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Abstract

It is shown that a maximizing function u∗ ∈ L2 does exist for the Strichartz inequality
‖eit∂2

xu‖L6
t (L6

x) ≤ S‖u‖L2 , with S > 0 being the sharp constant.

1 Introduction and main result

The L6
t (L

6
x)-Strichartz inequality in one spatial dimension states that there is a constant C > 0

such that
‖eit∂2

xu‖L6
t (L6

x) ≤ C‖u‖L2 for all u ∈ L2 = L2(R;C),

see [12] for instance. The sharp (or best) constant for this estimate is

S := sup

{‖eit∂2
xu‖L6

t (L6
x)

‖u‖L2

: u ∈ L2, u 6= 0

}
= sup

{
‖eit∂2

xu‖L6
t (L6

x) : u ∈ L2, ‖u‖L2 = 1
}
.

Here eit∂2
x denotes the evolution operator of the free Schrödinger equation, so that u(t, x) =

(eit∂2
xu0)(x) by definition solves

iut + uxx = 0, u(0, x) = u0(x). (1.1)

The purpose of this paper is to verify that a maximizing function u∗ ∈ L2 does exist, i.e., u∗ gives
equality in the estimate ‖eit∂2

xu‖L6
t (L6

x) ≤ S‖u‖L2 . Stated differently, ϕ(u∗) = S6 for some u∗ ∈ L2

with ‖u∗‖L2 = 1, where

ϕ(u) = ‖eit∂2
xu‖6

L6
t (L6

x) =

∫

R

∫

R
|(eit∂2

xu)(x)|6 dxdt. (1.2)

The main difficulty of this problem results from the many invariances of ϕ: it is not hard to show
that ϕ(u(· + x0)) = ϕ(u) for x0 ∈ R, ϕ(eixξ0u) = ϕ(u) for ξ0 ∈ R, and moreover ϕ(uλ) = ϕ(u) for
λ > 0, where uλ(x) = λ1/2u(λx); see Corollary 2.3 below. Since all these invariances preserve the
L2-norm, it is in particular not true that every maximizing sequence (uj) for ϕ under the constraint
‖uj‖L2 = 1 converges strongly in L2.

An outline of the proof in this paper that a maximizing function does exist is as follows. First
the concentration compactness principle is applied to the sequence (ûj); the observation that it can
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be helpful to use this principle for the Fourier transforms rather than for the maximizing sequence
itself seems to be new. It found a first application in [8], where a variational problem from non-
linear fiber optics was studied, although it turned out later that the proof could be simplified a
lot and this idea in fact had not to be used. The concentration compactness principle asserts that
basically there are three possible alternatives for a L2-bounded sequence of functions: either it is
tight (in the sense of measures), or it is “vanishing” (it tends to zero uniformly on every interval
of fixed length), or it is “splitting” (into at least two parts with supports widely separated). The
first issue will be to rule out vanishing and splitting. The former is achieved by suitably shifting
the ûj (corresponding to multiplication of uj with an appropriate eixξj) and by rescaling the ûj

(corresponding to a rescaling of the uj) such that

sup
ξ0∈R

∫ ξ0+1

ξ0−1

|ûj|2 dξ =

∫ 1

−1

|ûj|2 dξ =
1

2
, j ∈ N, (1.3)

is satisfied. Note that so far already two of the three invariances have been used. Next it has to be
discussed why splitting of the sequence (ûj) cannot occur. For this we assume that ûj ∼ v̂j + ŵj,
with ‖v̂j‖L2 ∼ γ̂ ∈]0, 1[, ‖ŵj‖L2 ∼ (1 − γ̂), and the supports of v̂j and ŵj widely separated,
say supp(v̂j) ⊂ {ξ : |ξ| ≤ a} and supp(ŵj) ⊂ {ξ : |ξ| ≥ b}. From standard applications of the
concentration compactness principle it is known that due to homogeneity properties of a functional
a contradiction would be obtained if ϕ(uj) ∼ ϕ(vj) + ϕ(wj) could be shown. Using uj ∼ vj + wj,
it can be seen from the definition of ϕ that roughly

ϕ(uj)− ϕ(vj)− ϕ(wj) ∼
∫

R

∫

R
|eit∂2

xvj|3 |eit∂2
xwj|3 dxdt

. ‖(eit∂2
xvj)

2(eit∂2
xwj)‖L2

tx
‖(eit∂2

xvj)(e
it∂2

xwj)
2‖L2

tx
(1.4)

holds. At this point it is helpful to recall that there are quite recent multilinear refinements of the
Strichartz estimate, in particular of the kind which deal with functions whose Fourier supports
are contained in different sets. The usefulness of such estimates has been recognized in [1] (in
the case of two space dimensions), and later on a large number of variants and applications have
been developed, also in different function spaces or for evolution equations different from the
Schrödinger equation; see for instance [4, 7] and very many other papers. From [6, Lemma 3.1]
we recall the particular multilinear estimate ‖(eit∂2

xu)(eit∂2
xv)(eit∂2

xw)‖L2
tx
≤ C‖u‖

H
1
4
‖v‖

H− 1
4
‖w‖L2

which is appropriate for our purposes. From (1.4) and ‖v̂j‖L2 , ‖ŵj‖L2 ≤ 1 thus

ϕ(uj)− ϕ(vj)− ϕ(wj) . ‖vj‖2

H
1
4
‖wj‖2

H− 1
4

. a1/2b−1/2.

It appears to not have been noticed before that the concentration compactness principle can be
(slightly) refined in such a way that in the case of a splitting sequence the two parts can be moved
arbitrarily far apart; see Lemma 3.1 below. Hence b À a can be achieved, and the multilinear
estimate works together perfectly with the concentration compactness principle to imply that
the sequence (ûj) cannot be splitting. Having now excluded two alternatives, it follows that the
sequence of measures µj = |ûj|2 dξ is tight, i.e., roughly speaking localized by cutting off the
high frequencies (which leads to an L2-small remainder term). In particular, “almost” (uj) ⊂ H1

holds and if µj ⇀
∗ µ as j → ∞ (along a subsequence) in the sense of measures, then

∫
R dµ = 1.

However, this improvement is still not sufficient to ensure the needed strong convergence, since
the shift invariance of ϕ has not been used yet. This observation leads to the idea to apply, in a
next step, the concentration compactness principle also to (uj). As soon as it were known that
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both vanishing and splitting is impossible for (uj) the strong convergence would follow (if the uj

are shifted appropriately). Indeed, in this case the sequence is also localized in x-space to some
interval ] −M,M [, and it can be used that the embedding H1(] −M,M [) ⊂ L2(] −M,M [) is
compact. The fact that splitting cannot occur for (uj) is proved by using the above-mentioned
refinement of the splitting alternative: if uj ∼ vj + wj, ‖vj‖L2 ∼ γ ∈]0, 1[, and ‖wj‖L2 ∼ (1 − γ)
are satisfied, and if supp(vj) ⊂ {x : |x| ≤ a} and supp(wj) ⊂ {x : |x| ≥ b}, then it can be shown
that

ϕ(uj)− ϕ(vj)− ϕ(wj) .
(
‖vj‖1/6

H1 + ‖wj‖1/6

H1

)
(1 + a)1/2(b− a)−1/12 . (1 + a)1/2(b− a)−1/12.

The latter estimate holds, since we now have H1-bounds also for vj and wj. By moving the two
splitting components far enough apart (choosing b À a + (1 + a)6 for instance), the right-hand
side can be made as small as necessary to verify that splitting of (uj) is impossible. Therefore
it remains to be seen that also vanishing of (uj) cannot happen. It should be remarked that in
general it is easy to construct (by shifting and scaling of any maximizing sequence) a maximizing
sequence (ũj) such that (ˆ̃uj) is tight and (ũj) is vanishing. Typically such a sequence will be
concentrating at one or several points in ξ, i.e., µ =

∑
alδξl

, but we additionally dispose of the
normalization (1.3) which will show that concentration to a point is impossible for the special
maximizing sequence (uj). It is quite technical to make this argument rigorous in the case of the
Strichartz estimate, since ϕ is a highly non-local functional. Stated differently, for test functions
χ = χ(x) there is no obvious relation between ϕ(χu) and

∫
R

∫
R χ

6|eit∂2
xu|6 dxdt. To advance at this

point it turns out to be helpful to consider ϕ as a functional of û rather than as a functional of
u, i.e., we introduce ψ(v) = ϕ(v̌). Using (eit∂2

xuj)(x) = C
∫
R e

i(xξ−tξ2)ûj(ξ) dξ and integrating out
completely the functions δ0(ξ1 − ξ2 + ξ3 − ξ4 + ξ5 − ξ6)δ0(ξ

2
1 − ξ2

2 + ξ2
3 − ξ2

4 + ξ2
5 − ξ2

6) which then
appear, it is possible to derive an explicit form ψ(ûj) =

∫
R fj(ξ) dξ of ψ, where in our case the fj

are non-negative functions which are related to uj. From the tightness of (ûj) and the vanishing
of (uj) one can then deduce that ψ(χuj) ∼

∫
R χ

6fj dξ as j → ∞ for test functions χ = χ(ξ). To
use this let νj = fj dξ. First, tightness of (ûj) shows that the sequence of measures (νj) is tight
as well, hence νj ⇀

∗ ν as j → ∞ (along a subsequence) in the sense of measures for a ν such
that

∫
R dν = limj→∞

∫
R dνj = limj→∞

∫
R fj dξ = limj→∞ ψ(ûj) = limj→∞ ϕ(uj) = S6 = S6

∫
R dµ.

Second, for a test function χ = χ(ξ) one gets

∫

R
χ6 dν ∼

∫

R
χ6 dνj ∼ ψ(χûj) = ϕ(χ̌∗uj) ≤ S6‖χ̌ ∗ uj‖6

L2 = S6
( ∫

R
χ2|ûj|2 dξ

)3

∼ S6
( ∫

R
χ2 dµ

)3

as j →∞ by Strichartz’ inequality. Therefore a reversed Hölder-type inequality relating dν and dµ
has been derived. In this situation a well-known result on the concentration of measures (see [11,
Lemma I.2, p. 161]) can be applied to yield µ = δξ∗ for some ξ∗ ∈ R, which gives a contradiction
to (1.3).

Filling in the necessary details we obtain the following main result of this paper.

Theorem 1.1 There exists a function u∗ ∈ L2 such that S is attained, i.e., ‖eit∂2
xu∗‖L6

t (L6
x) = S

for some u∗ ∈ L2 with
∫
R |u∗|2 dx = 1.

It is to be expected that the technique of proof described above can also be applied successfully
to other Strichartz-type inequalities to yield the existence of sharp constants, as soon as a mul-
tilinear refinement of the inequality in question is available. In connection with Theorem 1.1 an
interesting open problem is to determine the numerical values of the sharp constants and to find
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(up to the invariances) the maximizing function(s); the associated Euler-Lagrange equation seems
not to be very helpful in this respect. In the mathematical literature there are several examples of
inequalities which are preserved by shift and scaling, for instance the Hardy-Littlewood-Sobolev
inequality and the Sobolev inequality. The first general method to prove the existence of sharp
constants for such problems has been developed by Lieb in [9] (see also the related [2]). In [9] it
has also been possible in many cases to evaluate explicitly the sharp constants and the maximizing
functions. The approach taken in [9] rests upon the fact that the left-hand side of the inequality
does not decrease, whereas the right-hand side does not increase, if u is replaced by u∗, its sym-
metric decreasing rearrangement; this is the case for the Hardy-Littlewood-Sobolev inequality and
for the Sobolev inequality. However, for the Strichartz inequality such rearrangement arguments
do not appear to lead very far. A second general method which is closer to the approach used in
the present paper can be found in [11], but in this way also no information on sharp constants or
maximizing functions could be obtained.

The paper is organized as follows. In Section 2 some auxiliary results and estimates are col-
lected. Section 3 discusses certain aspects related to concentration compactness, and the proof of
Theorem 1.1 is developed in Section 4.

Concerning notation, we write Lp = Lp(R;C) and Hs = Hs(R;C), with norms ‖ · ‖Lp and
‖ · ‖Hs , respectively. The inner product on L2 is (u, v)L2 =

∫
R uv̄ dx, whereas the (spatial) Fourier

transform of u ∈ L2 is û(ξ) = (2π)−1/2
∫
R e

−iξxu(x) dx with inverse ǔ. We mostly make explicit the
(2π)-factors in our formulas, since some of them could perhaps be useful later to determine the
sharp constant explicitly. For s, b ∈ R we denote X+

s,b the closure of S(R2) under the norm

‖u‖2
X+

s,b
=

∫

R

∫

R
(1 + ξ2)

s
(1 + |τ + ξ2|)b|Fu(τ, ξ)|2 dξdτ,

where

Fu(τ, ξ) = (2π)−1

∫

R

∫

R
e−i(τt+ξx)u(t, x) dxdt = (2π)−1/2

∫

R
e−itτ û(t, ξ) dt

is the space-time Fourier transform of u = u(t, x). In the particular case of u(t, x) = (eit∂2
xu)(x) it

follows from û(t, ξ) = e−itξ2
û(ξ) that Fu(τ, ξ) = (2π)1/2δ0(τ + ξ2)û(ξ), whence

‖eit∂2
xu‖X+

s,b
= (2π)1/2

( ∫

R
(1 + ξ2)

s|û(ξ)|2 dξ
)1/2

∼ ‖u‖Hs . (1.5)

By C we denote unimportant positive numerical constants which may change from line to line.

2 Some preliminaries and technical lemmas

It will be useful to consider along with ϕ from (1.2) also its multilinear version Φ, which is defined
as

Φ(u1, u2, u3, u4, u5, u6)

=

∫

R

∫

R
(eit∂2

xu1)(x)(eit∂2
xu2)(x)(e

it∂2
xu3)(x)(eit∂2

xu4)(x)(e
it∂2

xu5)(x)(eit∂2
xu6)(x) dxdt (2.1)

for u1, u2, u3, u4, u5, u6 ∈ L2. Then

ϕ(u) = Φ(u, u, u, u, u, u). (2.2)
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To derive certain estimates related to ϕ and Φ the special case s = 1/4 of the trilinear estimate
from [6, Lemma 3.1] is recalled, which reads as

‖uvw‖L2
tx
≤ C‖u‖X+

1
4 ,b

‖v‖X+

− 1
4 ,b

‖w‖X+
0,b
,

where b > 1/2 and C > 0 depends only on b. In view of (1.5) this is specialized to

‖(eit∂2
xu)(eit∂2

xv)(eit∂2
xw)‖L2

tx
≤ C‖u‖

H
1
4
‖v‖

H− 1
4
‖w‖L2 . (2.3)

First we need to study the basic properties of ϕ and Φ in more detail.

Lemma 2.1 The following assertions hold.

(a) The estimate

|Φ(u1, u2, u3, u4, u5, u6)| ≤ S6

6∏
i=1

‖ui‖L2

is satisfied for u1, u2, u3, u4, u5, u6 ∈ L2.

(b) For u1, . . . , u6, v1, . . . , v6 ∈ L2 we have

|Φ(u1, u2, u3, u4, u5, u6)− Φ(v1, v2, v3, v4, v5, v6)|
≤ C

(
max
1≤i≤6

{‖ui‖L2 , ‖vi‖L2}
)5(

max
1≤i≤6

‖ui − vi‖L2

)
,

in particular, by (2.2),

|ϕ(u)− ϕ(v)| ≤ C
(

max{‖u‖L2 , ‖v‖L2}
)5

‖u− v‖L2 , u, v ∈ L2. (2.4)

(c) Assume u = v + w. If ‖v‖L2 , ‖w‖L2 ≤ 1, then

|ϕ(u)− ϕ(v)− ϕ(w)| ≤ C
(
‖v‖

H
1
4
‖w‖

H− 1
4

+ ‖v‖2

H
1
4
‖w‖2

H− 1
4

)
. (2.5)

(d) Assume u = v+w, a < b, supp(v) ⊂ {x ∈ R : |x| ≤ a}, and supp(w) ⊂ {x ∈ R : |x| ≥ b}. If
‖v‖L2 , ‖w‖L2 ≤ 1, then

|ϕ(u)− ϕ(v)− ϕ(w)| ≤ C
(
‖v‖1/6

H1 + ‖w‖1/6

H1

)
(1 + a)1/2(b− a)−1/12. (2.6)

Proof : (a) From Hölder’s inequality in t, x with 6 factors and by definition of S we obtain

|Φ(u1, u2, u3, u4, u5, u6)| ≤
6∏

i=1

ϕ(ui)
1/6 ≤ S6

6∏
i=1

‖ui‖L2 .

(b) Due to the multilinearity of Φ we have

|Φ(u1, u2, u3, u4, u5, u6)− Φ(v1, v2, v3, v4, v5, v6)|
=

∣∣∣Φ(u1 − v1, u2, u3, u4, u5, u6) + Φ(v1, u2 − v2, u3, u4, u5, u6) + Φ(v1, v2, u3 − v3, u4, u5, u6)

+ Φ(v1, v2, v3, u4 − v4, u5, u6) + Φ(v1, v2, v3, v4, u5 − v5, u6) + Φ(v1, v2, v3, v4, v5, u6 − v6)
∣∣∣,
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whence (a) applies. (c) Writing v(t, x) = (eit∂2
xv)(x) and w(t, x) = (eit∂2

xw)(x) we get

|ϕ(u)− ϕ(v)− ϕ(w)| ≤ C

∫

R

∫

R

(
|v|5|w|+ |v|4|w|2 + |v|3|w|3 + |v|2|w|4 + |v||w|5

)
dxdt (2.7)

from u = v + w. For the first term on the right-hand side we write |v|5|w| = |v|3(|v|2|w|) and
apply Hölder’s inequality in t, x with p = 2, then Strichartz’ inequality. This way the bound
(. . .) ≤ C‖v‖3

L2‖v2w‖L2
tx
≤ C‖v2w‖L2

tx
is obtained. The fifth term is treated analogously, and for

the third term we write |v|3|w|3 = (|v|2|w|)(|v||w|2) and use again Hölder’s inequality in t, x with
p = 2. From (2.3) it then follows that

|ϕ(u)− ϕ(v)− ϕ(w)| ≤ C
(
‖v2w‖L2

tx
+ ‖v2w‖2

L2
tx

+ ‖v2w‖L2
tx
‖vw2‖L2

tx
+ ‖vw2‖2

L2
tx

+ ‖vw2‖L2
tx

)

≤ C
(
‖v‖

H
1
4
‖w‖

H− 1
4

+ ‖v‖2

H
1
4
‖w‖2

H− 1
4

)
.

(d) We continue to use the notation from (c). As before, we start with (2.7). To estimate the
first term on the right-hand side, we write now |v|5|w| = |v|4(|v||w|) and apply Hölder’s inequality
in t, x with p = 3/2 and p′ = 3. Strichartz’ inequality and ‖v‖L2 ≤ 1 then yield the bound
C(

∫
R

∫
R |v|3|w|3 dxdt)1/3. The second term can be bounded by the same expression, since |v|4|w|2 =

|v|3|w|(|v||w|), and Hölder’s inequality with p1 = 2, p2 = 6, and p3 = 3 can be used. The other
terms are handled similarly, resulting in

|ϕ(u)− ϕ(v)− ϕ(w)| ≤ C
( ∫

R

∫

R
|v|3|w|3 dxdt

)1/3

+ C

∫

R

∫

R
|v|3|w|3 dxdt

≤ C
( ∫

R

∫

R
|v|3|w|3 dxdt

)1/3

. (2.8)

Next we fix t0 > 0 and split
∫
R

∫
R |v|3|w|3 dxdt =

∫
|t|≤t0

∫
R |v|3|w|3 dxdt +

∫
|t|>t0

∫
R |v|3|w|3 dxdt =:

(I) + (II). For (I) let Ω = {x ∈ R : |x| ≤ (a+ b)/2}. Then

(I) =

∫

|t|≤t0

∫

Ω

|v|3|w|3 dxdt+

∫

|t|≤t0

∫

Ω c

|v|3|w|3 dxdt

≤
∫

|t|≤t0

dt
( ∫

Ω

|v|10 dx
)3/10( ∫

Ω

|w|2 dx
)1/2( ∫

Ω

|w|10 dx
)1/5

+

∫

|t|≤t0

∫

Ω c

|v|3|w|3 dxdt

≤
(

sup
|t|≤t0

∫

Ω

|w(t)|2 dx
)1/2

‖eit∂2
xv‖3

L5
t (L10

x ) ‖eit∂2
xw‖2

L5
t (L10

x ) +

∫

|t|≤t0

∫

Ω c

|v|3|w|3 dxdt

≤ C
(

sup
|t|≤t0

∫

Ω

|w(t)|2 dx
)1/2

+

∫

|t|≤t0

∫

Ω c

|v|3|w|3 dxdt,

by the general Strichartz inequality, cf. [3, Thm. 3.2.5(i)], since the pair (q, r) = (5, 10) is admissible
in one spatial dimension. For the

∫
Ω c dx-part one can argue in the same way, exchanging the roles

of v and w. This yields

(I) ≤ C
(

sup
|t|≤t0

∫

Ω

|w(t)|2 dx
)1/2

+ C
(

sup
|t|≤t0

∫

Ω c

|v(t)|2 dx
)1/2

. (2.9)

In order to bound the right-hand side further, we use a well-known argument. We take a function
β ∈ C∞0 (R) with β(x) ∈ [0, 1] such that β(x) = 1 for |x| ≤ (a + b)/2 and β(x) = 0 for |x| ≥
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(a + 3b)/4. Then ‖β ′‖L∞ ≤ C(b − a)−1. Defining J(t) =
∫
R |w(t)|2β(x) dx we have J(0) = 0.

From (1.1) we get | d
dt
J(t)| = |(−2) Im

∫
R w̄(t) dw

dx
(t)β ′ dx| ≤ C(b− a)−1‖w(t)‖L2‖dw

dx
(t)‖

L2 = C(b−
a)−1‖w‖L2‖dw

dx
‖

L2 ≤ C(b− a)−1‖w‖H1 . Thus for |t| ≤ t0,

∫

Ω

|w(t)|2 dx =

∫

Ω

|w(t)|2β(x) dx ≤ J(t) ≤ C(b− a)−1‖w‖H1|t| ≤ C(b− a)−1‖w‖H1t0.

In an analogous manner
∫
Ω c |v(t)|2 dx can be bounded, whence (2.9) gives

(I) ≤ C(b− a)−1/2
(
‖v‖H1 + ‖w‖H1

)
t
1/2
0 . (2.10)

Concerning (II), we remind the pseudo-conformal estimate ‖v(t)‖L6 ≤ C(‖v‖L2 + ‖xv‖L2)|t|−1/3;
see [3, Cor. 3.3.4(ii)] with r = 6. This yields

(II) =

∫

|t|>t0

∫

R
|v|3|w|3 dxdt ≤

( ∫

|t|>t0

∫

R
|v|6 dxdt

)1/2( ∫

R

∫

R
|w|6 dxdt

)1/2

≤ C
( ∫

|t|>t0

‖v(t)‖6
L6 dt

)1/2

≤ C(1 + ‖xv‖L2)
3
(∫

|t|>t0

|t|−2 dt
)1/2

≤ C(1 + ‖xv‖L2)
3 t
−1/2
0 .

Summarizing this bound and (2.10) it follows that for every t0 > 0,
∫

R

∫

R
|v|3|w|3 dxdt ≤ C(b− a)−1/2

(
‖v‖H1 + ‖w‖H1

)
t
1/2
0 + C(1 + ‖xv‖L2)

3 t
−1/2
0 .

One can then optimize this estimate with respect to t0 to obtain
∫

R

∫

R
|v|3|w|3 dxdt ≤ C(1 + ‖xv‖L2)

3/2
(
‖v‖1/2

H1 + ‖w‖1/2

H1

)
(b− a)−1/4.

Hence going back to (2.8) and noting ‖xv‖L2 ≤ a‖v‖L2 ≤ a, (2.6) is seen to hold. 2

The next lemma states a more explicit representation of Φ.

Lemma 2.2 For θ, ϑ ∈ [0, 2π] we define

a1(θ, ϑ) = − 1√
2

cos θ +
1√
6

sin θ +

√
2

3
sinϑ, a2(θ, ϑ) =

1√
2

cosϑ+

√
3

2
sinϑ,

a3(θ, ϑ) =
1√
2

cos θ +
1√
6

sin θ +

√
2

3
sinϑ, a4(θ, ϑ) = − 1√

2
cosϑ+

√
3

2
sinϑ,

a5(θ, ϑ) =

√
2

3
(− sin θ + sinϑ).

Then

Φ(u1, u2, u3, u4, u5, u6)

= (4π)−1

∫

R
dξ

∫ ∞

0

dr r

∫ 2π

0

dθ

∫ 2π

0

dϑ û1(a1(θ, ϑ)r + ξ) ¯̂u2(a2(θ, ϑ)r + ξ) û3(a3(θ, ϑ)r + ξ)

× ¯̂u4(a4(θ, ϑ)r + ξ) û5(a5(θ, ϑ)r + ξ) ¯̂u6(ξ) (2.11)

=: Ψ(û1, û2, û3, û4, û5, û6). (2.12)
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Proof : For 1 ≤ j ≤ 6 we write

(eit∂2
xuj)(x) = (2π)−1/2

∫

R
ei(xξ−tξ2)ûj(ξ) dξ (2.13)

and insert these expressions with variable ξj for ûj into the definition of Φ, cf. (2.1). After inte-
grating out

∫
R

∫
R dxdt, we arrive at

Φ(u1, u2, u3, u4, u5, u6)

= (2π)−1

∫

R
. . .

∫

R
dξ1 . . . dξ6 û1(ξ1)¯̂u2(ξ2)û3(ξ3)¯̂u4(ξ4)û5(ξ5)¯̂u6(ξ6)

×δ0(−ξ1 + ξ2 − ξ3 + ξ4 − ξ5 + ξ6)δ0(ξ
2
1 − ξ2

2 + ξ2
3 − ξ2

4 + ξ2
5 − ξ2

6)

= (2π)−1

∫

R
. . .

∫

R
dξ1 . . . dξ5 û1(ξ1)¯̂u2(ξ2)û3(ξ3)¯̂u4(ξ4)û5(ξ5)¯̂u6(ξ1 − ξ2 + ξ3 − ξ4 + ξ5)

×δ0
(
α(ξ1, ξ2, ξ3, ξ4, ξ5)

)
, (2.14)

where
α(ξ1, ξ2, ξ3, ξ4, ξ5) = (−2)

[
(ξ3 + ξ5 − ξ2 − ξ4)(ξ1 − ξ2) + (ξ5 − ξ4)(ξ3 − ξ4)

]
. (2.15)

Next the transformation ξ = Az is introduced, with the orthogonal matrix A ∈ R5×5 given by

A =




− 1√
2

1√
6

1√
5

0 −2
3

√
3
10

0 0 1√
5

1√
2

√
3
10

1√
2

1√
6

1√
5

0 −2
3

√
3
10

0 0 1√
5
− 1√

2

√
3
10

0 − 2√
6

1√
5

0 −2
3

√
3
10




. (2.16)

Since α(Az) = z2
1 + z2

2 − z2
4 − 5z2

5 , this leads to

Φ(u1, u2, u3, u4, u5, u6)

= (2π)−1

∫

R
. . .

∫

R
dz1 . . . dz5 û1

(
− 1√

2
z1 +

1√
6
z2 +

1√
5
z3 − 2

3

√
3

10
z5

)

×¯̂u2

( 1√
5
z3 +

1√
2
z4 +

√
3

10
z5

)

×û3

( 1√
2
z1 +

1√
6
z2 +

1√
5
z3 − 2

3

√
3

10
z5

)

×¯̂u4

( 1√
5
z3 − 1√

2
z4 +

√
3

10
z5

)

×û5

(
− 2√

6
z2 +

1√
5
z3 − 2

3

√
3

10
z5

)

×¯̂u6

( 1√
5
z3 − 4

√
3

10
z5

)
δ0(z

2
1 + z2

2 − z2
4 − 5z2

5). (2.17)
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Then we pass to polar coordinates (z1, z2) = r(cos θ, sin θ) and (z4, z5) = s(cosϑ, 1√
5
sinϑ), and we

set z̃3 = 1√
5
z3. If we also observe the relation

∫∞
0
dr

∫∞
0
ds rsf(r, s)δ0(r

2 − s2) = 1
2

∫∞
0
dr rf(r, r),

(2.17) may be rewritten as

Φ(u1, u2, u3, u4, u5, u6)

= (4π)−1

∫ ∞

0

dr r

∫ 2π

0

dθ

∫ 2π

0

dϑ

∫

R
dz̃3 û1

([
− 1√

2
cos θ +

1√
6

sin θ − 2

15

√
3

2
sinϑ

]
r + z̃3

)

×¯̂u2

([ 1√
2

cosϑ+
1

5

√
3

2
sinϑ

]
r + z̃3

)

×û3

([ 1√
2

cos θ +
1√
6

sin θ − 2

15

√
3

2
sinϑ

]
r + z̃3

)

×¯̂u4

([
− 1√

2
cosϑ+

1

5

√
3

2
sinϑ

]
r + z̃3

)

×û5

([
− 2√

6
sin θ − 2

15

√
3

2
sinϑ

]
r + z̃3

)

×¯̂u6

([
− 4

5

√
3

2
sinϑ

]
r + z̃3

)
.

Hence it remains to make the transformation ξ = [−4
5

√
3
2

sinϑ]r + z̃3, dξ = dz̃3, to get (2.11). 2

With Ψ from (2.12) let ψ(v) := Ψ(v, v, v, v, v, v). Then

ψ(û) = Ψ(û, û, û, û, û, û) = Φ(u, u, u, u, u, u) = ϕ(u) (2.18)

by Lemma 2.2 and (2.2). In particular, Strichartz’ inequality yields

|ψ(v)| = ϕ(v̌) ≤ S6‖v̌‖6
L2 = S6‖v‖6

L2 , v ∈ L2. (2.19)

Due to (2.4) from Lemma 2.1(b), moreover

|ψ(v)− ψ(w)| ≤ C
(

max{‖v‖L2 , ‖w‖L2}
)5

‖v − w‖L2 , v, w ∈ L2. (2.20)

We note some useful consequences.

Corollary 2.3 The functional ϕ has the following invariances:

(a) ϕ(u(·+ x0)) = ϕ(u) for x0 ∈ R;

(b) ϕ(eixξ0u) = ϕ(u) for ξ0 ∈ R;

(c) ϕ(uλ) = ϕ(u) for λ > 0, where uλ(x) = λ1/2u(λx).

Proof : (a) Note that (eit∂2
xu(·+x0))(x) = (eit∂2

xu)(x+x0), since both sides have Fourier transform

eix0ξe−itξ2
û(ξ). Hence (a) follows from the definition of ϕ, cf. (1.2). (b) From êixξ0u(ξ) = û(ξ − ξ0)

one gets ϕ(eixξ0u) = ψ(û(· − ξ0)) = Ψ(û(· − ξ0), . . . , û(· − ξ0)), see (2.18). But (2.11) implies that
the latter equals Ψ(û, . . . , û) = ψ(û) = ϕ(u), as the transformation ξ̃ = ξ − ξ0, dξ̃ = dξ, in the∫
R dξ-integral can be made. (c) We have (eit∂2

xuλ)(x) = λ1/2(eiλ2t∂2
xu)(λx), whence (1.2) together

with the substitution (y, s) = (λx, λ2t), dyds = λ3dxdt, show that ϕ(uλ) = ϕ(u). 2

9



Corollary 2.4 Let u ∈ L2. Then ϕ(u) ≤ ϕ(|û|ˇ).
Proof : According to (2.18) the claim is equivalent to ψ(û) ≤ ψ(|û|). But (2.11) yields ψ(û) =
Ψ(û, . . . , û) ≤ Ψ(|û|, . . . , |û|) = ψ(|û|). 2

For u ∈ L2 we moreover introduce

fu(ξ) = (4π)−1

∫ ∞

0

dr r

∫ 2π

0

dθ

∫ 2π

0

dϑ û(a1(θ, ϑ)r + ξ) ¯̂u(a2(θ, ϑ)r + ξ) û(a3(θ, ϑ)r + ξ)

× ¯̂u(a4(θ, ϑ)r + ξ) û(a5(θ, ϑ)r + ξ) ¯̂u(ξ), (2.21)

so that∫

R
fu(ξ) dξ = ψ(û) = ϕ(u) and

∫

R
χ(ξ)fu(ξ) dξ = Ψ(û, û, û, û, û, χû) = Φ(u, u, u, u, u, χ̌ ∗ u)

(2.22)
for χ real and bounded, by Lemma 2.2 and (2.18).

Lemma 2.5 Let χ ∈ C∞0 (R), û ∈ L1 ∩ L2, and δ > 0. Then
∣∣∣ψ(χû)−

∫

R
χ(ξ)6fu(ξ) dξ

∣∣∣ ≤ C
(
δ‖χ‖5

L∞‖χ ′‖L∞ ‖u‖6
L2 + δ−1/3‖χ‖6

L∞‖u‖
16
3

L2‖û‖
2
3

L1

)
,

with C > 0 independent of χ, u, and δ.

Proof : By definition we have

ψ(χû)−
∫

R
χ6(ξ)fu(ξ) dξ

= (4π)−1

∫ ∞

0

dr r

∫ 2π

0

dθ

∫ 2π

0

dϑ

∫

R
dξ

(
χ(a1r + ξ)û(a1r + ξ)χ(a2r + ξ)¯̂u(a2r + ξ)

×χ(a3r + ξ)û(a3r + ξ)χ(a4r + ξ)¯̂u(a4r + ξ)

× [χ(a5r + ξ)− χ(ξ)]û(a5r + ξ)χ(ξ)¯̂u(ξ)

+χ(a1r + ξ)û(a1r + ξ)χ(a2r + ξ)¯̂u(a2r + ξ)χ(a3r + ξ)û(a3r + ξ)

× [χ(a4r + ξ)− χ(ξ)]¯̂u(a4r + ξ)χ(ξ)û(a5r + ξ)χ(ξ)¯̂u(ξ)

+χ(a1r + ξ)û(a1r + ξ)χ(a2r + ξ)¯̂u(a2r + ξ) [χ(a3r + ξ)− χ(ξ)]û(a3r + ξ)

×χ(ξ)¯̂u(a4r + ξ)χ(ξ)û(a5r + ξ)χ(ξ)¯̂u(ξ)

+χ(a1r + ξ)û(a1r + ξ) [χ(a2r + ξ)− χ(ξ)]¯̂u(a2r + ξ)χ(ξ)û(a3r + ξ)

×χ(ξ)¯̂u(a4r + ξ)χ(ξ)û(a5r + ξ)χ(ξ)¯̂u(ξ)

+ [χ(a1r + ξ)− χ(ξ)]û(a1r + ξ)χ(ξ)¯̂u(a2r + ξ)χ(ξ)û(a3r + ξ)

×χ(ξ)¯̂u(a4r + ξ)χ(ξ)û(a5r + ξ)χ(ξ)¯̂u(ξ)
)
.

Now we split
∫∞

0
dr =

∫ δ

0
dr +

∫∞
δ
dr. Noting |ai(θ, ϑ)| ≤ 3 for 1 ≤ i ≤ 5 and all θ, ϑ ∈ [0, 2π], we

can estimate |χ(air+ ξ)−χ(ξ)| ≤ 3‖χ ′‖L∞r ≤ 3‖χ ′‖L∞δ in the first part (I) of the above integral
where r ∈ [0, δ]. Hence

(I) ≤ Cδ‖χ‖5
L∞‖χ ′‖L∞

∫ ∞

0

dr r

∫ 2π

0

dθ

∫ 2π

0

dϑ

∫

R
dξ |û(a1r + ξ)| |û(a2r + ξ)| |û(a3r + ξ)|

× |û(a4r + ξ)| |û(a5r + ξ)| |û(ξ)|
≤ Cδ‖χ‖5

L∞‖χ ′‖L∞ ψ(|û|) ≤ Cδ‖χ‖5
L∞‖χ ′‖L∞ ‖u‖6

L2 , (2.23)
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cf. (2.19). The second part (II) where r ∈]δ,∞[ is bounded by

(II) ≤ C‖χ‖6
L∞

∫ ∞

δ

dr r

∫ 2π

0

dθ

∫ 2π

0

dϑ

∫

R
dξ |û(a1r + ξ)| |û(a2r + ξ)| |û(a3r + ξ)|

× |û(a4r + ξ)| |û(a5r + ξ)| |û(ξ)|.

To take advantage of the fact that r > δ, we will undo the transformations from Lemma 2.2 which
led to (2.11). Going back the steps to (2.17), it hence follows with v := |û| that

(II) ≤ C‖χ‖6
L∞

∫

R
. . .

∫

R
dz1 . . . dz51M(z1, . . . , z5) v

(
− 1√

2
z1 +

1√
6
z2 +

1√
5
z3 − 2

3

√
3

10
z5

)

×v
( 1√

5
z3 +

1√
2
z4 +

√
3

10
z5

)

×v
( 1√

2
z1 +

1√
6
z2 +

1√
5
z3 − 2

3

√
3

10
z5

)

×v
( 1√

5
z3 − 1√

2
z4 +

√
3

10
z5

)

×v
(
− 2√

6
z2 +

1√
5
z3 − 2

3

√
3

10
z5

)

×v
( 1√

5
z3 − 4

√
3

10
z5

)
δ0(z

2
1 + z2

2 − z2
4 − 5z2

5), (2.24)

where M = {(z1, . . . , z5) : z2
1 + z2

2 ≥ δ2, z2
4 +5z2

5 ≥ δ2}; observe that z2
1 + z2

2 = r2 and z2
4 +5z2

5 = s2.
Next we set z = A−1ξ = Atξ ∈ R5, with A from (2.16). Since

z1 =
1√
2

(ξ3 − ξ1), z2 =
1√
6

(ξ1 + ξ3 − 2ξ5),

it follows that A(M) ⊂ N (1) ∪N (2), where

N (1) = {(ξ1, . . . , ξ5) : |ξ3 − ξ1| ≥ δ/2}, N (2) = {(ξ1, . . . , ξ5) : |ξ5 − ξ1| ≥ δ/2}.

Indeed, otherwise for some ξ = Az ∈ A(M) we would have |ξ3−ξ1| < δ/2 as well as |ξ5−ξ1| < δ/2,
whence z2

1 + z2
2 = 1

2
(ξ3 − ξ1)

2 + 1
6
([ξ3 − ξ1] + 2[ξ1 − ξ5])

2 ≤ 1
2
(δ2/4) + 1

6
((δ/2) + 2(δ/2))2 = δ2/2, in

contradiction to z ∈M . Thus if the transformation ξ = Az in (2.24) is introduced, we get

(II) ≤ C‖χ‖6
L∞

2∑
i=1

∫

R
. . .

∫

R
dξ1 . . . dξ5 1N(i)(ξ1, . . . , ξ5) v(ξ1)v(ξ2)v(ξ3)v(ξ4)

× v(ξ5)v(ξ1 − ξ2 + ξ3 − ξ4 + ξ5)δ0

(
α(ξ1, ξ2, ξ3, ξ4, ξ5)

)

= C‖χ‖6
L∞

2∑
i=1

∫

R
. . .

∫

R
dξ1 . . . dξ6 1N(i)(ξ1, . . . , ξ5) v(ξ1)v(ξ2)v(ξ3)v(ξ4)v(ξ5)v(ξ6)

× δ0(−ξ1 + ξ2 − ξ3 + ξ4 − ξ5 + ξ6)δ0(ξ
2
1 − ξ2

2 + ξ2
3 − ξ2

4 + ξ2
5 − ξ2

6),
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cf. (2.14) and (2.15). Since the term with 1N(2) is transformed into the term with 1N(1) when ξ3
and ξ5 are exchanged, it suffices to consider the contribution with 1N(1) . Hence,

(II) ≤ C‖χ‖6
L∞

∫

R
. . .

∫

R
dξ1 . . . dξ6 1N(1)(ξ1, . . . , ξ5) v(ξ1)v(ξ2)v(ξ3)v(ξ4)v(ξ5)v(ξ6)

× δ0(−ξ1 + ξ2 − ξ3 + ξ4 − ξ5 + ξ6)δ0(ξ
2
1 − ξ2

2 + ξ2
3 − ξ2

4 + ξ2
5 − ξ2

6)

= C‖χ‖6
L∞

∫

R

∫

R
1{|ξ3−ξ1|≥δ/2}v(ξ1)v(ξ3)G(−ξ2

1 − ξ2
3 , ξ1 + ξ3) dξ1dξ3, (2.25)

where

G(τ, ξ) =

∫

R

∫

R

∫

R

∫

R
dξ2 dξ4 dξ5 dξ6 v(ξ2)v(ξ4)v(ξ5)v(ξ6)

× δ0(−ξ + ξ2 + ξ4 − ξ5 + ξ6)δ0(−τ − ξ2
2 − ξ2

4 + ξ2
5 − ξ2

6).

Basically we can now follow a standard proof of the Strichartz inequality to obtain the desired es-

timate. Using (2.13) it is straightforward to verify that G(τ, ξ) = 2πF
(
|eit∂2

x v̌|2(eit∂2
x v̌)2

)
(−τ,−ξ).

Thus the Hausdorff-Young inequality in conjunction with Strichartz’ inequality imply

‖G‖L3
τξ
≤ C

∥∥∥|eit∂2
x v̌|2(eit∂2

x v̌)2
∥∥∥

L
3/2
tx

≤ C‖v̌‖4
L2 = C‖u‖4

L2 , (2.26)

recall v = |û|. Therefore we can continue in (2.25),

(II) ≤ C‖χ‖6
L∞

∫

R

∫

R
1{|ξ3−ξ1|≥δ/2}

v(ξ1)v(ξ3)

|ξ3 − ξ1|1/3
|ξ3 − ξ1|1/3G(−ξ2

1 − ξ2
3 , ξ1 + ξ3) dξ1dξ3

≤ C‖χ‖6
L∞

( ∫

R

∫

R
1{|ξ3−ξ1|≥δ/2}

v(ξ1)
3/2v(ξ3)

3/2

|ξ3 − ξ1|1/2
dξ1dξ3

)2/3

×
( ∫

R

∫

R
|ξ3 − ξ1|G(−ξ2

1 − ξ2
3 , ξ1 + ξ3)

3
dξ1dξ3

)1/3

(2.27)

≤ Cδ−1/3‖χ‖6
L∞

( ∫

R

∫

R
v(ξ1)

3/2v(ξ3)
3/2 dξ1dξ3

)2/3

‖G‖L3
τξ
,

the latter through the substitution τ = −ξ2
1 − ξ2

3 , ξ = ξ1 + ξ3, which has dτdξ = 2|ξ3 − ξ1|dξ1dξ3.
Hence it follows from (2.26) that

(II) ≤ Cδ−1/3‖χ‖6
L∞‖u‖4

L2‖v‖2

L
3
2
≤ Cδ−1/3‖χ‖6

L∞‖u‖4
L2‖û‖

2
3

L1‖û‖
4
3

L2 .

Summarizing this estimate and (2.23), the proof of the lemma is complete. 2

We remark that using |ξ3 − ξ1|1/2 ≥ C|ξ3 − ξ1|1/2−κδκ and the Hardy-Littlewood-Sobolev in-

equality in (2.27), the bound on (II) can be improved to Cδ−2κ/3‖χ‖6
L∞‖u‖

6− 4κ
3

L2 ‖û‖
4κ
3

L1 for κ ∈]0, 1
2
],

but this fact will be of no relevance to us here.
For a proof of the following lemma see [8, Lemma 2.6].

Lemma 2.6 Let (uj) ⊂ L2 be bounded and such that for any A > 0

lim
j→∞

sup
x0∈R

∫ x0+A

x0−A

|uj|2 dx = 0,

i.e., (uj) is “vanishing”. With φ ∈ S(R) (Schwartz functions) we define u
(l)
j = (φûj)

ˇ = φ̌ ∗ uj.

Then (u
(l)
j ) is also vanishing.
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3 Concentration compactness

This terminology is used for the fact that basically there are three possibilities for a (L2 or H1-)
bounded sequence of functions: either it is tight (in the sense of measures), or it is “vanishing”
(it tends to zero uniformly on every interval of fixed length), or it is “splitting” (into at least two
parts with supports widely separated). This principle, see [10], has turned out to be very helpful in
a number of variational problems. For our purposes here we need a small refinement which relies
on the observation that in the case of a splitting sequence the two parts can be moved arbitrarily
far apart, see (3.1) below. Since we will need a very explicit form of alternative (3), we include
some details.

Lemma 3.1 Let (fj) ⊂ L2 be a sequence such that ‖fj‖L2 = 1 for j ∈ N. Then there is a
subsequence (not relabelled) such that exactly one of the following three possibilities occurs.

(1) There exists a sequence (zj) ⊂ R such that for every ε > 0 there is R = Rε > 0 with the
property that ∫ zj+R

zj−R

|fj|2 dz ≥ 1− ε, j ∈ N.

(2) For every A > 0 we have

lim
j→∞

sup
z0∈R

∫ z0+A

z0−A

|fj|2 dz = 0.

(3) There is γ ∈]0, 1[ with the following property. For every δ ∈]0, γ[ there exist j0 = j0(δ) ∈ N
and z∗1 , z

∗
2 > 0 with

z∗2 ≥ z∗1 + 4δ−1 + δ−6(z∗1 + 2δ−1)6 (3.1)

such that

γ − δ < sup
z0∈R

∫ z0+z∗2

z0−z∗2

|fj|2 dz < γ + δ, j ≥ j0, (3.2)

and for every j ≥ j0 we may select zj ∈ R satisfying

γ − δ <

∫ zj+z∗1

zj−z∗1

|fj|2 dz < γ + δ. (3.3)

In particular, if we fix functions ρ, η ∈ C∞0 (R) with values in [0, 1] which satisfy ρ(z) = 1 for
|z| ≤ z∗1, ρ(z) = 0 for |z| ≥ z∗1 +2δ−1, η(z) = 0 for |z| ≤ z∗2−2δ−1, and η(z) = 1 for |z| ≥ z∗2,
then defining vj(z) = ρ(z − zj)fj(z) and wj(z) = η(z − zj)fj(z) one obtains for j ≥ j0 the
estimates

‖fj − (vj + wj)‖2
L2 ≤ 2δ,

∣∣∣‖vj‖2
L2 − γ

∣∣∣ ≤ 3δ, and
∣∣∣‖wj‖2

L2 − (1− γ)
∣∣∣ ≤ 9δ.

Proof : The argument relies on the Lévy concentration functions Γj(z) = supz0∈R
∫ z0+z

z0−z
|fj(y)|2 dy,

z ≥ 0. Then 0 ≤ Γj(z) ≤ 1 and Γj is non-decreasing. Hence there exists a subsequence of (fj), a
countable set E ⊂ [0,∞[, and a non-negative and non-decreasing function Γ such that Γj(z) → Γ(z)
as j → ∞ for every z ∈ [0,∞[\E. With γ := limz→∞ Γ(z) ∈ [0, 1], there are three possibilities:
the cases γ = 1 or γ = 0 lead to alternative (1) or (2), respectively, cf. [3, Lemma 8.3.8] (here it is
not needed that (fj) is bounded in H1). So it remains to show that γ ∈]0, 1[ implies (3). To see
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this, we fix δ ∈]0, γ[ and choose z∗ > 0 such that γ − δ < Γ(z) ≤ γ for z ≥ z∗. Then we take two
widely separated points where Γj converges to Γ, i.e., we fix some z∗1 ∈ ([0,∞[\E) ∩ [z∗,∞[ and
then choose z∗2 ∈ ([0,∞[\E) ∩ [z∗,∞[ satisfying z∗2 ≥ z∗1 + 4δ−1 + δ−6(z∗1 + 2δ−1)6. Note that then
in particular (z∗2 − 2δ−1) − (z∗1 + 2δ−1) > 0, whence the supports of ρ and η are separated. Since
z∗1 and z∗2 are convergence points, we also find j0 ∈ N with γ − δ < Γj(z

∗
1) ≤ Γj(z

∗
2) < γ + δ for

j ≥ j0. By definition of Γj, this yields (3.2), and moreover for every j ≥ j0 we find zj ∈ R such
that (3.3) holds. With ρ and η as in (3), we then define vj and wj. In view of (3.2) and (3.3) we
have ∫

z∗1≤|z−zj |≤z∗2

|fj(z)|2 dz =

∫ zj+z∗2

zj−z∗2

|fj|2 dz −
∫ zj+z∗1

zj−z∗1

|fj|2 dz ≤ γ + δ − (γ − δ) = 2δ. (3.4)

Due to the support properties of vj and wj therefore

‖fj − (vj + wj)‖2
L2 =

∫

z∗1≤|z−zj |≤z∗2

(1− ρ(z − zj)− η(z − zj))
2|fj(z)|2 dz

≤
∫

z∗1≤|z−zj |≤z∗2

|fj(z)|2 dz ≤ 2δ.

In addition, (3.3), z∗1 + 2δ−1 ≤ z∗2 , and (3.4) imply
∣∣∣‖vj‖2

L2 − γ
∣∣∣ =

∣∣∣
∫ zj+z∗1

zj−z∗1

|fj(z)|2 dz − γ +

∫

z∗1≤|z−zj |≤z∗1+2δ−1

ρ(z − zj)
2|fj(z)|2 dz

∣∣∣

≤ δ +

∫

z∗1≤|z−zj |≤z∗2

|fj(z)|2 dz ≤ 3δ.

Finally, from this and ‖fj‖L2 = 1 we get
∣∣∣‖wj‖2

L2 − (1− γ)
∣∣∣ ≤ 3δ +

∣∣∣‖wj‖2
L2 + ‖vj‖2

L2 − ‖fj‖2
L2

∣∣∣

= 3δ +
∣∣∣
∫

|z−zj |>z∗2

|fj(z)|2 dz +

∫

z∗2−2δ−1≤|z−zj |≤z∗2

η(z − zj)
2|fj(z)|2 dz

+

∫

|z−zj |<z∗1

|fj(z)|2 dz +

∫

z∗1≤|z−zj |≤z∗1+2δ−1

ρ(z − zj)
2|fj(z)|2 dz

−
∫

R
|fj(z)|2 dz

∣∣∣

≤ 3δ +

∫

z∗1≤|z−zj |≤z∗2

|fj(z)|2 dz +

∫

z∗2−2δ−1≤|z−zj |≤z∗2

|fj(z)|2 dz

+

∫

z∗1≤|z−zj |≤z∗1+2δ−1

|fj(z)|2 dz ≤ 9δ,

where once more z∗1 + 2δ−1 ≤ z∗2 and (3.4) have been used. 2

The following result examines what can be said in the case that a reversed Hölder-type estimate
holds for measures. It is a special case of [11, Lemma I.2, p. 161], see also [5, p. 13].

Lemma 3.2 Let ν, µ be finite non-negative measures on R such that for some 1 < p < q <∞ and
S > 0 the estimate ( ∫

R
|χ|q dν

)1/q

≤ S
( ∫

R
|χ|p dµ

)1/p

, χ ∈ C∞0 (R),

holds. If ν(R)1/q ≥ Sµ(R)1/p, then ν = γδξ∗ and µ = γp/qS−pδξ∗ for some γ ≥ 0 and ξ∗ ∈ R.
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4 Proof of Theorem 1.1

We consider a maximizing sequence, i.e., (Uj) ⊂ L2 is such that ‖Uj‖L2 = 1 for j ∈ N and

ϕ(Uj) → S6 as j →∞. Then we introduce Vj = |Ûj|ˇand note that V̂j = |Ûj| ≥ 0 as well as V̂j ∈ L2.

Hence we can select wj ∈ S(R) satisfying wj ≥ 0 and ‖wj − V̂j‖L2 ≤ 1/j. With these definitions

we let uj = ‖wj‖−1
L2 w̌j. Then uj ∈ S(R), ‖uj‖L2 = 1, and ûj ≥ 0. Therefore Strichartz’ inequality

yields ϕ(uj) ≤ S6. Since ‖V̂j‖L2 = ‖Uj‖L2 = 1, we also have |‖wj‖L2 − 1| ≤ ‖wj − V̂j‖L2 ≤ 1/j.
Hence e.g. ‖wj‖L2 ≤ 2, and it follows from Corollary 2.4 and with (2.4) from Lemma 2.1(b) that

0 ≤ S6 − ϕ(uj) ≤ |S6 − ϕ(Uj)|+ ϕ(Uj)− ϕ(uj) ≤ |S6 − ϕ(Uj)|+ ϕ(|Ûj|ˇ)− ϕ(uj)

= |S6 − ϕ(Uj)|+ ϕ(Vj)− ‖wj‖−6
L2 ϕ(w̌j)

≤ |S6 − ϕ(Uj)|+ |ϕ(Vj)− ϕ(w̌j)|+
∣∣∣‖wj‖−6

L2 − 1
∣∣∣ϕ(w̌j)

≤ |S6 − ϕ(Uj)|+ C‖Vj − w̌j‖L2 + C
∣∣∣‖wj‖−6

L2 − 1
∣∣∣ → 0, j →∞.

Thus ϕ(uj) → S6, i.e., (uj) is a maximizing sequence with the additional properties that uj ∈ S(R)
and ûj ≥ 0. We need to modify the uj in other respects, too. For this we fix j ∈ N and

examine the concentration function Γ̂j(z) = supξ0∈R
∫ ξ0+z

ξ0−z
|ûj|2 dξ of ûj. Since limz→∞ Γ̂j(z) = 1

we may select λj > 0 such that Γ̂j(λ
−1
j ) = 1/2. In addition, the function ξ0 7→

∫ ξ0+λ−1
j

ξ0−λ−1
j

|ûj|2 dξ is

continuous and tending to zero as ξ0 → ±∞. Hence we also find ξ0,j ∈ R with
∫ ξ0,j+λ−1

j

ξ0,j−λ−1
j

|ûj|2 dξ =

supξ0∈R(...) = Γ̂j(λ
−1
j ) = 1/2. We then define ξj = −λjξ0,j and ũj(x) = eixξjλ

1/2
j uj(λjx). If follows

that ‖ũj‖L2 = 1, ũj ∈ S(R), and ˆ̃uj(ξ) = λ
−1/2
j ûj(λ

−1
j (ξ − ξj)) ≥ 0. From Corollary 2.3(b) and (c)

we deduce that ϕ(ũj) = ϕ(uj), and we calculate

sup
ξ0∈R

∫ ξ0+1

ξ0−1

|ˆ̃uj(ξ)|2 dξ = sup
ξ0∈R

∫ λ−1
j (ξ0+1−ξj)

λ−1
j (ξ0−1−ξj)

|ûj(ξ)|2 dξ = sup
ξ0∈R

∫ ξ0+λ−1
j

ξ0−λ−1
j

|ûj(ξ)|2 dξ

= Γ̂j(λ
−1
j ) = 1/2.

Moreover, ∫ 1

−1

|ˆ̃uj(ξ)|2 dξ =

∫ λ−1
j (1−ξj)

λ−1
j (−1−ξj)

|ûj(ξ)|2 dξ =

∫ ξ0,j+λ−1
j

ξ0,j−λ−1
j

|ûj(ξ)|2 dξ =
1

2
.

Renaming ũj to uj, we can summarize the foregoing modifications as follows. There exists (uj) ⊂
S(R) such that ‖uj‖L2 = 1, ûj ≥ 0, and ϕ(uj) → S6 as j →∞, and also

sup
ξ0∈R

∫ ξ0+1

ξ0−1

|ûj(ξ)|2 dξ =

∫ 1

−1

|ûj(ξ)|2 dξ =
1

2
, j ∈ N, (4.1)

is satisfied. With this special improved maximizing sequence we are going to work in the sequel.
Since also ‖ûj‖L2 = 1 for j ∈ N, Lemma 3.1 can be applied to the sequence (fj) = (ûj). The

following two subsections 4.1 and 4.2 deal with the two possibilities which then may occur (for a
subsequence which is not relabelled) according to Lemma 3.1; note that the Fourier transforms

cannot vanish in the sense of alternative (2) in Lemma 3.1, as limj→∞ supξ0∈R
∫ ξ0+1

ξ0−1
|ûj|2 dξ =

1/2 6= 0 by (4.1).
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4.1 The Fourier transforms cannot be splitting

In this section we suppose that alternative (3) from Lemma 3.1 is satisfied for (ûj). Then we have

γ̂ ∈]0, 1[ for γ̂ = limξ→∞ Γ̂(ξ), the function Γ̂ being the pointwise limit (outside a countable set)

of the concentration functions Γ̂j(ξ) := supξ0∈R
∫ ξ0+ξ

ξ0−ξ
|ûj|2 dζ of the ûj. We fix δ ∈]0, γ̂[ and select

j0 ∈ N, ξ∗1 = z∗1 > 0, ξ∗2 = z∗2 > 0, ξj = zj for j ≥ j0, and moreover the functions ρ and η as
stated in (3) of Lemma 3.1; all these quantities are depending on δ. With aj(ξ) = ρ(ξ − ξj)ûj(ξ)
and bj(ξ) = η(ξ − ξj)ûj(ξ), we then have ‖aj‖L2 ≤ 1, ‖bj‖L2 ≤ 1, and in addition for j ≥ j0 the

estimates ‖ûj − (aj + bj)‖2
L2 ≤ 2δ, |‖aj‖2

L2 − γ̂| ≤ 3δ, as well as |‖bj‖2
L2 − (1 − γ̂)| ≤ 9δ. Setting

vj = ǎj and wj = b̌j, this leads to ‖vj‖L2 ≤ 1, ‖wj‖L2 ≤ 1, and also

‖uj − (vj + wj)‖2
L2 ≤ 2δ,

∣∣∣‖vj‖2
L2 − γ̂

∣∣∣ ≤ 3δ, and
∣∣∣‖wj‖2

L2 − (1− γ̂)
∣∣∣ ≤ 9δ (4.2)

for j ≥ j0. Then (2.4) from Lemma 2.1(b), (4.2), and Corollary 2.3(b) imply the estimate

|ϕ(uj)− ϕ(vj)− ϕ(wj)| ≤ |ϕ(uj)− ϕ(vj + wj)|+ |ϕ(vj + wj)− ϕ(vj)− ϕ(wj)|
≤ C

(
max{‖uj‖L2 , ‖vj + wj‖L2}

)5

‖uj − (vj + wj)‖L2

+ |ϕ(vj + wj)− ϕ(vj)− ϕ(wj)|
≤ Cδ1/2 + |ϕ(ṽj + w̃j)− ϕ(ṽj)− ϕ(w̃j)|,

where ṽj(x) := e−ixξjvj(x) and w̃j(x) := e−ixξjwj(x). Since ‖ṽj‖L2 = ‖vj‖L2 ≤ 1 and ‖w̃j‖L2 =
‖wj‖L2 ≤ 1 we can then apply (2.5) from Lemma 2.1 to get

|ϕ(uj)− ϕ(vj)− ϕ(wj)| ≤ Cδ1/2 + C
(
‖ṽj‖H

1
4
‖w̃j‖H− 1

4
+ ‖ṽj‖2

H
1
4
‖w̃j‖2

H− 1
4

)
. (4.3)

The second term on the right-hand side can be handled by means of the following observation,
where the notation from Lemma 3.1 is used.

Lemma 4.1 We have the bound

‖ṽj‖H
1
4
‖w̃j‖H− 1

4
≤ 21/8δ1/4.

Proof : Due to ˆ̃vj(ξ) = v̂j(ξ + ξj) = aj(ξ + ξj) = ρ(ξ)ûj(ξ + ξj) we find

‖ṽj‖2

H
1
4

=

∫

R
(1 + ξ2)

1/4|ˆ̃vj(ξ)|2 dξ =

∫

R
(1 + ξ2)

1/4
ρ(ξ)2|ûj(ξ + ξj)|2 dξ.

By definition of ρ we have ρ(ξ) = 0 for |ξ| ≥ ξ∗1 + 2δ−1 = z∗1 + 2δ−1. Therefore ρ(ξ) ∈ [0, 1] yields

‖ṽj‖2

H
1
4
≤ (1 + [z∗1 + 2δ−1]2)

1/4
∫

R
|ûj(ξ + ξj)|2 dξ = (1 + [z∗1 + 2δ−1]2)

1/4
.

Similarly, we have ˆ̃wj(ξ) = η(ξ)ûj(ξ + ξj), thus

‖w̃j‖2

H− 1
4

=

∫

R
(1 + ξ2)

−1/4
η(ξ)2|ûj(ξ + ξj)|2 dξ.
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Recalling that η(ξ) = 0 for |ξ| ≤ ξ∗2 − 2δ−1 = z∗2 − 2δ−1 and η(ξ) ∈ [0, 1], we obtain

‖w̃j‖2

H− 1
4
≤ (1 + [z∗2 − 2δ−1]2)

−1/4
∫

R
|ûj(ξ + ξj)|2 dξ = (1 + [z∗2 − 2δ−1]2)

−1/4
.

Therefore we arrive at

‖ṽj‖H
1
4
‖w̃j‖H− 1

4
≤ (1 + [z∗1 + 2δ−1]2)

1/8
(1 + [z∗2 − 2δ−1]2)

−1/8 ≤ 21/8(z∗1 + 2δ−1)
1/4

(z∗2 − 2δ−1)
−1/4

,

where δ < γ̂ < 1 ≤ 2 has been used, hence 1 ≤ z∗1 + 2δ−1. Due to (3.1) we have z∗2 ≥ z∗1 + 4δ−1 +
δ−6(z∗1 + 2δ−1)6 ≥ 2δ−1 + δ−1(z∗1 + 2δ−1). This yields (z∗1 + 2δ−1)(z∗2 − 2δ−1)

−1 ≤ δ, hence the
claimed estimate holds. 2

By Lemma 4.1 we can continue from (4.3) as

|ϕ(uj)− ϕ(vj)− ϕ(wj)| ≤ Cδ1/2 + Cδ1/4 ≤ Cδ1/4, j ≥ j0. (4.4)

Using Strichartz’ inequality, this yields

ϕ(uj) ≤ Cδ1/4 + ϕ(vj) + ϕ(wj) ≤ Cδ1/4 + S6‖vj‖6
L2 + S6‖wj‖6

L2

≤ Cδ1/4 + S6(3δ + γ̂)3 + S6(9δ + (1− γ̂))3.

At the beginning of the argument δ ∈]0, γ̂[ has been fixed, and we have found that the latter
estimate holds for all j ≥ j0 = j0(δ). Since (uj) is a maximizing sequence, as j →∞ this yields

S6 ≤ Cδ1/4 + S6(3δ + γ̂)3 + S6(9δ + (1− γ̂))3.

Taking the limit δ → 0 we finally arrive at 1 ≤ γ̂3 + (1 + γ̂)3, contradicting γ̂ ∈]0, 1[. Hence it is
not possible that the Fourier transforms are splitting.

4.2 The Fourier transforms are tight

So far we have shown that the alternatives (2) and (3) from Lemma 3.1 cannot hold for the sequence
(ûj). Therefore (1) has to be satisfied, i.e., there exists a sequence (ξj) ⊂ R such that for every

ε > 0 there is R = Rε > 0 with the property that
∫ ξj+R

ξj−R
|ûj|2 dξ ≥ 1− ε for j ∈ N. It is well-known

that in this kind of argument, in view of (4.1), one can assume ξj = 0 for every j ∈ N by replacing
Rε with 2Rε + 1; see e.g. [13, p. 48]. Indeed, if ε < 1/2, then we choose a corresponding Rε

and note that Ij, ε = [ξj − Rε, ξj + Rε] ∩ [−1, 1] 6= ∅, since otherwise by (4.1) the contradiction

1 =
∫
R |ûj|2 dξ ≥

∫ ξj+Rε

ξj−Rε
|ûj|2 dξ+

∫ 1

−1
|ûj|2 dξ ≥ 1−ε+1/2 = 3/2−ε would be obtained. But Ij, ε 6= ∅

implies [ξj−Rε, ξj +Rε] ⊂ [−(2Rε +1), 2Rε +1], whence
∫ 2Rε+1

−(2Rε+1)
|ûj|2 dξ ≥

∫ ξj+Rε

ξj−Rε
|ûj|2 dξ ≥ 1−ε.

Hence we can assume that

∀ ε ∈]0, 1/2[ ∃R = Rε > 0 :

∫ R

−R

|ûj|2 dξ ≥ 1− ε, j ∈ N, (4.5)

is satisfied.
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Lemma 4.2 For every j ∈ N let the measures νj and µj on R be defined as νj = fuj
dξ and

µj = |ûj|2 dξ, where fuj
is given by (2.21). Then νj and µj are non-negative measures, and the

sequences (νj) and (µj) are tight. There exist non-negative measures ν and µ on R such that,
possibly after selecting subsequences, νj ⇀∗ ν as well as µj ⇀∗ µ as j → ∞ in the sense of
measures. In addition, ∫

R
dν = S6 and

∫

R
dµ = 1. (4.6)

Proof : By construction we have ûj ≥ 0, whence (2.21) shows that fuj
≥ 0. Moreover, (2.22)

implies
∫
R dνj =

∫
R fuj

dξ = ϕ(uj) → S6 as j → ∞. Using the fact that ‖ûj‖L2 = 1, we also get∫
R dµj =

∫
R |ûj|2 dξ = 1 for j ∈ N. From (4.5) we deduce that (µj) is tight. Hence, by passing to

a subsequence if necessary, µj ⇀
∗ µ as j → ∞ in the sense of measures (i.e.,

∫
R χdµj →

∫
R χdµ

for all bounded χ ∈ C(R)), by Prochorov’s compactness theorem. In view of the Portmanteau
theorem this in turn implies

∫
R dµ = 1. Therefore it remains to be verified that (νj) is tight, too.

For this we note that, due to the second relation from (2.22) and Lemma 2.1(a),

∫

|ξ|≥R

dνj =

∫

R
1|ξ|≥Rfuj

dξ = Φ(uj, uj, uj, uj, uj, (1|ξ|≥R)ˇ∗ uj) ≤ S6‖(1|ξ|≥R)ˇ∗ uj‖L2

= S6
(
1−

∫

|ξ|<R

|ûj|2 dξ
)1/2

≤ S6ε1/2, j ∈ N,

the latter provided that ε ∈]0, 1/2[ is prescribed and R = Rε is chosen according to (4.5). Hence
(νj) is tight and we may argue as before to obtain νj ⇀

∗ ν along a subsequence and
∫
R dν =

limj→∞
∫
R dνj = S6. 2

The next step consists in the application of Lemma 3.1 to (fj) = (uj), yielding a further
subsequence of (uj), which however will be not relabelled for notational convenience. The argument
is then divided once more according to which one of the possibilities (1), (2), or (3) from Lemma
3.1 arises.

4.2.1 The case that the sequence (uj) is vanishing

Throughout this subsection we assume that (2) in Lemma 3.1 occurs for (uj), i.e.,

lim
j→∞

sup
x0∈R

∫ x0+A

x0−A

|uj|2 dx = 0 (4.7)

is satisfied for every A > 0. Our aim is to derive a contradiction from this, whence in fact (uj)
cannot be vanishing.

Lemma 4.3 With ν and µ from Lemma 4.2 the estimate

(∫

R
χ6 dν

)1/6

≤ S
( ∫

R
χ2 dµ

)1/2

, χ ∈ C∞0 (R),

holds.

Before we are going on to the proof of Lemma 4.3, let us first argue why this leads to a
contradiction. From (4.6) in Lemma 4.2 we know that ν(R)1/6 = S = Sµ(R)1/2. Hence we can
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apply Lemma 3.2 with q = 6 and p = 2 to find that ν = γδξ∗ and µ = γ1/3S−2δξ∗ for some γ ≥ 0
and ξ∗ ∈ R. Then ν(R) = S6 yields γ = S6 and µ = δξ∗ . Therefore 1 = µ(]ξ∗ − 1, ξ∗ + 1[) ≤
lim infj→∞ µj(]ξ∗ − 1, ξ∗ + 1[) = lim infj→∞

∫ ξ∗+1

ξ∗−1
|ûj|2 dξ ≤ lim infj→∞ supξ0∈R

∫ ξ0+1

ξ0−1
|ûj|2 dξ ≤ 1/2

by (4.1), which is a contradiction.

Proof of Lemma 4.3: Using (4.5) we will first split every uj into a regular low-frequency part
and a small high-frequency part as follows. We choose φ ∈ C∞0 (R) with values in [0, 1] such that
φ(ξ) = 1 for |ξ| ≤ 1 and φ(ξ) = 0 for |ξ| ≥ 2, and for R > 0 we define φR(ξ) = φ(ξ/R). With a
fixed sequence (εk) ⊂]0, 1/2[, εk → 0 as k →∞, we select Rk := Rεk

corresponding to εk via (4.5)
for k ∈ N. Setting φk = φRk

, we decompose every uj as

uj = u
(l)
j,k + u

(h)
j,k , j, k ∈ N, (4.8)

where
u

(l)
j,k = (φkûj)

ˇ = φ̌k ∗ uj and u
(h)
j,k = ((1− φk)ûj)

ˇ = (1− φk)
ˇ∗ uj. (4.9)

Since uj ∈ S(R) and ûj ≥ 0 by construction, we get u
(l)
j,k ∈ S(R) and û

(l)
j,k = φkûj ≥ 0. For all

j, k ∈ N,

∥∥∥du
(l)
j,k

dx

∥∥∥
2

L2
= ‖u(l)

j,k‖
2

Ḣ1
=

∫

R
|ξ|2|φkûj|2 dξ =

∫

|ξ|≤2Rk

|ξ|2|φkûj|2 dξ ≤ CR2
k‖ûj‖2

L2 = CR2
k , (4.10)

and also, by (4.8) and (4.5),

‖uj − u
(l)
j,k‖

2

L2
= ‖u(h)

j,k‖
2

L2
=

∫

|ξ|≥Rk

|(1− φk)ûj|2 dξ ≤
∫

|ξ|≥Rk

|ûj|2 dξ = 1−
∫

|ξ|<Rk

|ûj|2 dξ ≤ εk .

(4.11)
In addition,

‖u(l)
j,k‖L2

≤ ‖ûj‖L2 = 1. (4.12)

In the following we fix χ ∈ C∞0 (R). Then by definition of νj, the second relation in (2.22), Lemma
2.1(b), (4.12), and (4.11),

∫

R
χ6 dνj =

∫

R
χ6fuj

dξ =

∫

R
χ6f

u
(l)
j,k
dξ +

∫

R
χ6fuj

dξ −
∫

R
χ6f

u
(l)
j,k
dξ

=

∫

R
χ6f

u
(l)
j,k
dξ + Φ

(
uj, uj, uj, uj, uj, (χ

6)ˇ∗ uj

)

−Φ
(
u

(l)
j,k, u

(l)
j,k, u

(l)
j,k, u

(l)
j,k, u

(l)
j,k, (χ

6)ˇ∗ u(l)
j,k

)

≤
∫

R
χ6f

u
(l)
j,k
dξ + C

(
max

{
‖uj‖L2 , ‖(χ6)ˇ∗ uj‖L2 , ‖u(l)

j,k‖L2
, ‖(χ6)ˇ∗ u(l)

j,k‖L2

})5

× max
{
‖uj − u

(l)
j,k‖L2

,
∥∥∥(χ6)ˇ∗ uj − (χ6)ˇ∗ u(l)

j,k

∥∥∥
L2

}

≤ ψ
(
χû

(l)
j,k

)
+

∣∣∣
∫

R
χ6f

u
(l)
j,k
dξ − ψ

(
χû

(l)
j,k

)∣∣∣ + Cε
1/2
k , j, k ∈ N,

where here and in the sequel C > 0 may depend on χ, but not on k or j. Next we can invoke
Lemma 2.5 with u = u

(l)
j,k satisfying û = û

(l)
j,k ∈ S(R) ⊂ L1 ∩ L2 and δ = ε

1/2
k to obtain from (2.20),
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Strichartz’ inequality, and (4.11),

∫

R
χ6 dνj

≤ ψ
(
χû

(l)
j,k

)
+ C

(
ε
1/2
k ‖χ‖5

L∞‖χ ′‖L∞ ‖u(l)
j,k‖

6

L2
+ ε

−1/6
k ‖χ‖6

L∞‖u(l)
j,k‖

16
3

L2
‖û(l)

j,k‖
2
3

L1

)
+ Cε

1/2
k

≤
∣∣∣ψ

(
χû

(l)
j,k

)
− ψ(χûj)

∣∣∣ + ϕ
(
χ̌ ∗ uj

)
+ Cε

1/2
k + Cε

−1/6
k ‖û(l)

j,k‖
2
3

L1

≤ C
(

max
{
‖χû(l)

j,k‖L2
, ‖χûj‖L2

})5∥∥∥χû(l)
j,k − χûj

∥∥∥
L2

+ S6 ‖χ̌ ∗ uj‖6
L2

+Cε
1/2
k + Cε

−1/6
k ‖û(l)

j,k‖
2
3

L1

≤ S6
( ∫

R
χ2|ûj|2 dξ

)3

+ Cε
1/2
k + Cε

−1/6
k ‖û(l)

j,k‖
2
3

L1

= S6
( ∫

R
χ2 dµj

)3

+ Cε
1/2
k + Cε

−1/6
k ‖û(l)

j,k‖
2
3

L1
. (4.13)

Here C = C(χ), and this estimate holds for all j, k ∈ N. We claim that for fixed k ∈ N

‖û(l)
j,k‖L1

→ 0 as j →∞. (4.14)

We remark that in order to verify (4.14) it is sufficient to prove that there exists a subsequence

(j′) ⊂ (j) such that limj′→∞ ‖û(l)
j′,k‖L1

= 0, since the following argument can also be used if we start

with a subsequence of the original sequence (û
(l)
j,k)j∈N. To finally invoke (4.7), we apply Lemma 2.6

to φ = φk ∈ C∞0 (R). This yields, cf. (4.9), limj→∞ supx0∈R
∫ x0+A

x0−A
|u(l)

j,k|2 dx = 0 for every A > 0.

Hence in particular u
(l)
j,k → 0 as j →∞ in L2

loc. Then a diagonal argument implies that there is a

subsequence (j′) ⊂ (j) such that u
(l)
j′,k(x) → 0 as j′ →∞ for a.e. x ∈ R. Recalling u

(l)
j′,k ∈ S(R) and

(4.10), it follows that |u(l)
j′,k(x)− u

(l)
j′,k(y)| ≤ CRk|x− y|1/2. Thus we must in fact have u

(l)
j′,k(x) → 0

as j′ →∞ for every x ∈ R. Therefore û
(l)
j′,k ≥ 0 leads to

‖û(l)
j′,k‖L1

=

∫

R
û

(l)
j′,k(ξ) dξ = (2π)1/2u

(l)
j′,k(0) → 0 as j′ →∞.

This completes the proof of the claim (4.14). Then going back to (4.13) we fix k ∈ N and take the
limit j → ∞. Since νj ⇀

∗ ν and µj ⇀
∗ µ as j → ∞ in the sense of measures, cf. Lemma 4.2, it

follows from (4.14) that ∫

R
|χ|6 dν ≤ S6

( ∫

R
|χ|2 dµ

)3

+ Cε
1/2
k .

As this estimate holds for every k ∈ N, we can pass to the limit k → ∞ to finish the proof of
Lemma 4.3. 2

4.2.2 The case that the sequence (uj) is splitting

In this subsection we suppose that (3) in Lemma 3.1 is satisfied for (uj), and again our goal is
to show that this is impossible. Since (4.5) holds, we can once more use the decomposition of
the uj in low and high frequencies, recall (4.8)-(4.12). Furthermore, we have γ ∈]0, 1[, where

20



γ = limx→∞ Γ(x). Here Γ(x) = limj→∞ Γj(x) = limj→∞ supx0∈R
∫ x0+x

x0−x
|uj|2 dy is the pointwise

(outside a countable set) limit of the concentration functions corresponding to (uj). We now fix
δ ∈]0, γ[ and choose j0 ∈ N, x∗1 = z∗1 > 0, x∗2 = z∗2 > 0, xj = zj for j ≥ j0, and moreover the
functions ρ and η as described in (3) of Lemma 3.1; once again, all these quantities are depending
on δ. Defining vj(x) = ρ(x−xj)uj(x) and wj(x) = η(x−xj)uj(x), we remind that then ‖vj‖L2 ≤ 1,
‖wj‖L2 ≤ 1, and also

‖uj − (vj + wj)‖2
L2 ≤ 2δ,

∣∣∣‖vj‖2
L2 − γ

∣∣∣ ≤ 3δ, and
∣∣∣‖wj‖2

L2 − (1− γ)
∣∣∣ ≤ 9δ (4.15)

holds for j ≥ j0. Next we are going to transfer these estimates for every k ∈ N to the functions
obtained in an analogous way from the low-frequency parts u

(l)
j,k of uj, cf. (4.9). To this end, we

introduce
vj,k(x) = ρ(x− xj)u

(l)
j,k(x) and wj,k(x) = η(x− xj)u

(l)
j,k(x). (4.16)

Since ρ and η attain their values in [0, 1], it follows from (4.12) that

‖vj,k‖L2 ≤ ‖u(l)
j,k‖L2

≤ 1 and ‖wj,k‖L2 ≤ ‖u(l)
j,k‖L2

≤ 1. (4.17)

Moreover, vj,k ∈ H1 and wj,k ∈ H1. Due to ‖ρ ′‖L∞ ∼ δ ≤ 1 and ‖η ′‖L∞ ∼ δ ≤ 1, we obtain, using
(4.10), the bounds

‖vj,k‖H1 + ‖wj,k‖H1 ≤ CRk. (4.18)

The estimates from (4.15) are modified to

‖uj − (vj,k + wj,k)‖L2 ≤ 2(δ1/2 + ε
1/2
k ),

∣∣∣‖vj,k‖2
L2 − γ

∣∣∣ ≤ 3(δ + ε
1/2
k ), (4.19)

and
∣∣∣‖wj,k‖2

L2 − (1− γ)
∣∣∣ ≤ 9(δ + ε

1/2
k ) (4.20)

for j ≥ j0 and k ∈ N. Indeed, since ρ(x) ∈ [0, 1], (4.8) and (4.11) imply

‖vj − vj,k‖2
L2 =

∫

R
ρ(x− xj)

2|uj(x)− u
(l)
j,k(x)|2 dx ≤ ‖uj − u

(l)
j,k‖

2

L2
= ‖u(h)

j,k‖
2

L2
≤ εk,

and in the same way ‖wj − wj,k‖2
L2 ≤ εk follows, whence (4.19) and (4.20) are obtained. The

following argument is similar to that given in Section 4.1. By (2.4) in Lemma 2.1(b), (4.17), the
first estimate from (4.19), and Corollary 2.3(a),

|ϕ(uj)− ϕ(vj,k)− ϕ(wj,k)| ≤ |ϕ(uj)− ϕ(vj,k + wj,k)|+ |ϕ(vj,k + wj,k)− ϕ(vj,k)− ϕ(wj,k)|
≤ C

(
max{‖uj‖L2 , ‖vj,k + wj,k‖L2}

)5

‖uj − (vj,k + wj,k)‖L2

+ |ϕ(vj,k + wj,k)− ϕ(vj,k)− ϕ(wj,k)|
≤ C(δ1/2 + ε

1/2
k ) + |ϕ(ṽj,k + w̃j,k)− ϕ(ṽj,k)− ϕ(w̃j,k)|, (4.21)

where ṽj,k(x) := vj,k(x + xj) = ρ(x)u
(l)
j,k(x + xj) and w̃j,k(x) := wj,k(x + xj) = η(x)u

(l)
j,k(x + xj),

cf. (4.16). We recall from Lemma 3.1 that supp(ρ) ⊂ {x ∈ R : |x| ≤ x∗1 + 2δ−1 = z∗1 + 2δ−1}
and supp(η) ⊂ {x ∈ R : |x| ≥ x∗2 − 2δ−1 = z∗2 − 2δ−1}. Since ‖ṽj,k‖L2 = ‖vj,k‖L2 ≤ 1 and
‖w̃j,k‖L2 = ‖wj,k‖L2 ≤ 1 by (4.17), (2.6) from Lemma 2.1(d) can thus be applied with a = z∗1 +2δ−1

and b = z∗2 − 2δ−1. Using (4.18) we obtain

|ϕ(ṽj,k + w̃j,k)− ϕ(ṽj,k)− ϕ(w̃j,k)| ≤ C
(
‖ṽj,k‖1/6

H1 + ‖w̃j,k‖1/6

H1

)
(1 + a)1/2(b− a)−1/12

= C
(
‖vj,k‖1/6

H1 + ‖wj,k‖1/6

H1

)
(1 + a)1/2(b− a)−1/12

≤ CR
1/6
k (1 + a)1/2(b− a)−1/12. (4.22)
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Lemma 4.4 With a = z∗1 + 2δ−1 and b = z∗2 − 2δ−1 the estimate (1 + a)1/2(b− a)−1/12 ≤ 21/2δ1/2

holds.

Proof : By choice of z∗2 , see (3.1), z∗2 ≥ z∗1 + 4δ−1 + δ−6(z∗1 + 2δ−1)6 which is equivalent to
(z∗1 + 2δ−1)(z∗2 − z∗1 − 4δ−1)−1/6 ≤ δ. From δ < γ < 1 ≤ 2 and z∗1 > 0 we get 1 ≤ z∗1 + 2δ−1, hence

(1 + a)1/2(b− a)−1/12 ≤ 21/2(z∗1 + 2δ−1)
1/2

(z∗2 − z∗1 − 4δ−1)−1/12 ≤ 21/2δ1/2. 2

From (4.21), (4.22), and Lemma 4.4,

|ϕ(uj)− ϕ(vj,k)− ϕ(wj,k)| ≤ C(δ1/2 + ε
1/2
k ) + CR

1/6
k δ1/2.

This estimate holds for all k ∈ N, δ ∈]0, γ[, and j ≥ j0(δ), with however vj,k and wj,k depending
on δ, j, and k. Thus Strichartz’ inequality, the second bound from (4.19), and (4.20) yield

ϕ(uj) ≤ C(δ1/2 + ε
1/2
k ) + CR

1/6
k δ1/2 + ϕ(vj,k) + ϕ(wj,k)

≤ C(δ1/2 + ε
1/2
k ) + CR

1/6
k δ1/2 + S6‖vj,k‖6

L2 + S6‖wj,k‖6
L2

≤ C(δ1/2 + ε
1/2
k ) + CR

1/6
k δ1/2 + S6

(
3(δ + ε

1/2
k ) + γ

)3

+ S6
(
9(δ + ε

1/2
k ) + (1− γ)

)3

.

Since we have got rid of the functions vj,k and wj,k, we may take the limit j →∞ to find

S6 ≤ C(δ1/2 + ε
1/2
k ) + CR

1/6
k δ1/2 + S6

(
3(δ + ε

1/2
k ) + γ

)3

+ S6
(
9(δ + ε

1/2
k ) + (1− γ)

)3

.

This estimate is satisfied for all δ ∈]0, γ[ and all k ∈ N. Hence we can pass successively to the
limits first δ → 0 and then k → ∞ to arrive at S6 ≤ S6γ3 + S6(1 − γ)3, which is a contradiction
to γ ∈]0, 1[.

4.2.3 The case that the sequence (uj) is tight

Summarizing the results of the preceding sections, we have constructed a maximizing sequence
(uj) which satisfies (4.5) and then applied the concentration compactness principle to (uj). Since
the alternatives (2) and (3) do not occur by Sections 4.2.1 and 4.2.2, it follows that (1) holds,
i.e., there exists a sequence (xj) ⊂ R such that for every δ > 0 there is M = Mδ > 0 with∫ xj+M

xj−M
|uj|2 dx ≥ 1 − δ for all j ∈ N. Finally we let ũj(x) = uj(x + xj) and claim that (ũj)

is a maximizing sequence which (along a subsequence) strongly converges in L2. Indeed, since
‖ũj‖L2 = ‖uj‖L2 = 1 and, by Corollary 2.3(a), ϕ(ũj) = ϕ(uj) → S6 as j →∞, (ũj) is a maximizing

sequence. It follows from ˆ̃uj(ξ) = eixjξûj(ξ) that (4.5) is satisfied for (ũj), too. In addition,

∀ δ > 0 ∃M = Mδ > 0 :

∫ M

−M

|ũj|2 dx ≥ 1− δ, j ∈ N. (4.23)

Passing to a subsequence (which is not relabelled) we can suppose that ũj ⇀ u∗ in L2 as j → ∞
for some u∗ ∈ L2 with ‖u∗‖L2 ≤ 1. Again we fix a sequence εk → 0, choose Rk according to

(4.5), and define ũ
(l)
j,k = (φk

ˆ̃uj)
ˇ and ũ

(h)
j,k = ((1 − φk)ˆ̃uj)

ˇ. Here φk(ξ) = φ(ξ/Rk), with φ ∈ C∞0 (R)
taking values in [0, 1] such that φ(ξ) = 1 for |ξ| ≤ 1 and φ(ξ) = 0 for |ξ| ≥ 2. Then again

‖dũ
(l)
j,k

dx
‖

L2 = ‖ũ(l)
j,k‖Ḣ1

≤ CRk, ‖ũj − ũ
(l)
j,k‖L2

= ‖ũ(h)
j,k‖L2

≤ ε
1/2
k , and ‖ũ(l)

j,k‖L2
≤ 1 are satisfied, see
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(4.10), (4.11), and (4.12). Now we fix k ∈ N. Then there exists a subsequence (j′) ⊂ (j), ṽk ∈ H1,

and w̃k ∈ L2 such that ũ
(l)
j′,k ⇀ ṽk in H1 and ũ

(h)
j′,k ⇀ w̃k in L2 as j′ →∞. In particular,

‖w̃k‖L2 ≤ lim inf
j′→∞

‖ũ(h)
j′,k‖L2

≤ ε
1/2
k , (4.24)

and also u∗ = ṽk + w̃k due to ũj = ũ
(l)
j,k + ũ

(h)
j,k . Next we fix δ > 0 and choose M = Mδ according to

(4.23). By compactness of the embedding H1 ⊂ L2(]−M,M [), ũ
(l)
j′,k → ṽk strongly in L2(]−M,M [)

as j′ →∞. Therefore, using (4.24), the above bounds, and (4.23),

‖u∗‖L2 ≥ ‖u∗‖L2(]−M,M [) = ‖ṽk + w̃k‖L2(]−M,M [) ≥ ‖ṽk‖L2(]−M,M [) − ‖w̃k‖L2

≥ lim
j′→∞

‖ũ(l)
j′,k‖L2(]−M,M [)

− ε
1/2
k = lim

j′→∞
‖ũj′ − ũ

(h)
j′,k‖L2(]−M,M [)

− ε
1/2
k

≥ lim sup
j′→∞

(
‖ũj′‖L2(]−M,M [) − ‖ũ(h)

j′,k‖L2

)
− ε

1/2
k

≥ lim sup
j′→∞

‖ũj′‖L2(]−M,M [) − 2ε
1/2
k ≥ (1− δ)1/2 − 2ε

1/2
k .

This estimate holds for every δ > 0, whence ‖u∗‖L2 ≥ 1−2ε
1/2
k for every k ∈ N. Passing to the limit

k → ∞ thus ‖u∗‖L2 = 1 = limj→∞ ‖ũj‖L2 . Since also ũj ⇀ u∗ in L2, we obtain ũj → u∗ strongly
in L2. By continuity of ϕ : L2 → R, cf. (2.4), this finally yields ϕ(u∗) = limj→∞ ϕ(ũj) = S6, i.e.,
u∗ is a maximizing function and the proof of Theorem 1.1 is completed. 2
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