is an important example of a modular function

$$
j(\tau)=q^{-1}+744+196884 q+21493760 q^{2}+\ldots \quad\left(q:=e^{2 \pi i \tau}\right) .
$$

- Singular moduli are values of the j-invariant at quadratic irrationalities.

The Modular Invariant and its Special Values

- The j-function is an important example of a modular function

$$
j(\tau)=q^{-1}+744+196884 q+21493760 q^{2}+\ldots \quad\left(q:=e^{2 \pi i \tau}\right)
$$

- Singular moduli are values of the j-invariant at quadratic irrationalities.
- Here are several examples:

$$
j(i)=1728, \quad j\left(\frac{1+i \sqrt{7}}{2}\right)=-3375, \quad j(i \sqrt{2})=8000
$$

Classical Theory of Complex Multiplication

- Singular moduli generate "class fields".

Classical Theory of Complex Multiplication

- Singular moduli generate "class fields".
- Strange consequence:

$$
e^{\pi \sqrt{163}}=262537412640768743.99999999999925 \in \mathbb{Z}+\epsilon^{2} .
$$

Hilbert Class Polynomials

Definition

The class polynomial of discriminant D is:

Hilbert Class Polynomials

Definition

The class polynomial of discriminant D is:

$$
H_{D}(x):=\prod_{1 \leq i \leq h(D)}\left(x-j\left(\tau_{D, i}\right)\right) \in \mathbb{Z}[x] .
$$

Hilbert Class Polynomials

Definition

The class polynomial of discriminant D is:

$$
H_{D}(x):=\prod_{1 \leq i \leq h(D)}\left(x-j\left(\tau_{D, i}\right)\right) \in \mathbb{Z}[x] .
$$

Theorem

For all $D, H_{D}(x)$ is irreducible in $\mathbb{Z}[x]$ and its splitting field is a class field.

Computing Hilbert Class Polynomials

- Computing these polynomials has a long history.

Computing Hilbert Class Polynomials

- Computing these polynomials has a long history.
- Weber defined several eponymous functions in terms of the η-function and used their properties to compute examples.

Computing Hilbert Class Polynomials

- Computing these polynomials has a long history.
- Weber defined several eponymous functions in terms of the η-function and used their properties to compute examples.
- Zagier's seminal paper Traces of Singular Moduli gives an automatic procedure for computing class polynomials.

Zagier Grids

- For every $d \geq 0, \quad d \equiv 0,3(\bmod 4)$, there is a unique

Zagier Grids

- For every $d \geq 0, \quad d \equiv 0,3(\bmod 4)$, there is a unique

$$
f_{d}(\tau)=q^{-d}+\sum_{D>0} A(D, d) q^{D} \in M_{\frac{1}{2}}^{!}(4) .
$$

Zagier Grids

- For every $d \geq 0, \quad d \equiv 0,3(\bmod 4)$, there is a unique

$$
f_{d}(\tau)=q^{-d}+\sum_{D>0} A(D, d) q^{D} \in M_{\frac{1}{2}}^{!}(4) .
$$

- For example,

Zagier Grids

- For every $d \geq 0, \quad d \equiv 0,3(\bmod 4)$, there is a unique

$$
f_{d}(\tau)=q^{-d}+\sum_{D>0} A(D, d) q^{D} \in M_{\frac{1}{2}}^{!}(4) .
$$

- For example,

$$
f_{0}=1+2 q+2 q^{4}+2 q^{9}+\ldots
$$

Zagier Grids

- For every $d \geq 0, \quad d \equiv 0,3(\bmod 4)$, there is a unique

$$
f_{d}(\tau)=q^{-d}+\sum_{D>0} A(D, d) q^{D} \in M_{\frac{1}{2}}^{!}(4) .
$$

- For example,

$$
\begin{gathered}
f_{0}=1+2 q+2 q^{4}+2 q^{9}+\ldots \\
f_{3}=q^{-3}-248 q+26752 q^{4}-85995 q^{5}+\ldots
\end{gathered}
$$

Zagier Grids

- For every $d \geq 0, \quad d \equiv 0,3(\bmod 4)$, there is a unique

$$
f_{d}(\tau)=q^{-d}+\sum_{D>0} A(D, d) q^{D} \in M_{\frac{1}{2}}^{!}(4) .
$$

- For example,

$$
\begin{gathered}
f_{0}=1+2 q+2 q^{4}+2 q^{9}+\ldots \\
f_{3}=q^{-3}-248 q+26752 q^{4}-85995 q^{5}+\ldots \\
f_{4}=q^{-4}+492 q+143376 q^{4}+565760 q^{5}+\ldots
\end{gathered}
$$

Borcherds Products

- Zagier defined "traces of singular moduli", which he proved are often coefficients of modular forms.

Borcherds Products

- Zagier defined "traces of singular moduli", which he proved are often coefficients of modular forms.

Theorem (Borcherds-Zagier)
$H_{D}(j(\tau))=q^{-H(d)} \prod_{n=1}^{\infty}\left(1-q^{n}\right)^{A\left(n^{2}, d\right)}$.

Borcherds Products

- Zagier defined "traces of singular moduli", which he proved are often coefficients of modular forms.

Theorem (Borcherds-Zagier)
$H_{D}(j(\tau))=q^{-H(d)} \prod_{n=1}^{\infty}\left(1-q^{n}\right)^{A\left(n^{2}, d\right)}$.

Remark

(1) Zagier's theory provides a new proof of Borcherds' theorem and he shows that $A(1, d)$ is the trace of singular moduli.

Borcherds Products

- Zagier defined "traces of singular moduli", which he proved are often coefficients of modular forms.

Theorem (Borcherds-Zagier)
$H_{D}(j(\tau))=q^{-H(d)} \prod_{n=1}^{\infty}\left(1-q^{n}\right)^{A\left(n^{2}, d\right)}$.

Remark

(1) Zagier's theory provides a new proof of Borcherds' theorem and he shows that $A(1, d)$ is the trace of singular moduli.
(2) Zagier's work applies to a much more general class of forms.

Generalizations

- Zagier also defines numerous generalizations.

Generalizations

- Zagier also defines numerous generalizations.
(1) "Different weights".

Generalizations

- Zagier also defines numerous generalizations.
(1) "Different weights".
(2) Different levels.

Generalizations

- Zagier also defines numerous generalizations.
(1) "Different weights".
(2) Different levels.
(3) "Twisted" traces.

Generalizations

- Zagier also defines numerous generalizations.
(1) "Different weights".
(2) Different levels.
(3) "Twisted" traces.
- In this talk, we will be interested in the class polynomials corresponding to "negative weights".

Generalizations

- Zagier also defines numerous generalizations.
(1) "Different weights".
(2) Different levels.
(3) "Twisted" traces.
- In this talk, we will be interested in the class polynomials corresponding to "negative weights".

Example

These appear in recent work of Bruinier-Ono on $p(n)$.

Traces of Singular Moduli

- For a positive definite quadratic form $Q=a x^{2}+b x y+c y^{2}$, let

Traces of Singular Moduli

- For a positive definite quadratic form $Q=a x^{2}+b x y+c y^{2}$, let

$$
\tau_{Q}:=\frac{-b+\sqrt{b^{2}-4 a c}}{2 a} \in \mathbb{H} .
$$

Traces of Singular Moduli

- For a positive definite quadratic form $Q=a x^{2}+b x y+c y^{2}$, let

$$
\tau_{Q}:=\frac{-b+\sqrt{b^{2}-4 a c}}{2 a} \in \mathbb{H} .
$$

Definition

Let Q_{d} be the set of positive definite binary quadratic forms of discriminant d. For a modular function F, define the trace:

$$
\operatorname{Tr}_{d}(F):=\sum_{Q \in Q_{d} / \Gamma} w_{Q}^{-1} F\left(\tau_{Q}\right) .
$$

An Example of Zagier's Theory

Theorem (Zagier)
Let

$$
J(z):=j(z)-744
$$

and

$$
g(z):=\theta_{1}(z) \frac{E_{4}(4 z)}{\eta(4 z)^{6}}=\sum B(d) q^{n}
$$

For any positive integer $d \equiv 0,3(\bmod 4)$, we have

An Example of Zagier's Theory

Theorem (Zagier)
Let

$$
J(z):=j(z)-744
$$

and

$$
g(z):=\theta_{1}(z) \frac{E_{4}(4 z)}{\eta(4 z)^{6}}=\sum B(d) q^{n}
$$

For any positive integer $d \equiv 0,3(\bmod 4)$, we have

$$
\operatorname{Tr}_{-d}(J(z))=-B(d) .
$$

Another Example; $K:=\partial\left(\frac{E_{A} E_{E}}{\Delta}\right)$

Another Example; $K:=\partial\left(\frac{E_{4} E_{6}}{\Delta}\right)$

Define $H_{d}(K ; x):=\prod_{Q \in Q_{d} / \Gamma}\left(x-K\left(\tau_{Q}\right)\right)$.

Another Example; $K:=\partial\left(\frac{E_{4} E_{6}}{\Delta}\right)$

Define $H_{d}(K ; x):=\prod_{Q \in Q_{d} / \Gamma}\left(x-K\left(\tau_{Q}\right)\right)$.

- $H_{-23}(K ; x)=x^{3}-23261998 x^{2}-\frac{3945271661}{23} x-7693330369871$.

Another Example; $K:=\partial\left(\frac{E_{4} E_{6}}{\Delta}\right)$

Define $H_{d}(K ; x):=\prod_{Q \in Q_{d} / \Gamma}\left(x-K\left(\tau_{Q}\right)\right)$.

- $H_{-23}(K ; x)=x^{3}-23261998 x^{2}-\frac{3945271661}{23} x-7693330369871$.
- $H_{-31}(K ; x)=$
$x^{3}-3723569 x^{2}-\frac{61346290410}{31} x+1143159756791823$.

Another Example; $K:=\partial\left(\frac{E_{4} E_{6}}{\Delta}\right)$

Define $H_{d}(K ; x):=\prod_{Q \in Q_{d} / \Gamma}\left(x-K\left(\tau_{Q}\right)\right)$.

- $H_{-23}(K ; x)=x^{3}-23261998 x^{2}-\frac{3945271661}{23} x-7693330369871$.
- $H_{-31}(K ; x)=$

$$
x^{3}-3723569 x^{2}-\frac{61346290410}{31} x+1143159756791823
$$

- $H_{-39}(K ; x)=x^{4}-314635932 x^{3}+\frac{8602826222178}{39} x^{2}$
$-84029669803810035 x+\frac{95749227855890319016073}{39^{2}}$.

Another Example; $K:=\partial\left(\frac{E_{4} E_{6}}{\Delta}\right)$

Define $H_{d}(K ; x):=\prod_{Q \in Q_{d} / \Gamma}\left(x-K\left(\tau_{Q}\right)\right)$.

- $H_{-23}(K ; x)=x^{3}-23261998 x^{2}-\frac{3945271661}{23} x-7693330369871$.
- $H_{-31}(K ; x)=$

$$
x^{3}-3723569 x^{2}-\frac{61346290410}{31} x+1143159756791823
$$

- $H_{-39}(K ; x)=x^{4}-314635932 x^{3}+\frac{8602826222178}{39} x^{2}$
$-84029669803810035 x+\frac{95749227855890319016073}{39^{2}}$.

Remark

It appears that the third symmetric function is always an integer.

A Natural Question

Theorem
The fields generated by these singular moduli are contained in the "correct" class fields.

A Natural Question

Theorem

The fields generated by these singular moduli are contained in the "correct" class fields.

Question (Zagier ?)

What is the obstruction to integrality of these coefficients, and what is the pattern of their denominators?

A Natural Question

Theorem

The fields generated by these singular moduli are contained in the "correct" class fields.

Question (Zagier ?)

What is the obstruction to integrality of these coefficients, and what is the pattern of their denominators?

Answer

Our theorem predicts the correct/sharp denominators.

Traces for Negative Weight Forms

- The Maass raising operator, raises the weight by 2 :

Traces for Negative Weight Forms

- The Maass raising operator, raises the weight by 2 :

$$
R_{k}:=2 i \frac{\partial}{\partial z}+k y^{-1}
$$

Traces for Negative Weight Forms

- The Maass raising operator, raises the weight by 2 :

$$
R_{k}:=2 i \frac{\partial}{\partial z}+k y^{-1}
$$

- For f of negative weight, ∂f is the iterated raising to weight 0 .

Our Main Result

Theorem (G-R)
Let $f(z) \in M_{k}^{!}, 0>k \in 2 \mathbb{Z}$ have integral principal part. Denote the $n^{\text {th }}$ symmetric function in the singular moduli of discriminant d for ∂f by $\mathcal{S}_{f}(n ; d)$. Let

$$
B(n, k):= \begin{cases}\frac{-n k}{4} & \text { if } n k \in 4 \mathbb{Z} \\ \frac{1}{4}(-n k+2 k-2) & \text { otherwise }\end{cases}
$$

Our Main Result

Theorem (G-R)

Let $f(z) \in M_{k}^{!}, 0>k \in 2 \mathbb{Z}$ have integral principal part. Denote the $n^{\text {th }}$ symmetric function in the singular moduli of discriminant d for ∂f by $\mathcal{S}_{f}(n ; d)$. Let

$$
B(n, k):= \begin{cases}\frac{-n k}{4} & \text { if } n k \in 4 \mathbb{Z} \\ \frac{1}{4}(-n k+2 k-2) & \text { otherwise }\end{cases}
$$

Then if $(p, d)=1$, we have that $\mathcal{S}_{f}(n ; d)$ is p-integral. If $p \mid d$ is good for (k, N), we have that

$$
p^{B(n, k)} \cdot \mathcal{S}_{f}(n ; d) \text { is p-integral. }
$$

Special Cases

Corollary
For any $f(z) \in M_{-2}^{!}$with integral principal part, we have that

$$
\mathcal{S}_{f}(3 ; d) \in \mathbb{Z}
$$

Special Cases

Corollary
For any $f(z) \in M_{-2}^{!}$with integral principal part, we have that

$$
\mathcal{S}_{f}(3 ; d) \in \mathbb{Z}
$$

Remark

This theorem is sharp.

Sketch of Proof

- Use Newton's identities to reduce to sums of powers.

Sketch of Proof

- Use Newton's identities to reduce to sums of powers.
- Unfortunately, powers of Maass forms are usually not finite sums of Maass forms.

Sketch of Proof

- Use Newton's identities to reduce to sums of powers.
- Unfortunately, powers of Maass forms are usually not finite sums of Maass forms.
- We prove the following fact.

The Spectral Decomposition

Theorem (G-R)
Let F be a product of "raises" of modular forms. Then there are modular forms $g_{j} \in M_{k-2 j}^{\prime}$ such that

The Spectral Decomposition

Theorem (G-R)

Let F be a product of "raises" of modular forms. Then there are modular forms $g_{j} \in M_{k-2 j}^{!}$such that

$$
F=\sum_{j=0}^{E} R^{j} g_{j}
$$

The Spectral Decomposition

Theorem (G-R)

Let F be a product of "raises" of modular forms. Then there are modular forms $g_{j} \in M_{k-2 j}^{\prime}$ such that

$$
F=\sum_{j=0}^{E} R^{j} g_{j}
$$

Remark

The proof gives an explicit algorithm for computing the forms g_{j}.

Sketch of Proof (cont).

- Work of Duke and Jenkins allows us to study integrality of traces for ∂f when f is a negative weight modular form.

Sketch of Proof (cont).

- Work of Duke and Jenkins allows us to study integrality of traces for ∂f when f is a negative weight modular form.
- Bounding denominators on each piece gives a naïve bound.

Sketch of Proof (cont).

- Work of Duke and Jenkins allows us to study integrality of traces for ∂f when f is a negative weight modular form.
- Bounding denominators on each piece gives a naïve bound.
- However, this falls far short of our theorem.

Two Intervening Problems

- Obstruction 1: Certain weights in the decomposition give the wrong denominators.

Two Intervening Problems

- Obstruction 1: Certain weights in the decomposition give the wrong denominators.
- We prove a vanishing condition on which forms in the decomposition actually appear.

Two Intervening Problems

- Obstruction 1: Certain weights in the decomposition give the wrong denominators.
- We prove a vanishing condition on which forms in the decomposition actually appear.
- Obstruction 2: The coefficients $c_{i, j}$ in the previous theorem also introduce artificial denominators.

Two Intervening Problems

- Obstruction 1: Certain weights in the decomposition give the wrong denominators.
- We prove a vanishing condition on which forms in the decomposition actually appear.
- Obstruction 2: The coefficients $c_{i, j}$ in the previous theorem also introduce artificial denominators.
- We show that they cancel using the action of the Hecke algebra on Poincaré series.
Q.E.D.

Proof of the Spectral Decomposition

- Using the iterated lowering operator L^{n}, for large n this kills F.

Proof of the Spectral Decomposition

- Using the iterated lowering operator L^{n}, for large n this kills F.
- Using the intertwining properties of the Maass lowering and raising operators, we get the recursion:

Proof of the Spectral Decomposition

- Using the iterated lowering operator L^{n}, for large n this kills F.
- Using the intertwining properties of the Maass lowering and raising operators, we get the recursion:

$$
g_{E}=\frac{L^{E} F}{c_{E, E}},
$$

Proof of the Spectral Decomposition

- Using the iterated lowering operator L^{n}, for large n this kills F.
- Using the intertwining properties of the Maass lowering and raising operators, we get the recursion:

$$
\begin{gathered}
g_{E}=\frac{L^{E} F}{c_{E, E}} \\
g_{i}=\frac{1}{c_{i, i}}\left(L^{i} F-\sum_{j=i+1}^{E} c_{i, j} R^{j-i} g_{j}\right) .
\end{gathered}
$$

Proof of the Spectral Decomposition

- Using the iterated lowering operator L^{n}, for large n this kills F.
- Using the intertwining properties of the Maass lowering and raising operators, we get the recursion:

$$
\begin{gathered}
g_{E}=\frac{L^{E} F}{c_{E, E}} \\
g_{i}=\frac{1}{c_{i, i}}\left(L^{i} F-\sum_{j=i+1}^{E} c_{i, j} R^{j-i} g_{j}\right) .
\end{gathered}
$$

- Here

$$
c_{i, j}:=\frac{j!(-k+j+i)!}{(j-i)!(-k+j)!} .
$$

Work of Duke and Jenkins

- Let

Work of Duke and Jenkins

- Let

$$
\operatorname{Tr}_{d, D}^{*}(f):=(-1)^{\left.\frac{\hat{L}}{}_{\frac{\hat{1}}{2}}^{2}\right\rfloor}|d|^{\frac{-\hat{s}}{2}}|D|^{\frac{\hat{\xi}-1}{2}} \operatorname{Tr}_{d, D}(\partial f) .
$$

- They define the $D^{\text {th }}$ Zagier lift of f :

$$
\mathfrak{Z}_{D}(f):=\sum_{m \geq 0} b(m) q^{-m}+\sum_{d D<0} \operatorname{Tr}_{d, D}^{*}(f) q^{|d|}
$$

Duke and Jenkins' Theorem

Theorem (Duke-Jenkins)
Suppose that $f \in M_{k}^{!}, k \leq 0$. If $f \in \mathbb{Z}[[q]]$, then $\mathfrak{Z}(f)$ is a half-integral weight modular form with integral coefficients.

A Useful Vanishing Criterion

Definition

Let $0>k \in 2 \mathbb{Z}$ and $n \in \mathbb{N}$. We say m is a bad weight for (k, n) if m is of the form $k n+4 i+2$ for $0 \leq i \leq-\frac{k}{2}-1$.

A Useful Vanishing Criterion

Definition

Let $0>k \in 2 \mathbb{Z}$ and $n \in \mathbb{N}$. We say m is a bad weight for (k, n) if m is of the form $k n+4 i+2$ for $0 \leq i \leq-\frac{k}{2}-1$.

Theorem (G-R)

Let $f \in M_{k}^{!}$and consider the product $F=(\partial f)^{n}$. Decompose $F=\sum \partial\left(g_{i}\right)$. Then if g_{i} has bad weight for $(k, n), g_{i} \equiv 0$.

Rankin-Cohen Brackets

- Let $f \in M_{k}^{!}, g \in M_{\ell}^{!}, n \in \mathbb{N}$. The $n^{\text {th }}$ Rankin-Cohen bracket is

Rankin-Cohen Brackets

- Let $f \in M_{k}^{!}, g \in M_{\ell}^{!}, n \in \mathbb{N}$. The $n^{\text {th }}$ Rankin-Cohen bracket is

$$
[f, g]_{n}^{(k, \ell)}:=\sum_{r+s=n}(-1)^{r}\binom{n+k-1}{s}\binom{n+\ell-1}{r} f^{(r)} \cdot g^{(s)}
$$

Rankin-Cohen Brackets

- Let $f \in M_{k}^{!}, g \in M_{\ell}^{!}, n \in \mathbb{N}$. The $n^{\text {th }}$ Rankin-Cohen bracket is

$$
[f, g]_{n}^{(k, \ell)}:=\sum_{r+s=n}(-1)^{r}\binom{n+k-1}{s}\binom{n+\ell-1}{r} f^{(r)} \cdot g^{(s)}
$$

- This gives an (essentially unique) map

$$
[\cdot, \cdot]_{n}^{(k),(\ell)}: M_{k}^{!} \otimes M_{\ell}^{!} \rightarrow M_{k+\ell+2 n}^{!} .
$$

Products of Two Forms

- We need a vanishing condition for the product of two forms.

Products of Two Forms

- We need a vanishing condition for the product of two forms.
- We can expand in terms of Rankin-Cohen brackets.

Products of Two Forms

- We need a vanishing condition for the product of two forms.
- We can expand in terms of Rankin-Cohen brackets.
- Using a calculation of Beyerl-James-Trentacoste-Xue, this reduces to a binomial sum identity, for j odd

$$
\sum_{m=0}^{s}(-1)^{(j+m)} \cdot \frac{\binom{m+r}{j}\binom{s}{m}\binom{m-r-1}{r+m-j}}{\binom{-r-2 s+m+j-1}{m+r-j}}=0 .
$$

Obstruction 2: Lining Up Principal Parts

- Raise the Zagier lifts of the pieces to the same weight and let:

$$
Z(\tau):=\sum_{t=0}^{\left\lfloor\frac{E+1}{2}\right\rfloor}(-1)^{M+t} R^{M+t} \mathfrak{Z}_{1}\left(g_{2 t-1}\right)+\sum_{t=0}^{M}(-1)^{M+t} R^{M-t} \mathfrak{Z}_{1}\left(g_{2 t}\right)
$$

Obstruction 2: Lining Up Principal Parts

- Raise the Zagier lifts of the pieces to the same weight and let:

$$
Z(\tau):=\sum_{t=0}^{\left\lfloor\frac{E+1}{2}\right\rfloor}(-1)^{M+t} R^{M+t} \mathfrak{Z}_{1}\left(g_{2 t-1}\right)+\sum_{t=0}^{M}(-1)^{M+t} R^{M-t} \mathfrak{Z}_{1}\left(g_{2 t}\right)
$$

- By comparison with F, we observe that the holomorphic part Z^{+}of Z has integral principal part.

Obstruction 2: Lining Up Principal Parts

- Raise the Zagier lifts of the pieces to the same weight and let:

$$
Z(\tau):=\sum_{t=0}^{\left\lfloor\frac{E+1}{2}\right\rfloor}(-1)^{M+t} R^{M+t} \mathfrak{Z}_{1}\left(g_{2 t-1}\right)+\sum_{t=0}^{M}(-1)^{M+t} R^{M-t} \mathfrak{Z}_{1}\left(g_{2 t}\right)
$$

- By comparison with F, we observe that the holomorphic part Z^{+}of Z has integral principal part.
- If all the coefficients of Z^{+}are integral, then the $c_{i, j}$-denominators will cancel.

Maass-Poincaré Series

- Maass-Poincaré series provide convenient bases.

Maass-Poincaré Series

- Maass-Poincaré series provide convenient bases.
- Thus, for any $F(\tau)=\sum a(n) q^{n} \in M_{-2 k}^{!}$we can write

Maass-Poincaré Series

- Maass-Poincaré series provide convenient bases.
- Thus, for any $F(\tau)=\sum a(n) q^{n} \in M_{-2 k}^{!}$we can write

$$
F=\sum_{n<0} a(n) n^{1+2 k} f_{-2 k, 1} \mid T(n)
$$

Maass-Poincaré Series

- Maass-Poincaré series provide convenient bases.
- Thus, for any $F(\tau)=\sum a(n) q^{n} \in M_{-2 k}^{!}$we can write

$$
F=\sum_{n<0} a(n) n^{1+2 k} f_{-2 k, 1} \mid T(n)
$$

- The Zagier lift is equivariant with the Hecke action:

$$
\mathfrak{Z}_{D}(f \mid T(n))=\mathfrak{Z}_{D}(f) \mid T\left(n^{2}\right) .
$$

Hypotheses

- For the next few slides, we suppose k and n are positive integers with k even.

Hypotheses

- For the next few slides, we suppose k and n are positive integers with k even.
- We assume p is ordinary for all eigenforms in a basis of S_{k}.

p-adic Properties

Theorem (G-R)
Then is a Hecke operator \mathfrak{H}_{n} such that

p-adic Properties

Theorem (G-R)
Then is a Hecke operator \mathfrak{H}_{n} such that

$$
f_{2-k, 1} \mid \mathfrak{H}_{n} \in M_{2-k}^{!},
$$

p-adic Properties

Theorem (G-R)
Then is a Hecke operator \mathfrak{H}_{n} such that

$$
f_{2-k, 1}\left|\mathfrak{H}_{n} \in M_{2-k}^{!}, \quad f_{k, 1}\right| \mathfrak{H}_{n} \in \mathbb{Z}((q)
$$

p-adic Properties

Theorem (G-R)

Then is a Hecke operator \mathfrak{H}_{n} such that

$$
f_{2-k, 1}\left|\mathfrak{H}_{n} \in M_{2-k}^{!}, \quad f_{k, 1}\right| \mathfrak{H}_{n} \in \mathbb{Z}((q)
$$

and $f_{k, 1} \mid \mathfrak{H}_{n} \equiv q^{-1}+O(q)\left(\bmod p^{n}\right)$. Any such \mathfrak{H}_{n} satisfies:

p-adic Properties

Theorem (G-R)

Then is a Hecke operator \mathfrak{H}_{n} such that

$$
f_{2-k, 1}\left|\mathfrak{H}_{n} \in M_{2-k}^{!}, \quad f_{k, 1}\right| \mathfrak{H}_{n} \in \mathbb{Z}((q)
$$

and $f_{k, 1} \mid \mathfrak{H}_{n} \equiv q^{-1}+O(q)\left(\bmod p^{n}\right)$. Any such \mathfrak{H}_{n} satisfies:
(1) If $f_{2-k, 1} \mid H$ is weakly holomorphic and $f_{k, 1} \mid H$ has integer coefficients, then

p-adic Properties

Theorem (G-R)

Then is a Hecke operator \mathfrak{H}_{n} such that

$$
f_{2-k, 1}\left|\mathfrak{H}_{n} \in M_{2-k}^{!}, \quad f_{k, 1}\right| \mathfrak{H}_{n} \in \mathbb{Z}((q)
$$

and $f_{k, 1} \mid \mathfrak{H}_{n} \equiv q^{-1}+O(q)\left(\bmod p^{n}\right)$. Any such \mathfrak{H}_{n} satisfies:
(1) If $f_{2-k, 1} \mid H$ is weakly holomorphic and $f_{k, 1} \mid H$ has integer coefficients, then $\left(f_{k, 1} \mid \mathfrak{H}_{n}\right)\left|H \equiv f_{k, 1}\right| H\left(\bmod p^{n}\right)$.

p-adic Properties

Theorem (G-R)

Then is a Hecke operator \mathfrak{H}_{n} such that

$$
f_{2-k, 1}\left|\mathfrak{H}_{n} \in M_{2-k}^{!}, \quad f_{k, 1}\right| \mathfrak{H}_{n} \in \mathbb{Z}((q)
$$

and $f_{k, 1} \mid \mathfrak{H}_{n} \equiv q^{-1}+O(q)\left(\bmod p^{n}\right)$. Any such \mathfrak{H}_{n} satisfies:
(1) If $f_{2-k, 1} \mid H$ is weakly holomorphic and $f_{k, 1} \mid H$ has integer coefficients, then $\left(f_{k, 1} \mid \mathfrak{H}_{n}\right)\left|H \equiv f_{k, 1}\right| H\left(\bmod p^{n}\right)$.
(2) If \mathfrak{H}_{n} and $\mathfrak{H}_{n}^{\prime}$ are two such operators, then

$$
f_{k, 1}\left|\mathfrak{H}_{n} \equiv f_{k, 1}\right| \mathfrak{H}_{n}^{\prime} \quad\left(\bmod p^{n}\right)
$$

p-adic Properties

Theorem (G-R)

Then is a Hecke operator \mathfrak{H}_{n} such that

$$
f_{2-k, 1}\left|\mathfrak{H}_{n} \in M_{2-k}^{!}, \quad f_{k, 1}\right| \mathfrak{H}_{n} \in \mathbb{Z}((q)
$$

and $f_{k, 1} \mid \mathfrak{H}_{n} \equiv q^{-1}+O(q)\left(\bmod p^{n}\right)$. Any such \mathfrak{H}_{n} satisfies:
(1) If $f_{2-k, 1} \mid H$ is weakly holomorphic and $f_{k, 1} \mid H$ has integer coefficients, then $\left(f_{k, 1} \mid \mathfrak{H}_{n}\right)\left|H \equiv f_{k, 1}\right| H\left(\bmod p^{n}\right)$.
(2) If \mathfrak{H}_{n} and $\mathfrak{H}_{n}^{\prime}$ are two such operators, then

$$
f_{k, 1}\left|\mathfrak{H}_{n} \equiv f_{k, 1}\right| \mathfrak{H}_{n}^{\prime} \quad\left(\bmod p^{n}\right)
$$

(3) If $\left(f_{k, 1} \mid \mathfrak{H}_{n}\right) \mid H \equiv 0+O(q)\left(\bmod p^{m}\right)$ for some $m \leq n$, then $\left(f_{k, 1} \mid \mathfrak{H}_{n}\right) \mid H \equiv 0\left(\bmod p^{m}\right)$.

Integrality of Coefficients

Corollary

If $f_{k, 1} \mid H$ has integer coefficients, p is ordinary for all eigenforms in a basis of S_{k}, and $f_{k, 1} \mid H \equiv 0+O(q)\left(\bmod p^{n}\right)$, then

Integrality of Coefficients

Corollary

If $f_{k, 1} \mid H$ has integer coefficients, p is ordinary for all eigenforms in a basis of S_{k}, and $f_{k, 1} \mid H \equiv 0+O(q)\left(\bmod p^{n}\right)$, then

$$
f_{k, 1} \mid H \equiv 0 \quad\left(\bmod p^{n}\right) .
$$

Integrality of Coefficients

Corollary

If $f_{k, 1} \mid H$ has integer coefficients, p is ordinary for all eigenforms in a basis of S_{k}, and $f_{k, 1} \mid H \equiv 0+O(q)\left(\bmod p^{n}\right)$, then

$$
f_{k, 1} \mid H \equiv 0 \quad\left(\bmod p^{n}\right)
$$

- The holomorphic part of $\mathcal{Z}_{D}(f)$ has integral principal part.

Integrality of Coefficients

Corollary

If $f_{k, 1} \mid H$ has integer coefficients, p is ordinary for all eigenforms in a basis of S_{k}, and $f_{k, 1} \mid H \equiv 0+O(q)\left(\bmod p^{n}\right)$, then

$$
f_{k, 1} \mid H \equiv 0 \quad\left(\bmod p^{n}\right) .
$$

- The holomorphic part of $\mathcal{Z}_{D}(f)$ has integral principal part.
- Use induction to extend the corollary to linear combinations.

Our Main Theorem

Theorem (G-R)

Let $f(z) \in M_{k}^{!}, 0>k \in 2 \mathbb{Z}$ have integral principal part. Denote the $n^{\text {th }}$ symmetric function in the singular moduli of discriminant d for ∂f by $\mathcal{S}_{f}(n ; d)$. Let

$$
B(n, k):= \begin{cases}\frac{-n k}{4} & \text { if } n k \in 4 \mathbb{Z} \\ \frac{1}{4}(-n k+2 k-2) & \text { otherwise }\end{cases}
$$

Our Main Theorem

Theorem (G-R)

Let $f(z) \in M_{k}^{!}, 0>k \in 2 \mathbb{Z}$ have integral principal part. Denote the $n^{\text {th }}$ symmetric function in the singular moduli of discriminant d for ∂f by $\mathcal{S}_{f}(n ; d)$. Let

$$
B(n, k):= \begin{cases}\frac{-n k}{4} & \text { if } n k \in 4 \mathbb{Z} \\ \frac{1}{4}(-n k+2 k-2) & \text { otherwise }\end{cases}
$$

Then if $(p, d)=1$, we have that $\mathcal{S}_{f}(n ; d)$ is p-integral. If $p \mid d$ is good for (k, N), we have that

$$
p^{B(n, k)} \cdot \mathcal{S}_{f}(n ; d) \text { is p-integral. }
$$

