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Abstract

We study a variational problem from nonlinear fiber optics which strongly lacks compactness,
due to the absence of a priori bounds in spaces different from L2(R). A method is established
how to restore this missing compactness by means of the dispersive properties inherent in the
problem.

1 Introduction and main result

In this paper we consider the particular variational problem to minimize the functional

ϕ(u) = −
∫ 1

0

∫

R
|(eit∂2

xu)(x)|4 dx dt (1.1)

under the constraint u ∈ L2 = L2(R;C) and
∫
R |u|2 dx = λ; here and henceforth eit∂2

xu0 = U(t)u0

denotes the evolution operator of the free Schrödinger equation in one space dimension, i.e.,
u(t, x) = (U(t)u0)(x) solves

iut + uxx = 0, u(0, x) = u0(x). (1.2)

We will device a method to prove that a minimizer exists which also could be useful to handle
similar problems associated to different dispersive equations. The functional ϕ arises in nonlinear
optics, and critical points correspond to ground states of so-called (time-averaged) dispersion
managed optical fibers, in the case of zero residual dispersion; cf. [17] and the references therein
for a derivation and additional motivation. In general, minimizers of the functional

ϕ(ε)(u) =
ε

2

∫

R
|u′|2 dx−

∫ 1

0

∫

R
|(eit∂2

xu)(x)|4 dx dt (1.3)

under the constraint u ∈ H1 = H1(R;C) and
∫
R |u|2 dx = λ are interpreted as ground states at

residual dispersion ∼ ε, hence the functional ϕ = ϕ(ε=0) from (1.1) formally arises as the singular
perturbation limit ε → 0 of (1.3). It has been shown in [17, 9] that the constrained minimization
problem associated with (1.3) admits a solution, cf. also [16].
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After these general remarks, we return to (1.1) to see what is the main difficulty. If we take a
minimizing sequence (uj) ⊂ L2, i.e., ‖uj‖2

L2 = λ for j ∈ N and ϕ(uj) → Pλ as j →∞, where

Pλ = inf
{

ϕ(u) : u ∈ L2,

∫

R
|u|2 dx = λ

}
, (1.4)

we may assume uj ⇀ u in L2, but there is no a priori reason why this sequence should converge
strongly in L2. We will prove, however, that the dispersive properties of (1.2) are good enough to
establish this strong convergence.

Usually in variational problems defined on the whole real axis (or on the whole space) one tries
to apply the concentration compactness principle (henceforth abbreviated CCP) for the sequence
(uj), cf. Section 3 below, to restore at least partial compactness, but without a H1-bound on (uj)
this seems to lead nowhere. We note that in case of the functional ϕ(ε) from (1.3) such a H1-bound
is available, and resolving several technical issues, in [17] the CCP could finally be made use of
successfully.

To get a clue on how to handle the problem for ε = 0, we first discuss the question of which
additional degree of regularity for the minimizing sequence (besides L2) would be sufficient to solve
it. Since we are dealing with a L2-problem, one could expect that a decomposition uj = ureg

j +usmall
j

into a H1-part ureg
j and a remainder usmall

j which is small in L2 would allow to follow the H1-proof
for (1.3) ‘up to ε’. However, at this point it remains unclear whether a relation between the size
of ‖ureg

j ‖
H1 and the size of ‖usmall

j ‖
L2 were needed. By refining some of the arguments in [17], this

issue could be settled, and as a first step it was possible to show that basically no relation between
‖ureg

j ‖
H1 and ‖usmall

j ‖
L2 is necessary to make the argument work. So we may reformulate our initial

question as follows: For a L2-bounded sequence (uj), given ε > 0, what is the minimal additional
regularity that allows a decomposition uj = ureg

j + usmall
j , with ‖usmall

j ‖
L2 ∼ ε and ‖ureg

j ‖
H1 ∼ Rε,

uniformly in j ∈ N ? To answer this question, we fix a function φ ∈ C∞
0 (R) with values in [0, 1]

such that φ(ξ) = 1 for |ξ| ≤ 1 and φ(ξ) = 0 for |ξ| ≥ 2. For R > 0 one defines φR(ξ) = φ(ξ/R) to
obtain

uj = ureg
j,R + usmall

j,R , (1.5)

where
ureg

j,R = (φRûj)
ˇ = φ̌R ∗ uj and usmall

j,R = ((1− φR)ûj)
ˇ = (1− φR)ˇ∗ uj

for j ∈ N and R > 0. Then ‖ureg
j,R‖Ḣ1

∼ R will be large, and we are going to argue on what is

needed to get ‖usmall
j,R ‖

L2 small. For this, we observe that

‖usmall
j,R ‖2

L2 =

∫

|ξ|≥R

|(1− φR)ûj|2 dξ ≤
∫

|ξ|≥R

|ûj|2 dξ = 1−
∫

|ξ|<R

|ûj|2 dξ.

Hence the basic regularity assumption we are looking for is

for every ε > 0 there exists R = Rε > 0 :

∫

|ξ|<R

|ûj|2 dξ ≥ 1− ε, j ∈ N ; (1.6)

note that this assertion in particular holds in the case that (uj) ⊂ Hs is bounded for some s > 0.
We remark that with respect to dispersive equations the usefulness of decomposing functions

u into a regular low-frequency part ureg and a small high-frequency part usmall as in (1.5) has been
observed for the first time in [2]. In this paper the global existence of solutions for critical nonlinear
Schrödinger equations in two space dimensions is investigated, for data lying only in some Hs with
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3/5 < s < 1, instead of H1. The basic idea was that the problem could then be considered as
a small perturbation ∼ usmall of the same problem with regular data ureg ∈ H1 leading to H1-
solutions, for which conservation of energy could be used. The approach from [2] meanwhile found
a large number of applications and improvements, cf. [1, 3, 5, 7, 8, 14] and many other papers.
Note that we intend to rely on an analogous method: In the background, there is the H1-problem
(1.3), and we try to ‘ε-shadow’ this problem to find a minimizer of (1.1) by decomposing the uj.
However, the difference here is that we cannot assume any Hs-regularity for the uj.

Having (1.6) in mind therefore the next step is to see how to find a minimizing sequence which
satisfies this condition. First we note that, by Ekeland’s variational principle, we may select the
minimizing sequence in such a way that additionally λ−1Pλuj +Q(uj) → 0 in L2 holds, where Q(u)
is related to the gradient of ϕ by ϕ′(u) = −4Q(u), and

Q(u) =

∫ 1

0

U(−t)
(
|U(t)u|2(U(t)u)

)
dt, u ∈ L2. (1.7)

We note in passing that, with a slight abuse of notation, Q(u) = Q(u, u, u), where the trilinear
Q(·, ·, ·) is given by

Q(u1, u2, u3) =

∫ 1

0

U(−t)
(
(U(t)u1)(U(t)u2)(U(t)u3)

)
dt, u1, u2, u3 ∈ L2. (1.8)

Thus a possibility to ensure (1.6) would be to verify that Q is slightly regularizing, in the sense
that an estimate ‖Q(u)‖Hs ≤ C‖u‖3

L2 holds for some (small) s > 0. However, it follows from
the Galilean invariance of the linear Schrödinger equation that such a bound cannot be satisfied,
cf. Remark 2.3 below.

Nevertheless Q is regularizing in a special way, to be explained next. Condition (1.6) just says
that the sequence (ûj) is tight, in the sense of measures. This property can be realized as the
first possibility of a CCP alternative, but applied to the sequence (ûj) instead of (uj). Hence it
is sufficient to exclude the other two possibilities from the alternative in order to ensure (1.6). If
the sequence (ûj) would not be tight, it were either ‘vanishing’, in the sense that it tends to zero
in L2

ξ uniformly over every interval of fixed length, or it were ‘splitting’ into two parts with widely
separated supports. The first of these cases somehow corresponds to the situation that frequency
interactions over fixed finite distances are suppressed, e.g. in estimates involving the formula for

Q̂(uj) := Q̂(uj). Moreover, splitting has a similar effect, since one has to take into account only
the contributions of frequencies which differ a lot from each other, due to the support separation
of the two parts. It then turned out that if either vanishing or splitting is additionally supposed
for (ûj), then improved estimates on Q̂(uj) are possible which are strong enough to exclude these
two possibilities in the end. Hence we could verify that in fact every minimizing sequence satisfies
(1.6), up to rotation and translation of the original sequence.

Thus the strategy for the proof can be summarized as follows:

First apply CCP to (ûj). Then: (a) If (ûj) is tight, then (1.6) holds and the decomposition
(1.5) can be introduced. This leads to ‘almost minimizing sequences’ (ureg

j,Rk
)j∈N which are H1-

bounded for every k ∈ N; here a sequence εk → 0 is fixed and Rk = Rεk
is chosen according to

(1.6). Since now H1-bounds are available it is then not difficult to prove, by means of a further
application of the CCP now to (uj), that (uj) has a strongly convergent subsequence. (b) If (ûj) is

‘vanishing’, then study Q̂(uj) which corresponds to the linearization of the functional in question,
and which is a multiple convolution integral. Since frequency interactions over finite distances
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do not contribute much by assumption, one can show that Q̂(uj) → 0 strongly in L2, whence
ϕ(uj) → 0 in contradiction to the fact that (uj) is a minimizing sequence. (c) If (ûj) is ‘splitting’,
then ûj ∼ v̂j + ŵj, and the supports of v̂j and ŵj are far apart. This can be used to prove, similarly
to (b), that the ‘cross terms’ like Q(vj, vj, wj) in the expansion of Q(uj) ∼ Q(vj+wj, vj+wj, vj+wj)
are small, whence Q(uj) ∼ Q(vj) + Q(wj) which in turn leads to ϕ(uj) ∼ ϕ(vj) + ϕ(wj). Since
either vj or wj has mass strictly less than 1 (uniformly in j), one can then derive a contradiction
to the definition of P1 in a standard way.

Upon elaborating the technical details, we obtain the following main result of this paper.

Theorem 1.1 For every λ > 0 the minimization problem (1.4) admits a solution u ∈ L2 ∩ L∞.

It should be noted that as a consequence of Pλ = λ2P1 (see Lemma 2.6 below) it will suffice to
verify that P1 has a solution.

Although the main motivation to study (1.4) came from nonlinear optics, let us also mention
that Theorem 1.1 can be reformulated as saying that the best constant C∗ = −P1 > 0 for the
Strichartz-type estimate

∫ 1

0

∫

R
|(eit∂2

xu)(x)|4 dx dt ≤ C‖u‖4
L2 , u ∈ L2, (1.9)

is attained at some function u∗ ∈ L2. We remark that a different proof of the key property (1.6)
can be given which does not rely on the application of the CCP to the sequence (ûj). Taking this
route would lead to a considerable shortening of several technical arguments, mainly in Section 2.
However, this particular simplification is only possible due to the fact that (1.9) is a ‘subcritical’
estimate. Since we found the method of a two-level application of the CCP to be new, and since
in particular a further refinement of this approach recently could be used to show that also the
best constant in the standard ‘critical’ L6

t (L
6
x)-Strichartz estimate

∫

R

∫

R
|(eit∂2

xu)(x)|6 dx dt ≤ C‖u‖6
L2 , u ∈ L2,

is attained [12], we decided to follow the general strategy of proof as outlined above.
The result of the present paper furthermore could be extended to prove that in the singular

perturbation limit ε → 0 minimizers u(ε) of the functional ϕ(ε) from (1.3) under the constraint∫
R |u(ε)|2 dx = λ converge strongly in L2 (up to selection of a subsequence, shift, and rotation) to

a mimimizer u of Pλ; see [11].
The paper is organized as follows. In Section 2 we collect some preliminary estimates, mainly

of technical nature. Then in Section 3 we give some details on the CCP alternative in L2, which
seems to be unusual compared to the frequently found H1-case. In Section 4 we finally carry out
the proof of Theorem 1.1.

Concerning notation, we denote Lp = Lp(R;C) and Hs = Hs(R;C), with norms ‖ · ‖Lp and
‖ · ‖Hs , respectively. The inner product on L2 is (u, v)L2 =

∫
R uv̄ dx, whereas the Fourier transform

of u ∈ L2 is û(ξ) = (2π)−1/2
∫
R e−ixξu(x) dx with inverse ǔ. By C we denote unimportant positive

numerical constants, in particular the factors (2π)−1/2 of û and ǔ will always be absorbed into
some C.
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2 Some auxiliary results and estimates

Since ϕ is defined as a space-time integral, it can be expected that the (standard) Strichartz
estimate for (1.2) will provide useful.

Lemma 2.1 Assume q ∈ [4,∞] and r ∈ [2,∞] are such that 2/q = 1/2− 1/r. Then

‖U(·)u‖Lq
t (Lr

x) :=
( ∫

R
‖U(t)u‖q

Lr dt
)1/q

≤ C‖u‖L2 , u ∈ L2,

with C depending only on q.

Proof : Cf. [4, Thm. 3.2.5(i)]. 2

Note in particular that the pair (q, r) = (4, 4) does not satisfy 2/q = 1/2− 1/r, and therefore

ϕ(u) from (1.1) in general could be infinite, if in its definition
∫ 1

0
(. . .) dt were replaced by

∫
R(. . .) dt.

The next lemma states some elementary properties of ϕ and its linearization.

Lemma 2.2 We have ϕ ∈ C1(L2) and ϕ′(u) = −4Q(u), where Q(u) is given in (1.7). Then
ϕ(u) = −(Q(u), u)L2, and the estimate

‖Q(u1, u2, u3)−Q(v1, v2, v3)‖L2 ≤ C
(
‖u2‖L2‖u3‖L2‖u1 − v1‖L2 + ‖u3‖L2‖v1‖L2‖u2 − v2‖L2

+ ‖v1‖L2‖v2‖L2‖u3 − v3‖L2

)
(2.1)

holds for u1, u2, u3, v1, v2, v3 ∈ L2, with Q(u1, u2, u3) defined in (1.8). In particular, we have

‖Q(u)−Q(v)‖L2 ≤ C
(
‖u‖L2 + ‖v‖L2

)2

‖u− v‖L2 , u, v ∈ L2, (2.2)

and moreover
‖Q(u)‖L2 ≤ C‖u‖3

L2 , u ∈ L2, (2.3)

and

|ϕ(u)− ϕ(v)| ≤ C
(
‖u‖L2 + ‖v‖L2

)3

‖u− v‖L2 , u, v ∈ L2. (2.4)

The Fourier transform of Q(u) ∈ L2 is given by

Q̂(u)(ξ) = Q̂(u)(ξ) = Ci

∫

R

∫

R
dξ1dξ2

(1− eiα(ξ, ξ1, ξ2)

α(ξ, ξ1, ξ2)

)
û(ξ − ξ1 − ξ2)ˆ̄u(ξ1)û(ξ2), (2.5)

where
α(ξ, ξ1, ξ2) = ξ2 − (ξ − ξ1 − ξ2)

2 + ξ2
1 − ξ2

2 = 2(ξ1 + ξ2)(ξ − ξ2). (2.6)

Proof : First, (Q(u), u)L2 =
∫
RQ(u)ū dx =

∫ 1

0

∫
R |U(t)u|4 dxdt = −ϕ(u) follows from

∫

R
(U(−t)f)ḡ dx =

∫

R
f(U(t)g) dx, f, g ∈ L2. (2.7)

For (2.1) we note that Q(u1, u2, u3) − Q(v1, v2, v3) = Q(u1 − v1, u2, u3) + Q(v1, u2 − v2, u3) +
Q(v1, v2, u3 − v3), hence it suffices to show (2.1) for v1 = v2 = v3 = 0. Due to ‖U(t)f‖L2 = ‖f‖L2 ,
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if we denote uk(t) = U(t)uk for k = 1, 2, 3 and use Hölder’s inequality first in the dx-integral and
then in the dt-integral, we obtain

‖Q(u1, u2, u3)‖L2 ≤
∫ 1

0

∥∥∥u1(t)u2(t)u3(t)
∥∥∥

L2
dt ≤

∫ 1

0

‖u1(t)‖L6‖u2(t)‖L6‖u3(t)‖L6 dt

≤ ‖U(·)u1‖L6
t (L6

x)‖U(·)u2‖L6
t (L6

x)‖U(·)u3‖L6
t (L6

x) ≤ C‖u1‖L2‖u2‖L2‖u3‖L2 ,

(2.8)

where in the last step we have used Strichartz’ inequality (cf. Lemma 2.1) with q = r = 6. Setting
u1 = u2 = u3 = u and v1 = v2 = v3 = v, (2.2) follows from (2.1), and (2.3) is (2.2) with v = 0.
Concerning (2.4), we write |ϕ(u)− ϕ(v)| = |(Q(u)−Q(v), u)L2 + (Q(v), u− v)L2| and apply (2.2)

and (2.3). Next, in view of ̂(U(t)u)(ξ) = e−itξ2
û(ξ) and ̂(U(t)u)(ξ) = eitξ2 ˆ̄u(ξ), the derivation of

(2.5) is straightforward. Finally, in order to show ϕ′(u) = −4Q(u) one expands ϕ(u + h) − ϕ(u)
and relies on estimates of the type used in (2.8). 2

Remark 2.3 We include a few comments why an estimate of the type ‖Q(u)‖Hs ≤ C‖u‖3
L2 for

some s > 0 will not hold. For this we fix a function u ∈ L2 and define uN(x) = eiNxu(x) for
N ∈ N. Then ‖uN‖L2 = ‖u‖L2 is constant in N and (U(t)uN)(x) = eiNxe−iN2t(U(t)u)(x − 2Nt)
is found as the solution of the linear Schrödinger equation with initial data uN . This implies that
the function Q(uN) will be of the form Q(uN)(x) = eiNxφN(x), with the φN suitably well-behaved
if u is chosen regular enough. Therefore we will obtain ‖Q(uN)‖Hs ∼ N s tending to infinity as
N →∞.

Lemma 2.4 Let R = Ω1 ∪ Ω2. Then
∣∣∣
∫ 1

0

∫

R
(U(t)u1)(U(t)u2)(U(t)u3)(U(t)u4) dxdt

∣∣∣

≤ C
(
‖U(·)ui1‖L2([0,1]×Ω1)

4∏
k=1
k 6=i1

‖uk‖L2 + ‖U(·)ui2‖L2([0,1]×Ω2)

4∏
k=1
k 6=i2

‖uk‖L2

)

for u1, u2, u3, u4 ∈ L2 and any i1, i2 ∈ {1, . . . , 4}. In particular,
∣∣∣
∫ 1

0

∫

R
(U(t)u1)(U(t)u2)(U(t)u3)(U(t)u4) dxdt

∣∣∣ ≤ C‖u1‖L2‖u2‖L2‖u3‖L2‖u4‖L2 (2.9)

for u1, u2, u3, u4 ∈ L2.

Proof : We consider any Ω ⊂ R, and we are going to show that integrating over x ∈ Ω the bound
∼ C‖U(·)u1‖L2([0,1]×Ω)‖u2‖L2‖u3‖L2‖u4‖L2 can be derived; the argument applies in an analogous

way, if it is a U(·)uk different from U(·)u1 which should get the L2([0, 1]×Ω)-norm. Using Hölder’s
inequality in the dx-integral and then in the dt-integral, we have

∣∣∣
∫ 1

0

∫

Ω

(U(t)u1)(U(t)u2)(U(t)u3)(U(t)u4) dxdt
∣∣∣

≤
∫ 1

0

‖U(t)u1‖L2(Ω)‖U(t)u2‖L6‖U(t)u3‖L6‖U(t)u4‖L6 dt

≤
( ∫ 1

0

‖U(t)u1‖2
L2(Ω) dt

)1/2

‖U(·)u2‖L6
t (L6

x)‖U(·)u3‖L6
t (L6

x)‖U(·)u4‖L6
t (L6

x)

≤ C‖U(·)u1‖L2([0,1]×Ω)‖u2‖L2‖u3‖L2‖u4‖L2 ,
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the latter by Strichartz’ estimate (cf. Lemma 2.1) with q = r = 6. 2

The functional ϕ is invariant under translation and rotation of u, in the following sense.

Lemma 2.5 Let x0 ∈ R, ξ0 ∈ R, and u ∈ L2. Then ϕ(u(·+ x0)) = ϕ(u) and ϕ(eiξ0xu) = ϕ(u).

Proof : For the translation invariance, we note that

(U(t)u(·+ x0))(x) = (U(t)u)(x + x0), (2.10)

since both sides have Fourier transform eix0ξe−itξ2
û(ξ). Hence ϕ(u(· + x0)) = ϕ(u) follows from

the definition of ϕ, cf. (1.1). Next, defining v(x) = eiξ0xu(x), we obtain v̂(ξ) = û(ξ − ξ0) and
ˆ̄v(ξ) = ˆ̄u(ξ + ξ0). Thus (2.5) yields, by means of the transformation η1 = ξ1 + ξ0, η2 = ξ2 − ξ0, the
relation

Q̂(v)(ξ) = Ci

∫

R

∫

R
dξ1dξ2

(1− eiα(ξ, ξ1, ξ2)

α(ξ, ξ1, ξ2)

)
û(ξ − ξ1 − ξ2 − ξ0)ˆ̄u(ξ1 + ξ0)û(ξ2 − ξ0)

= Ci

∫

R

∫

R
dη1dη2

( 1− eiα(ξ, η1−ξ0, η2+ξ0)

α(ξ, η1 − ξ0, η2 + ξ0)

)
û(ξ − ξ0 − η1 − η2)ˆ̄u(η1)û(η2)

= Q̂(u)(ξ − ξ0),

the latter in view of α(ξ, η1−ξ0, η2+ξ0) = 2(η1−ξ0+η2+ξ0)(ξ−η2−ξ0) = α(ξ−ξ0, η1, η2), recall (2.6).
Therefore we find from ¯̂v(ξ) = ¯̂u(ξ − ξ0) that ϕ(v) = − ∫

RQ(v)(x)v̄(x) dx = − ∫
R Q̂(v)(ξ)¯̂v(ξ) dξ =

− ∫
R Q̂(u)(ξ − ξ0)¯̂u(ξ − ξ0) dξ = ϕ(u). 2

Concerning the scaling of Pλ in λ, the following result holds which also shows that Pλ is finite
and negative.

Lemma 2.6 For λ > 0 we have Pλ = λ2P1, and there are constants C1, C2 > 0 such that −C1λ
2 ≤

Pλ ≤ −C2λ
2 is satisfied. In particular,

ϕ(u) ≥ P‖u‖2
L2

= ‖u‖4
L2P1, u ∈ L2. (2.11)

Proof : If u ∈ L2 is such that ‖u‖2
L2 = λ, then v(x) = λ−1/2u(x) has ‖v‖2

L2 = 1, and ϕ(u) = λ2ϕ(v).
This implies Pλ = λ2P1. Next, from (2.3) we find |ϕ(u)| = |(Q(u), u)L2| ≤ C1‖u‖4

L2 , whence Pλ ≥
−C1λ

2. Concerning the upper bound, we consider the particular data function v(x) = Ae−x2/2,
with A > 0 to be selected below; cf. [17, Appendix C]. Then (U(t)v)(x) = A√

1+2it
e−x2/(2+4it), and

it follows that ‖v‖2
L2 = A2

√
π as well as

−ϕ(v) =

∫ 1

0

∫

R
|U(t)v|4 dx dt =

√
π

2
A4

∫ 1

0

dt

1 + 4t2
=

√
π

23/2
arctan(2)A4.

To achieve ‖v‖2
L2 = λ we set A2 = π−1/2λ and obtain Pλ ≤ ϕ(v) = − 1

23/2
√

π
arctan(2)λ2, thus we

can choose explicitly C2 = 2−3/2π−1/2 arctan(2) ∼= 0.22. 2

In the remaining part of this section we will derive some additional technical lemmas.
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Lemma 2.7 Let (uj) ⊂ L2 be bounded and such that for any A > 0

lim
j→∞

sup
x0∈R

∫ x0+A

x0−A

|uj|2 dx = 0 (2.12)

holds, i.e., (uj) is ‘vanishing’. With φ ∈ S(R) (Schwartz functions) we define u
(l)
j = (φûj)

ˇ = φ̌∗uj.

Then (u
(l)
j ) is also vanishing.

Proof : Let A > 0 and x0 ∈ R. Then

I(A, x0) :=

∫ x0+A

x0−A

|u(l)
j (x)|2 dx =

∫ x0+A

x0−A

dx
∣∣∣
∫

R
φ̌(y)uj(x− y) dy

∣∣∣
2

≤
∫ A

−A

dx
( ∫

R
|φ̌(y)||uj(x + x0 − y)| dy

)2

. (2.13)

Since also φ̌ ∈ S(R), we have |φ̌(y)| ≤ C(1 + |y|)−2 for y ∈ R. For fixed R > 0 it hence follows
from Hölder’s inequality that

∫

|y|>R

|φ̌(y)||uj(x + x0 − y)| dy ≤ CR−1

∫

|y|>R

1

1 + |y| |uj(x + x0 − y)| dy ≤ CR−1. (2.14)

On the other hand, in addition
∫

|y|≤R

|φ̌(y)||uj(x + x0 − y)| dy ≤ ‖φ̌‖L∞

∫

|y|≤R

|uj(x + x0 − y)| dy

≤ CR1/2
( ∫ x+x0+R

x+x0−R

|uj(z)|2 dz
)1/2

(2.15)

holds. Using (2.14) and (2.15) in (2.13), we find for any R > 0 the estimate

I(A, x0) ≤ CAR−2 + CR

∫ A

−A

dx

∫ x+x0+R

x+x0−R

|uj(z)|2 dz ≤ CAR−2 + CAR

∫ x0+(A+R)

x0−(A+R)

|uj(z)|2 dz,

with C depending only on supy∈R |φ̌(y)|(1 + |y|)2, ‖φ̌‖L∞ , and supj∈N ‖uj‖L2 (thus it would suffice
that these quantities were bounded). Therefore

sup
x0∈R

∫ x0+A

x0−A

|u(l)
j |2 dx ≤ CAR−2 + CAR sup

x0∈R

∫ x0+(A+R)

x0−(A+R)

|uj|2 dx. (2.16)

Given ε > 0 we fix R > 0 large enough such that CAR−2 ≤ ε/2. Then we apply (2.12) with A
replaced by A + R to find j0 ∈ N with the property that the second term on the right-hand side of
(2.16) is ≤ ε/2 for j ≥ j0. Thus we obtain supx0∈R

∫ x0+A

x0−A
|u(l)

j |2 dx ≤ ε for j ≥ j0, and this yields
the claim. 2

Lemma 2.8 For u ∈ H1, t ∈ [0, 1], and A ≥ 1 we have

∫

R
|U(t)u|4 dx ≤ C

(
sup
x0∈R

∫ x0+2A

x0−2A

|u|2 dx + A−1‖u‖L2‖u‖H1

)
‖u‖2

H1 . (2.17)
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Proof : First we recall that for every t ∈ R and A > 0 the estimate

∫ A

−A

|U(t)u|2 dx ≤
∫ 2A

−2A

|u|2 dx + CA−1|t|‖u‖L2‖u′‖L2 (2.18)

holds, cf. [3, Lemma 8.33]; a similar result is in [17, Thm. 7.1], and see [10, Lemma 2.5] for the
version stated here. To include a short proof, we fix t > 0, A > 0, and a function β ∈ C∞

0 (Rn)
taking values in [0, 1] such that β(x) = 1 for |x| ≤ A and β(x) = 0 for |x| ≥ 2A. Then we
can suppose that ‖β ′‖L∞ ≤ CA−1. Writing u(t, x) = (U(t)u)(x), (1.2) shows that with I(t) =∫
R |u(t, x)|2β(x) dx we have İ(t) = (−2)Im

∫
R ū(t, x)∂xu(t, x)β ′(x) dx. Therefore we obtain

∫ A

−A

|u(t, x)|2 dx ≤ I(t) = I(0) +

∫ t

0

İ(s) ds

≤
∫ 2A

−2A

|u(x)|2 dx + CA−1

∫ t

0

‖u(s)‖L2‖∂xu(s)‖L2 ds

=

∫ 2A

−2A

|u(x)|2 dx + CA−1t ‖u‖L2‖u′‖L2 ,

where it has been used that (1.2) preserves every Hs-norm. Next we recall the general inequality

∫

R
|u|4 dx ≤ C

(
sup
x0∈R

∫ x0+1

x0−1

|u|2 dx
)
‖u‖2

H1 (2.19)

from [4, Lemma 8.3.7]; a proof of this is as follows. By the Sobolev embedding theorem we
have ‖u‖L∞(]−1,1[) ≤ C‖u‖H1(]−1,1[), and therefore by translation invariance ‖u‖L∞(]x0−1,x0+1[) ≤
C‖u‖H1(]x0−1,x0+1[) for all x0 ∈ R, with C > 0 independent of x0. This yields

∫

R
|u|4 dx =

∑

k∈2Z

∫ k+1

k−1

|u|4 dx ≤
∑

k∈2Z

(
‖u‖2

L∞(]k−1,k+1[)

∫ k+1

k−1

|u|2 dx
)

≤ C
(

sup
x0∈R

∫ x0+1

x0−1

|u|2 dx
) ∑

k∈2Z
‖u‖2

H1(]k−1,k+1[) = C
(

sup
x0∈R

∫ x0+1

x0−1

|u|2 dx
)
‖u‖2

H1 .

From (2.19) and (2.18), it follows with (2.10) that for t ∈ [0, 1] and A ≥ 1 we have

∫

R
|U(t)u|4 dx ≤ C

(
sup
x0∈R

∫ x0+1

x0−1

|(U(t)u)(x)|2 dx
)
‖U(t)u‖2

H1

= C
(

sup
x0∈R

∫ 1

−1

|(U(t)u)(x0 + z)|2 dz
)
‖u‖2

H1

≤ C
(

sup
x0∈R

∫ A

−A

|U(t)u(x0 + ·)|2 dz
)
‖u‖2

H1

≤ C
(

sup
x0∈R

[ ∫ 2A

−2A

|u(x0 + ·)|2 dx + A−1‖u(x0 + ·)‖L2‖u(x0 + ·)′‖L2

])
‖u‖2

H1

≤ C
(

sup
x0∈R

∫ x0+2A

x0−2A

|u|2 dx + A−1‖u‖L2‖u‖H1

)
‖u‖2

H1 ,

as was to be shown. 2
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Lemma 2.9 Assume u, v, w, h ∈ L2 are such that u = v + w + h and ‖h‖L2 ≤ 1. Then

|ϕ(u)− ϕ(v)− ϕ(w)| ≤ C
(
1 + ‖u‖3

L2 + ‖v‖3
L2 + ‖w‖3

L2

)
‖h‖L2

+ C
(
|Λ1(v, w)|+ |Λ2(v, w)|+ |Λ3(v, w)|+ Λ4(v, w)

)
,

with the remainder terms

Λ1(v, w) =

∫ 1

0

∫

R
(U(t)v)2(U(t)w)2 dxdt, Λ2(v, w) =

∫ 1

0

∫

R
|U(t)v|2(U(t)v)(U(t)w) dxdt,

(2.20)

Λ3(v, w) =

∫ 1

0

∫

R
|U(t)w|2(U(t)v)(U(t)w) dxdt, Λ4(v, w) =

∫ 1

0

∫

R
|U(t)v|2|U(t)w|2 dxdt.

(2.21)

Proof : By expanding |v + w + h|4 for u, v, h ∈ C, one obtains a formula for ϕ(u) which is then
divided into a part where at least one of the factors is h and a remainder part; cf. [17, (2)] for
a similar calculation. The remainder part leads to the terms Λ1, . . . , Λ4. On the other hand, the
part with the h’s consists of summands each of which can be written in either of the forms

∫ 1

0

∫

R
(U(t)f1)(U(t)f2)(U(t)f3)(U(t)h) dxdt or

∫ 1

0

∫

R
(U(t)f1)(U(t)f2)(U(t)f3)(U(t)h) dxdt

for some f1, f2, f3 ∈ {u, v, w, h}. Hence the desired bound on this part with the h’s follows from
(2.9) and ‖h‖L2 ≤ 1. 2

Lemma 2.10 For every u ∈ L2 and A > δ > 0 the estimate
∫

R
|Q̂(u)|2 dξ ≤ C‖u‖6

L2(δ + A−1/2δ−1/2) + C‖u‖5
L2 A Γ̂(A)1/2 (2.22)

holds, where

Γ̂(A) := sup
ξ0∈R

∫ ξ0+A

ξ0−A

|û|2 dξ, A > 0,

denotes the concentration function of û.

Proof : Defining Φ = Q̂(u), we have ‖Φ‖L2 = ‖Q(u)‖L2 ≤ C‖u‖3
L2 by (2.3), and also

∫

R
|Q̂(u)|2 dξ =

∫

R
Q̂(u)(ξ)Φ(ξ) dξ

= Ci

∫

R
dξ Φ(ξ)

∫

R

∫

R
dξ1dξ2

(1− eiα(ξ, ξ1, ξ2)

α(ξ, ξ1, ξ2)

)
û(ξ − ξ1 − ξ2)ˆ̄u(ξ1)û(ξ2)

due to (2.5), with α(ξ, ξ1, ξ2) = 2(ξ1 + ξ2)(ξ − ξ2). Using | 1
α
(1 − eiα)| ≤ C(1 + |α|)−1 and setting

ξ3 = ξ − ξ1 − ξ2, we hence obtain
∫

R
|Q̂(u)|2 dξ ≤ C

∫

R

∫

R

∫

R
dξ1dξ2dξ3

( 1

1 + |(ξ1 + ξ2)(ξ1 + ξ3)|
)

ˆ̄u(ξ1)û(ξ2)û(ξ3)Φ(ξ1 + ξ2 + ξ3),

(2.23)
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where here and henceforth we omit the absolute values on the functions for notational simplicity.
We divide the domain of integration of the integral on the right-hand side as follows. Case 1:
|ξ1 + ξ2| ≤ δ or |ξ1 + ξ3| ≤ δ. Since the integral is symmetric in ξ2 and ξ3, it suffices to consider
e.g. |ξ1 + ξ2| ≤ δ. Then from Young’s inequality, cf. [6, Cor. 4.5.2], it follows that

∫

R

∫

R

∫

R
dξ1dξ2dξ3 1{|ξ1+ξ2|≤δ} (. . .)

≤
∫

R

∫

R

∫

R
dξ1dη dξ3 1{|η|≤δ} ˆ̄u(ξ1)û(η − ξ1)û(ξ3)Φ(η + ξ3)

≤ C‖ˆ̄u ∗ û‖L∞ ‖û ∗ Φ(−·)‖L∞δ ≤ C‖ˆ̄u‖L2‖û‖L2‖û‖L2‖Φ(−·)‖L2δ ≤ C‖u‖6
L2δ. (2.24)

Case 2: |ξ1 + ξ2| > δ and |ξ1 + ξ3| > δ. Case 2a: |ξ1 + ξ2| ≤ A and |ξ1 + ξ3| ≤ A. Here we have

∫

R

∫

R

∫

R
dξ1dξ2dξ3 1{δ<|ξ1+ξ2|≤A, δ<|ξ1+ξ3|≤A} (. . .)

≤ C

∫

R
dξ1 ˆ̄u(ξ1)

∫

R
dξ2 1{|ξ1+ξ2|≤A}û(ξ2)

∫ −ξ1+A

−ξ1−A

dξ3 û(ξ3)Φ(ξ1 + ξ2 + ξ3)

≤ C‖Φ‖L2

∫

R
dξ1 ˆ̄u(ξ1)

∫

R
dξ2 1{|ξ1+ξ2|≤A}û(ξ2)

( ∫ −ξ1+A

−ξ1−A

|û(ξ3)|2 dξ3

)1/2

≤ C‖u‖3
L2 Γ̂(A)1/2

∫

R
dξ1 ˆ̄u(ξ1)(û ∗ 1[−A,A])(−ξ1)

≤ C‖u‖4
L2 Γ̂(A)1/2‖û ∗ 1[−A,A]‖L2 ≤ C‖u‖4

L2 Γ̂(A)1/2 ‖û‖L2‖1[−A,A]‖L1

≤ C‖u‖5
L2 A Γ̂(A)1/2, (2.25)

once again by Young’s inequality. Case 2b: |ξ1 + ξ2| > A or |ξ1 + ξ3| > A. Since this case is again
symmetric in ξ2 and ξ3, we may suppose that |ξ1 +ξ2| > A. Case 2b(i): |ξ1 +ξ2| ≥ |ξ1 +ξ3|. Then
1 + |(ξ1 + ξ2)(ξ1 + ξ3)| ≥ |ξ1 + ξ2||ξ1 + ξ3| ≥ |ξ1 + ξ2|1/2|ξ1 + ξ3|3/2 ≥ A1/2|ξ1 + ξ3|3/2. Introducing
the notation k(ξ) = 1{|ξ|>δ} |ξ|−3/2 and k∗(ξ) = k(ξ)(û(−·) ∗ Φ)(ξ), this yields

∫

R

∫

R

∫

R
dξ1dξ2dξ3 1{|ξ1+ξ2|>A, |ξ1+ξ3|>δ, |ξ1+ξ2|≥|ξ1+ξ3|} (. . .)

≤ CA−1/2

∫

R

∫

R

∫

R
dξ1dξ2dξ3 1{|ξ1+ξ3|>δ} |ξ1 + ξ3|−3/2 ˆ̄u(ξ1)û(ξ2)û(ξ3)Φ(ξ1 + ξ2 + ξ3)

= CA−1/2

∫

R

∫

R
dξ1dξ3 k(ξ1 + ξ3)(û(−·) ∗ Φ)(ξ1 + ξ3)ˆ̄u(ξ1)û(ξ3)

= CA−1/2

∫

R
dξ1 ˆ̄u(ξ1)(k∗ ∗ û(−·))(ξ1) ≤ CA−1/2‖u‖L2‖k∗ ∗ û(−·)‖L2 ≤ CA−1/2‖u‖2

L2‖k∗‖L1

≤ CA−1/2‖u‖2
L2‖k‖L1‖û(−·) ∗ Φ‖L∞ ≤ CA−1/2‖u‖3

L2‖Φ‖L2‖k‖L1

≤ CA−1/2‖u‖6
L2δ

−1/2 (2.26)

by further applications of Young’s inequality and due to ‖k‖L1 = 4δ−1/2. Case 2b(ii): |ξ1 + ξ3| ≥
|ξ1 + ξ2|. Here we have |ξ1 + ξ3| ≥ |ξ1 + ξ2| > A, thus 1 + |(ξ1 + ξ2)(ξ1 + ξ3)| ≥ A1/2|ξ1 + ξ2|3/2,
and due to |ξ1 + ξ2| > δ the reasoning of the previous case leads to the same bound (2.26) by
exchanging ξ3 and ξ2. Taking together (2.24), (2.25), and (2.26), we obtain (2.22). 2
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Lemma 2.11 Suppose v, w ∈ L2 are such that, for some ξ0 ∈ R, δ > 0, and ξ∗1 , ξ
∗
2 ∈ R with

ξ∗2 − ξ∗1 ≥ 6δ−1, we have v̂(ξ) = 0 for |ξ − ξ0| ≥ ξ∗1 + 2δ−1 and ŵ(ξ) = 0 for |ξ − ξ0| ≤ ξ∗2 − 2δ−1.
Then

∣∣∣
∫

R
Q(v, w, v)w̄ dx

∣∣∣ ≤ C‖v‖2
L2‖w‖2

L2δ
1/3, (2.27)

∣∣∣
∫

R
Q(v, v, v)w̄ dx

∣∣∣ ≤ C‖v‖3
L2‖w‖L2δ

1/3, (2.28)

∣∣∣
∫

R
Q(v, w, w)w̄ dx

∣∣∣ ≤ C‖v‖L2‖w‖3
L2δ

1/3, (2.29)

∣∣∣
∫

R
Q(v, v, w)w̄ dx

∣∣∣ ≤ C‖v‖2
L2‖w‖2

L2δ
1/3, (2.30)

with C > 0 independent of ξ0, δ, ξ∗1 , and ξ∗2 ; recall (1.8) for the definition of Q(·, ·, ·).

Proof : We note that in general, analogously to (2.5),

∫

R
Q(u1, u2, u3)ū4 dx =

∫

R
Q̂(u1, u2, u3)¯̂u4 dξ

= Ci

∫

R
dξ ¯̂u4(ξ)

∫

R

∫

R
dξ1dξ2

(1− eiα(ξ, ξ1, ξ2)

α(ξ, ξ1, ξ2)

)
û1(ξ − ξ1 − ξ2)ˆ̄u2(ξ1)û3(ξ2),

with α(ξ, ξ1, ξ2) = 2(ξ1 + ξ2)(ξ − ξ2). Thus, as in the preceding Lemma 2.10,

∣∣∣
∫

R
Q(u1, u2, u3)ū4 dx

∣∣∣

≤ C

∫

R

∫

R

∫

R
dξ1dξ2dξ3

( 1

1 + |(ξ1 + ξ2)(ξ1 + ξ3)|
)
ˆ̄u2(ξ1)û3(ξ2)û1(ξ3)¯̂u4(ξ1 + ξ2 + ξ3). (2.31)

First we are going to verify (2.27). For u1 = u3 = v and u2 = u4 = w, we will bound the
right-hand side of (2.31) in a way similar to the proof of Lemma 2.10. We fix η > 0. Case 1:
|ξ1 + ξ2| ≤ η or |ξ1 + ξ3| ≤ η. Note that the integral to be estimated is again symmetric in ξ2 and
ξ3, thus we may restrict to the case |ξ1 + ξ2| ≤ η. But here

∫

R

∫

R

∫

R
dξ1dξ2dξ3 1{|ξ1+ξ2|≤η} (. . .) ≤ C‖v‖2

L2‖w‖2
L2η (2.32)

follows exactly by the argument leading to (2.24). Case 2: |ξ1 + ξ2| > η and |ξ1 + ξ3| > η.
Case 2(i): |ξ1 + ξ2| ≥ |ξ1 + ξ3|. By assumption on the supports of v̂ and ŵ, in order that
ˆ̄w(ξ1)v̂(ξ2)v̂(ξ3) ¯̂w(ξ1 + ξ2 + ξ3) is non-zero, we must have

|ξ1 + ξ0| ≥ ξ∗2 − 2δ−1, |ξ2 − ξ0| ≤ ξ∗1 + 2δ−1, |ξ3 − ξ0| ≤ ξ∗1 + 2δ−1, (2.33)

and |ξ1 + ξ2 + ξ3 − ξ0| ≥ ξ∗2 − 2δ−1, (2.34)

note ˆ̄w(ξ1) = ¯̂w(−ξ1). Therefore

1 + |(ξ1 + ξ2)(ξ1 + ξ3)| ≥ |(ξ1 + ξ2 + ξ3 − ξ0) + (ξ0 − ξ3)|1/2|ξ1 + ξ3|3/2

≥ ([ξ∗2 − 2δ−1]− [ξ∗1 + 2δ−1])1/2|ξ1 + ξ3|3/2 ≥ (2δ−1)1/2|ξ1 + ξ3|3/2.
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This yields
∫

R

∫

R

∫

R
dξ1dξ2dξ3 1{η<|ξ1+ξ3|≤|ξ1+ξ2|} (. . .)

≤ Cδ1/2

∫

R

∫

R

∫

R
dξ1dξ2dξ3 1{|ξ1+ξ3|>η} |ξ1 + ξ3|−3/2 ˆ̄w(ξ1)v̂(ξ2)v̂(ξ3) ¯̂w(ξ1 + ξ2 + ξ3)

≤ Cδ1/2η−1/2‖v‖2
L2‖w‖2

L2 , (2.35)

the latter estimate being obtained analogously to (2.26). Case 2(ii): |ξ1 + ξ3| ≥ |ξ1 + ξ2|. Here
(2.34) and (2.33) imply 1 + |(ξ1 + ξ2)(ξ1 + ξ3)| ≥ |ξ1 + ξ2|3/2|(ξ1 + ξ2 + ξ3 − ξ0) − (ξ2 − ξ0)|1/2 ≥
(2δ−1)1/2|ξ1 + ξ2|3/2, hence |ξ1 + ξ2| > η shows that the same reasoning as in the previous case once
more leads to the bound (2.35). Summarizing (2.32) and (2.35), we have seen that for any η > 0
the bound ∣∣∣

∫

R
Q(v, w, v)w̄ dx

∣∣∣ ≤ C‖v‖2
L2‖w‖2

L2(η + δ1/2η−1/2)

holds. Choosing η = δ1/3, we obtain (2.27).
Concerning (2.28), we use (2.31) with u1 = u2 = u3 = v and u4 = w. Then the resulting

expression is once more symmetric in ξ2 and ξ3. We distinguish cases as before and obtain the
bound C‖v‖3

L2‖w‖L2η in Case 1. For Case 2(i) and Case 2(ii), we need to have

|ξ1 + ξ0| ≤ ξ∗1 + 2δ−1, |ξ2 − ξ0| ≤ ξ∗1 + 2δ−1, |ξ3 − ξ0| ≤ ξ∗1 + 2δ−1,

and |ξ1 + ξ2 + ξ3 − ξ0| ≥ ξ∗2 − 2δ−1

for ˆ̄v(ξ1)v̂(ξ2)v̂(ξ3) ¯̂w(ξ1+ξ2+ξ3) not to vanish. Thus |ξ1+ξ2| ≥ |ξ1+ξ3| implies 1+|(ξ1+ξ2)(ξ1+ξ3)| ≥
|(ξ1 + ξ2 + ξ3 − ξ0) − (ξ3 − ξ0)|1/2|ξ1 + ξ3|3/2 ≥ (2δ−1)1/2|ξ1 + ξ3|3/2, and under the assumption
|ξ1 + ξ3| ≥ |ξ1 + ξ2| we find 1 + |(ξ1 + ξ2)(ξ1 + ξ3)| ≥ |ξ1 + ξ2|3/2|(ξ1 + ξ2 + ξ3− ξ0)− (ξ2− ξ0)|1/2 ≥
(2δ−1)1/2|ξ1 + ξ2|3/2. Hence we can proceed as for (2.27) to verify (2.28).

Next, to see (2.29) we apply (2.31) with u1 = v and u2 = u3 = u4 = w, and we only check the
relevant estimates from Case 2(i) and Case 2(ii); note that although here the integral from (2.31)
is not symmetric in ξ2 and ξ3, the estimates from Case 1 go through without problems, leading to
the bound C‖v‖L2‖w‖3

L2η. Now we have

|ξ1 + ξ0| ≥ ξ∗2 − 2δ−1, |ξ2 − ξ0| ≥ ξ∗2 − 2δ−1, |ξ3 − ξ0| ≤ ξ∗1 + 2δ−1,

and |ξ1 + ξ2 + ξ3 − ξ0| ≥ ξ∗2 − 2δ−1

as necessary conditions for ˆ̄w(ξ1)ŵ(ξ2)v̂(ξ3) ¯̂w(ξ1 + ξ2 + ξ3) to be non-zero. In case that |ξ1 + ξ2| ≥
|ξ1 + ξ3| we once more have 1 + |(ξ1 + ξ2)(ξ1 + ξ3)| ≥ |(ξ1 + ξ2 + ξ3− ξ0)− (ξ3− ξ0)|1/2|ξ1 + ξ3|3/2 ≥
(2δ−1)1/2|ξ1 + ξ3|3/2. On the other hand, if |ξ1 + ξ3| ≥ |ξ1 + ξ2|, then we use |ξ1 + ξ2| = |(ξ1 + ξ2 +
ξ3−ξ0)+(ξ0−ξ3)| ≥ (ξ∗2−2δ−1)− (ξ∗1 +2δ−1) ≥ 2δ−1 to bound 1+ |(ξ1 +ξ2)(ξ1 +ξ3)| ≥ |ξ1 +ξ2|2 ≥
(2δ−1)1/2|ξ1 + ξ2|3/2. Hence we can again argue as before to show (2.29).

Finally, to prove (2.30), we use (2.31) with u1 = u2 = v and u3 = u4 = w. Case 1 again goes
through without problems, and for Case 2(i) and Case 2(ii) we note that here

|ξ1 + ξ0| ≤ ξ∗1 + 2δ−1, |ξ2 − ξ0| ≥ ξ∗2 − 2δ−1, |ξ3 − ξ0| ≤ ξ∗1 + 2δ−1,

and |ξ1 + ξ2 + ξ3 − ξ0| ≥ ξ∗2 − 2δ−1

have to be satisfied in order that ˆ̄v(ξ1)ŵ(ξ2)v̂(ξ3) ¯̂w(ξ1 + ξ2 + ξ3) does not vanish. Since in the proof
of (2.29) (cf. the last step) only the estimates |ξ3−ξ0| ≤ ξ∗1 +2δ−1 and |ξ1 +ξ2 +ξ3−ξ0| ≥ ξ∗2−2δ−1
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have been used, and as these estimates can also be used here, we can proceed in the same way to
deduce (2.30). 2

Lemma 2.12 We have Q(u) ∈ L∞ for u ∈ L2, and

‖Q(u)−Q(v)‖L∞ ≤ C
(
‖u‖L2 + ‖v‖L2

)2

‖u− v‖L2 , u, v ∈ L2.

In particular, ‖Q(u)‖L∞ ≤ C‖u‖3
L2 for u ∈ L2.

Proof : From (1.7) and ‖U(t)f‖L∞ ≤ Ct−1/2‖f‖L1 , cf. [4, Prop. 3.2.1], we obtain with u(t) = U(t)u
and v(t) = U(t)v, using Hölder’s inequality in the dx-integral, that

‖Q(u)−Q(v)‖L∞ ≤ C

∫ 1

0

t−1/2
∥∥∥|u(t)|2u(t)− |v(t)|2v(t)

∥∥∥
L1

dt

≤ C

∫ 1

0

t−1/2
(
‖|u(t)|2[u(t)− v(t)]‖L1 + ‖u(t)v(t)[ū(t)− v̄(t)]‖L1

+ ‖|v(t)|2[u(t)− v(t)]‖L1

)
dt

≤ C

∫ 1

0

t−1/2
(
‖u(t)‖2

L3‖u(t)− v(t)‖L3 + ‖u(t)‖L3‖v(t)‖L3‖u(t)− v(t)‖L3

+ ‖v(t)‖2
L3‖u(t)− v(t)‖L3

)
dt

≤
( ∫ 1

0

t−2/3 dt
)3/4(

‖U(·)u‖2
L12

t (L3
x) + ‖U(·)u‖L12

t (L3
x)‖U(·)v‖L12

t (L3
x)

+ ‖U(·)v‖2
L12

t (L3
x)

)
‖U(·)(u− v)‖L12

t (L3
x)

≤ C
(
‖u‖L2 + ‖v‖L2

)2

‖u− v‖L2 ,

where in the last two steps we have applied Hölder’s inequality to the dt-integral and then
Strichartz’ estimate (cf. Lemma 2.1) with q = 12 and r = 3. 2

3 Concentration compactness in L2

The ‘concentration compactness principle’ asserts that basically there are three possibilities for a
(L2 or H1-) bounded sequence of functions: either it is tight (in the sense of measures), or it is
‘vanishing’ (it tends to zero uniformly on every interval of fixed length), or it is ‘splitting’ (into
two parts with supports widely separated). This principle has found its clear formulation and a
large number of applications through P.-L. Lions [13]. Since we will need the very explicit form of
alternative (3), we include some details, following [4, Lemma 8.3.8], [15, Sect. 4.3], or [17, Lemma
6.1].

Lemma 3.1 Let (fj) ⊂ L2 be a sequence such that ‖fj‖L2 = 1 for j ∈ N. Then there is a
subsequence (not relabelled) such that exactly one of the following three possibilities occurs.
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(1) There exists a sequence (zj) ⊂ R such that for every ε > 0 there is R = Rε > 0 with the
property that ∫ zj+R

zj−R

|fj|2 dz ≥ 1− ε, j ∈ N.

(2) For every A > 0 we have

lim
j→∞

sup
z0∈R

∫ z0+A

z0−A

|fj|2 dz = 0.

(3) There is γ ∈]0, 1[ with the following property. For every δ ∈]0, γ[ there exist j0 = j0(δ) ∈ N
and z∗1 , z

∗
2 ∈ R with z∗2 − z∗1 ≥ 6δ−1 such that

γ − δ < sup
z0∈R

∫ z0+z∗2

z0−z∗2

|fj|2 dz < γ + δ, j ≥ j0, (3.1)

and for every j ≥ j0 we may select zj ∈ R satisfying

γ − δ <

∫ zj+z∗1

zj−z∗1

|fj|2 dz < γ + δ. (3.2)

In particular, if we fix functions ρ, θ ∈ C∞
0 (R) with values in [0, 1] which satisfy ρ(z) = 1 for

|z| ≤ z∗1, ρ(z) = 0 for |z| ≥ z∗1 +2δ−1, θ(z) = 0 for |z| ≤ z∗2−2δ−1, and θ(z) = 1 for |z| ≥ z∗2,
then defining vj(z) = ρ(z − zj)fj(z) and wj(z) = θ(z − zj)fj(z) one obtains for j ≥ j0 the
estimates

‖fj − (vj + wj)‖2
L2 ≤ 2δ,

∣∣∣‖vj‖2
L2 − γ

∣∣∣ ≤ 3δ, and
∣∣∣‖wj‖2

L2 − (1− γ)
∣∣∣ ≤ 9δ.

Proof : The argument relies on the Lévy concentration functions Γj(z) = supz0∈R
∫ z0+z

z0−z
|fj(y)|2 dy.

Then 0 ≤ Γj(z) ≤ 1 and Γj is non-decreasing. Hence there exists a subsequence of (fj), a countable
set E ⊂ R, and a non-negative and non-decreasing function Γ such that Γj(z) → Γ(z) as j → ∞
for every z ∈ R \ E. With γ := limz→∞ Γ(z) ∈ [0, 1], there are three possibilities: the cases γ = 1
or γ = 0 lead to alternative (1) or (2), respectively, cf. [4, Lemma 8.3.8] (here it is not needed that
(fj) is bounded in H1). So it remains to show that γ ∈]0, 1[ implies (3). To see this, we fix δ ∈]0, γ[
and choose z∗ ∈ R such that γ − δ < Γ(z) ≤ γ for z ≥ z∗. Then we take two widely separated
points where Γj converges to Γ, i.e., we take z∗1 , z

∗
2 ∈ (R \ E) ∩ [z∗,∞[ with z∗2 − z∗1 ≥ 6δ−1 and

j0 ∈ N such that γ − δ < Γj(z
∗
1) ≤ Γj(z

∗
2) < γ + δ for j ≥ j0. By definition of Γj, this yields (3.1),

and moreover for every j ≥ j0 we find zj ∈ R such that (3.2) holds. With ρ and θ as in (3), we
then define vj and wj. In view of (3.1) and (3.2) we have

∫

z∗1≤|z−zj |≤z∗2

|fj(z)|2 dz =

∫ zj+z∗2

zj−z∗2

|fj|2 dz −
∫ zj+z∗1

zj−z∗1

|fj|2 dz ≤ γ + δ − (γ − δ) = 2δ. (3.3)

Due to the support properties of vj and wj therefore

‖fj − (vj + wj)‖2
L2 ≤

∫

z∗1≤|z−zj |≤z∗2

|fj(z)|2 dz ≤ 2δ.

15



In addition, (3.2), z∗1 + 2δ−1 ≤ z∗2 , and (3.3) imply

∣∣∣‖vj‖2
L2 − γ

∣∣∣ =
∣∣∣
∫ zj+z∗1

zj−z∗1

|fj(z)|2 dz − γ +

∫

z∗1≤|z−zj |≤z∗1+2δ−1

ρ(z − zj)
2|fj(z)|2 dz

∣∣∣ ≤ 3δ.

Finally, this and ‖fj‖L2 = 1 in turn yield

∣∣∣‖wj‖2
L2 − (1− γ)

∣∣∣ ≤ 3δ +
∣∣∣‖wj‖2

L2 + ‖vj‖2
L2 − ‖fj‖2

L2

∣∣∣

= 3δ +
∣∣∣
∫

|z−zj |>z∗2

|fj(z)|2 dz +

∫

z∗2−2δ−1≤|z−zj |≤z∗2

θ(z − zj)
2|fj(z)|2 dz

+

∫

|z−zj |<z∗1

|fj(z)|2 dz +

∫

z∗1≤|z−zj |≤z∗1+2δ−1

ρ(z − zj)
2|fj(z)|2 dz

−
∫

R
|fj(z)|2 dz

∣∣∣

≤ 3δ +

∫

z∗1≤|z−zj |≤z∗2

|fj(z)|2 dz +

∫

z∗2−2δ−1≤|z−zj |≤z∗2

|fj(z)|2 dz

+

∫

z∗1≤|z−zj |≤z∗1+2δ−1

|fj(z)|2 dz ≤ 9δ,

where we have once more used z∗1 + 2δ−1 ≤ z∗2 and (3.3). 2

4 Proof of Theorem 1.1

We consider a minimizing sequence for P1, i.e., (uj) ⊂ L2 such that ‖uj‖L2 = 1 for j ∈ N, and
ϕ(uj) → P1 as j → ∞. Then also ‖ûj‖L2 = 1 for j ∈ N, whence we can apply Lemma 3.1 to
the sequence (fj) = (ûj). The following three subsections 4.1, 4.2, and 4.3 deal with the three
possibilities (1), (2), and (3) which then may occur according to Lemma 3.1.

4.1 Case (1): The Fourier transforms are tight

We assume that there is a sequence (ξj) ⊂ R such that for each ε > 0 we may select R = Rε > 0

satisfying
∫ ξj+R

ξj−R
|ûj|2 dξ ≥ 1 − ε for j ∈ N. Letting vj(x) = e−iξjxuj(x), we obtain ‖vj‖L2 = 1

and ϕ(vj) = ϕ(uj) by Lemma 2.5. Hence (vj) is a minimizing sequence as well. In addition,
v̂j(ξ) = ûj(ξ + ξj) leads to

∫ ξj+R

ξj−R

|ûj(ξ)|2 dξ =

∫ R

−R

|ûj(ξ + ξj)|2 dξ =

∫ R

−R

|v̂j(ξ)|2 dξ.

This argument shows that, passing to (vj) if necessary, w.l.o.g. we may suppose ξj = 0 for all
j ∈ N, i.e.,

∀ ε > 0 ∃R = Rε > 0 :

∫

|ξ|<R

|ûj|2 dξ ≥ 1− ε, j ∈ N; (4.1)

this is the basic assumption of Section 4.1, and it is used to improve the original sequence (uj) as
follows. We choose φ ∈ C∞

0 (R) with values in [0, 1] such that φ(ξ) = 1 for |ξ| ≤ 1 and φ(ξ) = 0 for
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|ξ| ≥ 2, and for R > 0 we define φR(ξ) = φ(ξ/R). With a fixed sequence εk → 0 as k → ∞, we
select Rk := Rεk

corresponding to εk via (4.1) for k ∈ N. Setting φk = φRk
, we decompose every

uj in a regular low frequency part and an L2-small high frequency part as

uj = u
(l)
j,k + u

(h)
j,k , j, k ∈ N, (4.2)

where
u

(l)
j,k = (φkûj)

ˇ = φ̌k ∗ uj and u
(h)
j,k = ((1− φk)ûj)

ˇ = (1− φk)
ˇ∗ uj. (4.3)

Then for all j, k ∈ N,

‖u(l)
j,k‖

2

Ḣ1
=

∫

R
|ξ|2|φkûj|2 dξ =

∫

|ξ|≤2Rk

|ξ|2|φkûj|2 dξ ≤ CR2
k‖ûj‖2

L2 = CR2
k , (4.4)

and also, by (4.1),

‖u(h)
j,k‖

2

L2
=

∫

|ξ|≥Rk

|(1− φk)ûj|2 dξ ≤
∫

|ξ|≥Rk

|ûj|2 dξ = 1−
∫

|ξ|<Rk

|ûj|2 dξ ≤ εk . (4.5)

In addition,
‖u(l)

j,k‖L2
≤ ‖ûj‖L2 = 1. (4.6)

The next step consists in application of Lemma 3.1 to (fj) = (uj), yielding a further subsequence
(uj′) ⊂ (uj), which however will be not relabelled for notational convenience. The argument is
divided further according to which one of the possibilities (1), (2), or (3) from Lemma 3.1 arises.

4.1.1 The case that the sequence (uj) is tight

We suppose that (1) in Lemma 3.1 occurs for (uj), i.e., there is a sequence (xj) ⊂ R such that for

every δ > 0 we find M = Mδ satisfying
∫ xj+M

xj−M
|uj|2 dx ≥ 1−δ for j ∈ N. Setting vj(x) = uj(xj +x),

we have ‖vj‖L2 = 1 as well as ϕ(vj) = ϕ(uj), by Lemma 2.5. Thus (vj) is a minimizing sequence.
Moreover, v̂j(ξ) = eixjξûj(ξ), whence (4.1) is satisfied for v̂j, too, and we could perform the same
decomposition as above with vj in place of uj, leading once more to (4.4) and (4.5). Finally,

∫ xj+M

xj−M

|uj(x)|2 dx =

∫ M

−M

|uj(x + xj)|2 dx =

∫ M

−M

|vj(x)|2 dx.

Hence we could consider (vj) instead of (uj), thereby achieving xj = 0 for all j ∈ N. Thus we
assume w.l.o.g. that

∀ δ > 0 ∃M = Mδ > 0 :

∫

|x|<M

|uj|2 dx ≥ 1− δ, j ∈ N. (4.7)

Since (uj) ⊂ L2 and ‖uj‖L2 = 1, we can suppose that uj ⇀ u in L2 as j → ∞ for some u ∈ L2

with ‖u‖L2 ≤ 1. We fix k ∈ N and observe that, due to (4.4) and (4.6), (u
(l)
j,k)j∈N is bounded in

H1 (by ∼ Rk). Additionally, (4.5) implies that (u
(h)
j,k )j∈N is bounded in L2. Thus we can select a

subsequence (j′) ⊂ N, depending on k, and vk ∈ H1 as well as wk ∈ L2 satisfying u
(l)
j′,k ⇀ vk in H1

and u
(h)
j′,k ⇀ wk in L2 as j′ →∞. In particular,

‖wk‖L2 ≤ lim inf
j′→∞

‖u(h)
j′,k‖L2

≤ ε
1/2
k (4.8)
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by (4.5), and also u = vk + wk in view of (4.2).
Next we fix δ > 0 and choose M = Mδ according to (4.7). By compactness of the embedding

H1 ⊂ L2(] −M, M [), we see that u
(l)
j′,k → vk in L2(] −M, M [) as j′ → ∞. Hence we obtain from

(4.8), (4.2), (4.5) and (4.7) that

‖u‖L2 ≥ ‖u‖L2(]−M,M [) = ‖vk + wk‖L2(]−M,M [) ≥ ‖vk‖L2(]−M,M [) − ‖wk‖L2

≥ lim
j′→∞

‖u(l)
j′,k‖L2(]−M,M [)

− ε
1/2
k = lim

j′→∞
‖uj′ − u

(h)
j′,k‖L2(]−M,M [)

− ε
1/2
k

≥ lim sup
j′→∞

(
‖uj′‖L2(]−M,M [) − ‖u(h)

j′,k‖L2

)
− ε

1/2
k

≥ lim sup
j′→∞

‖uj′‖L2(]−M,M [) − 2ε
1/2
k ≥ (1− δ)1/2 − 2ε

1/2
k .

Taking successive limits δ → 0 and k → ∞, it follows that ‖u‖L2 = 1 = limj→∞ ‖uj‖L2 , and thus
uj ⇀ u in L2 leads to uj → u in L2. Since ϕ : L2 → R is continuous, cf. (2.4), and (uj) is a
minimizing sequence, thus ϕ has a minimizer, i.e., P1 admits a solution.

4.1.2 The case that the sequence (uj) is vanishing

Throughout this subsection we assume that (1) in Lemma 3.1 holds for (ûj), whereas (2) in Lemma
3.1 occurs for (uj), i.e.,

lim
j→∞

sup
x0∈R

∫ x0+A

x0−A

|uj|2 dx = 0 (4.9)

is satisfied for every A > 0. Once again we will rely on decomposing the uj in low and high
frequencies, cf. (4.2). For k ∈ N fixed we claim that

lim
j→∞

ϕ(u
(l)
j,k) = 0 (4.10)

holds. To verify this, we first note that (4.9) in conjunction with Lemma 2.7 implies that also

lim
j→∞

sup
x0∈R

∫ x0+A

x0−A

|u(l)
j,k|2 dx = 0 (4.11)

is satisfied for all A > 0, since k is fixed and φk ∈ C∞
0 (R). As u

(l)
j,k ∈ H1, we may invoke Lemma

2.8, and integrating (2.17) with u = u
(l)
j,k over t ∈ [0, 1] it follows that for A ≥ 1

|ϕ(u
(l)
j,k)| =

∫ 1

0

∫

R
|U(t)u

(l)
j,k|4 dxdt ≤ C

(
sup
x0∈R

∫ x0+2A

x0−2A

|u(l)
j,k|2 dx + A−1‖u(l)

j,k‖L2
‖u(l)

j,k‖H1

)
‖u(l)

j,k‖
2

H1

≤ C
(

sup
x0∈R

∫ x0+2A

x0−2A

|u(l)
j,k|2 dx + A−1Rk

)
R2

k,

where we have used (4.6) and (4.4) in the last step. Taking into account (4.11), we thus have
shown (4.10). Next, according to (2.4), (4.2), (4.6) and (4.5) it follows that

|ϕ(uj)| ≤ |ϕ(uj)− ϕ(u
(l)
j,k)|+ |ϕ(u

(l)
j,k)| ≤ C

(
‖uj‖L2 + ‖u(l)

j,k‖L2

)3

‖u(h)
j,k‖L2

+ |ϕ(u
(l)
j,k)|

≤ Cε
1/2
k + |ϕ(u

(l)
j,k)|

for every j, k ∈ N. Whence (4.10) implies lim supj→∞ |ϕ(uj)| ≤ Cε
1/2
k for all k ∈ N, and therefore

P1 = limj→∞ ϕ(uj) = 0, in contradiction to Lemma 2.6. Thus the case considered in this Section
4.1.2 in fact cannot occur.
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4.1.3 The case that the sequence (uj) is splitting

In this subsection we suppose that we have (1) in Lemma 3.1 for (ûj), but (3) in Lemma 3.1 holds
for (uj). Thus we can once more use the decomposition of the uj in low and high frequencies, recall
(4.2), but additionally we have γ ∈]0, 1[, where γ = limx→∞ Γ(x). Here Γ(x) = limj→∞ Γj(x) =

limj→∞ supx0∈R
∫ x0+x

x0−x
|uj|2 dy is the pointwise (outside a countable set) limit of the concentration

functions corresponding to (uj). We now fix δ ∈]0, γ[ and choose j0 ∈ N, x∗1 = z∗1 ∈ R, x∗2 = z∗2 ∈ R,
xj = zj for j ≥ j0, and moreover the functions ρ and θ as described in (3) of Lemma 3.1; all these
quantities are depending on δ. Defining vj(x) = ρ(x − xj)uj(x) and wj(x) = θ(x − xj)uj(x), we
recall that then ‖vj‖L2 ≤ 1, ‖wj‖L2 ≤ 1, and also

‖uj − (vj + wj)‖2
L2 ≤ 2δ,

∣∣∣‖vj‖2
L2 − γ

∣∣∣ ≤ 3δ, and
∣∣∣‖wj‖2

L2 − (1− γ)
∣∣∣ ≤ 9δ (4.12)

holds for j ≥ j0. Next we are going to transfer these estimates for every k ∈ N to the functions
obtained in an analogous way from the low-frequency parts u

(l)
j,k of uj, cf. (4.3). To this end, we

introduce
vj,k(x) = ρ(x− xj)u

(l)
j,k(x) and wj,k(x) = θ(x− xj)u

(l)
j,k(x).

Since ρ and θ attain their values in [0, 1], it follows from (4.6) that

‖vj,k‖L2 ≤ ‖u(l)
j,k‖L2

≤ 1 and ‖wj,k‖L2 ≤ ‖u(l)
j,k‖L2

≤ 1. (4.13)

Moreover, vj,k ∈ H1 and wj,k ∈ H1. Due to ‖ρ ′‖L∞ ∼ δ ≤ 1 and ‖θ ′‖L∞ ∼ δ ≤ 1, we obtain, using
(4.4), the bounds

‖vj,k‖H1 + ‖wj,k‖H1 ≤ CRk. (4.14)

The estimates from (4.12) are modified to

‖uj − (vj,k + wj,k)‖L2 ≤ 2(δ1/2 + ε
1/2
k ),

∣∣∣‖vj,k‖2
L2 − γ

∣∣∣ ≤ 3(δ + ε
1/2
k ), (4.15)

and
∣∣∣‖wj,k‖2

L2 − (1− γ)
∣∣∣ ≤ 9(δ + ε

1/2
k ) (4.16)

for j ≥ j0 and k ∈ N. Indeed, since ρ attains values in [0, 1], (4.2) and (4.5) imply

‖vj − vj,k‖2
L2 =

∫

R
ρ(x− xj)

2|uj(x)− u
(l)
j,k(x)|2 dx ≤ ‖uj − u

(l)
j,k‖

2

L2
= ‖u(h)

j,k‖
2

L2
≤ εk,

and in the same way ‖wj − wj,k‖2
L2 ≤ εk follows, whence (4.15) and (4.16) are obtained. In

particular, (4.15), (4.16), and (4.13) also yield

∣∣∣‖vj,k‖4
L2 − γ2

∣∣∣ ≤ 6(δ + ε
1/2
k ), and

∣∣∣‖wj,k‖4
L2 − (1− γ)2

∣∣∣ ≤ 18(δ + ε
1/2
k ). (4.17)

The next lemma derives a local bound on |U(t)vj,k| and |U(t)wj,k|.

Lemma 4.1 In the notation introduced above, we have
∫

|x−xj |≥x∗2−3δ−1

|U(t)vj,k|2 dx ≤ CRkδ and

∫

|x−xj |≤x∗2−3δ−1

|U(t)wj,k|2 dx ≤ CRkδ,

for every t ∈ [0, 1], j ≥ j0 and k ∈ N.
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Proof : We can proceed similar to the proof of (2.18). To verify the estimate with wj,k, we fix a
function β ∈ C∞

0 (R) attaining values in [0, 1] such that β(x) = 1 for |x| ≤ x∗2 − 3δ−1, β(x) = 0
for |x| ≥ x∗2 − 2δ−1, and ‖β ′‖L∞ ≤ Cδ. With I(t) =

∫
R |(U(t)wj,k)(x)|2β(x − xj) dx, and writing

wj,k(t) = U(t)wj,k, it follows from (1.2), (4.13), and (4.14) that

İ(t) = (−2)Im

∫

R
w̄j,k(t)(∂xwj,k(t))β

′(x− xj) dx

≤ C‖β ′‖L∞‖wj,k(t)‖L2‖∂xwj,k(t)‖L2 ≤ CRkδ.

Thus for t ∈ [0, 1] we obtain

∫

|x−xj |≤x∗2−3δ−1

|U(t)wj,k|2 dx =

∫

|x−xj |≤x∗2−3δ−1

|(U(t)wj,k)(x)|2β(x− xj) dx ≤ I(t) ≤ I(0) + CRkδ.

But

I(0) =

∫

R
|wj,k(x)|2β(x− xj) dx =

∫

|x−xj |≤x∗2−2δ−1

|u(l)
j,k(x)|2 θ(x− xj)

2β(x− xj) dx = 0,

since θ(z) = 0 for |z| ≤ x∗2 − 2δ−1, cf. (3) in Lemma 3.1. Concerning the estimate with vj,k, one
can argue in an analogous way by fixing a function β ∈ C∞

0 (R) which attains its values in [0, 1]
such that β(x) = 1 for |x| ≥ x∗1 + 3δ−1 and β(x) = 0 for |x| ≤ x∗1 + 2δ−1. Recalling ρ(z) = 0 for
|z| ≥ x∗1 + 2δ−1, it then follows that

∫

|x−xj |≥x∗1+3δ−1

|U(t)vj,k|2 dx ≤ CRkδ,

and this yields the claimed estimated, as x∗2 − x∗1 ≥ 6δ−1 implies
∫
|x−xj |≥x∗2−3δ−1 |U(t)vj,k|2 dx ≤∫

|x−xj |≥x∗1+3δ−1 |U(t)vj,k|2 dx. 2

We now define hj,k = uj − (vj,k + wj,k) and observe that ‖hj,k‖L2 ≤ 2(δ1/2 + ε
1/2
k ) by (4.15).

Then we apply Lemma 2.9 and (4.13) to obtain the bound

|ϕ(uj)− ϕ(vj,k)− ϕ(wj,k)|
≤ C

(
1 + ‖uj‖3

L2 + ‖vj,k‖3
L2 + ‖wj,k‖3

L2

)
‖hj,k‖L2

+ C
(
|Λ1(vj,k, wj,k)|+ |Λ2(vj,k, wj,k)|+ |Λ3(vj,k, wj,k)|+ Λ4(vj,k, wj,k)

)

≤ C(δ1/2 + ε
1/2
k ) + C

(
|Λ1(vj,k, wj,k)|+ |Λ2(vj,k, wj,k)|+ |Λ3(vj,k, wj,k)|+ Λ4(vj,k, wj,k)

)
,

(4.18)

with the remainder terms Λ1, . . . , Λ4 as given in (2.20) and (2.21).

Lemma 4.2 The estimate

|Λ1(vj,k, wj,k)|+ |Λ2(vj,k, wj,k)|+ |Λ3(vj,k, wj,k)|+ Λ4(vj,k, wj,k) ≤ CR
1/2
k δ1/2

holds.
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Proof : With Ω1 = {x ∈ R : |x− xj| ≥ x∗2 − 3δ−1} and Ω2 = {x ∈ R : |x− xj| ≤ x∗2 − 3δ−1}, and
moreover u1 = u3 = vj,k, u2 = u4 = wj,k, i1 = 1, and i2 = 2, it follows from Lemma 2.4, (4.13),
and Lemma 4.1 that

|Λ1(vj,k, wj,k)| =
∣∣∣
∫ 1

0

∫

R
(U(t)vj,k)

2(U(t)wj,k)
2 dxdt

∣∣∣

≤ C
(
‖U(·)vj,k‖L2([0,1]×Ω1)‖vj,k‖L2‖wj,k‖2

L2 + ‖U(·)wj,k‖L2([0,1]×Ω2)‖vj,k‖2
L2‖wj,k‖L2

)

≤ C
( ∫ 1

0

∫

Ω1

|U(t)vj,k|2 dxdt
)1/2

+ C
( ∫ 1

0

∫

Ω2

|U(t)wj,k|2 dxdt
)1/2

≤ CR
1/2
k δ1/2.

The terms with Λ2, Λ3, and Λ4 can be handled in the same way, the only important point is to
note that each of these terms has at least one v-factor and at least one w-factor. Thus Lemma
2.4 can be applied to split the dx-integral and to integrate the respective factors over the sets on
which they are small, by Lemma 4.1. 2

Using Lemma 4.2, we can continue in (4.18) and obtain

|ϕ(uj)− ϕ(vj,k)− ϕ(wj,k)| ≤ C(δ1/2 + ε
1/2
k ) + CR

1/2
k δ1/2 ≤ C(ε

1/2
k + R

1/2
k δ1/2). (4.19)

This estimate holds for all k ∈ N, δ ∈]0, γ[, and j ≥ j0(δ), with however vj,k and wj,k depending
on δ, j, and k. Next, from (4.19), (2.11) in Lemma 2.6, and (4.17) it follows that

ϕ(uj) ≥ ϕ(vj,k) + ϕ(wj,k)− C(ε
1/2
k + R

1/2
k δ1/2)

≥ ‖vj,k‖4
L2P1 + ‖wj,k‖4

L2P1 − C(ε
1/2
k + R

1/2
k δ1/2)

≥ γ2P1 − 6(δ + ε
1/2
k ) + (1− γ)2P1 − 18(δ + ε

1/2
k )− C(ε

1/2
k + R

1/2
k δ1/2)

≥ (γ2 + (1− γ)2)P1 − C(ε
1/2
k + R

1/2
k δ1/2).

Since we have got rid of the functions vj,k and wj,k, we may take the limit j →∞ to find

P1 ≥ (γ2 + (1− γ)2)P1 − C(ε
1/2
k + R

1/2
k δ1/2),

recalling that (uj) is a minimizing sequence. This estimate is satisfied for all δ ∈]0, γ[ and all
k ∈ N. Hence we can pass successively to the limits first δ → 0 and then k → ∞ to arrive at
P1 ≥ (γ2 +(1−γ)2)P1. Due to P1 < 0, cf. Lemma 2.6, it follows that γ(1−γ) ≤ 0, in contradiction
to γ ∈]0, 1[. Thus the case considered in the present Section 4.1.3 can also not occur.

4.2 Case (2): The Fourier transforms are vanishing

We consider the case that alternative (2) from Lemma 3.1 holds for (ûj), i.e., for every A > 0 we
have

lim
j→∞

Γ̂j(A) = 0, where Γ̂j(A) := sup
ξ0∈R

∫ ξ0+A

ξ0−A

|ûj|2 dξ. (4.20)

According to Lemma 2.10, for every A > δ > 0 and j ∈ N the estimate
∫

R
|Q̂(uj)|2 dξ ≤ C‖uj‖6

L2(δ + A−1/2δ−1/2) + C‖uj‖5
L2 A Γ̂j(A)1/2

= C(δ + A−1/2δ−1/2) + CA Γ̂j(A)1/2
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is satisfied. Given ε > 0 we choose δ = ε and fix A = ε−3. With this A we apply (4.20) to find
j0 ∈ N such that A Γ̂j(A)1/2 ≤ ε for j ≥ j0. Thus

∫
R |Q̂(uj)|2 dξ ≤ Cε for j ≥ j0 shows that in fact

lim
j→∞

‖Q(uj)‖L2 = lim
j→∞

‖Q̂(uj)‖L2 = lim
j→∞

( ∫

R
|Q̂(uj)|2 dξ

)1/2

= 0

is verified. Then we obtain from Lemma 2.2 that also |ϕ(uj)| = |(Q(uj), uj)L2| ≤ ‖Q(uj)‖L2 → 0,
i.e., 0 = limj→∞ ϕ(uj) = P1, in contradiction to Lemma 2.6. Hence the case considered here can
not occur.

4.3 Case (3): The Fourier transforms are splitting

In this section we suppose that alternative (3) from Lemma 3.1 is satisfied for (ûj). Then we have

γ̂ ∈]0, 1[ for γ̂ = limξ→∞ Γ̂(ξ), the function Γ̂ being the pointwise limit (outside a countable set)

of the concentration functions Γ̂j(ξ) := supξ0∈R
∫ ξ0+ξ

ξ0−ξ
|ûj|2 dη of the ûj. We fix δ ∈]0, γ̂[ and select

j0 ∈ N, ξ∗1 = z∗1 ∈ R, ξ∗2 = z∗2 ∈ R, ξj = zj for j ≥ j0, and moreover the functions ρ and θ as stated in
(3) of Lemma 3.1; once again, all these quantities are depending on δ. With aj(ξ) = ρ(ξ− ξj)ûj(ξ)
and bj(ξ) = θ(ξ − ξj)ûj(ξ), we then have ‖aj‖L2 ≤ 1, ‖bj‖L2 ≤ 1, and in addition for j ≥ j0 the

estimates ‖ûj − (aj + bj)‖2
L2 ≤ 2δ, |‖aj‖2

L2 − γ̂| ≤ 3δ, as well as |‖bj‖2
L2 − (1 − γ̂)| ≤ 9δ. Setting

vj = ǎj and wj = b̌j, this leads to ‖vj‖L2 ≤ 1, ‖wj‖L2 ≤ 1, and also

‖uj − (vj + wj)‖2
L2 ≤ 2δ,

∣∣∣‖vj‖2
L2 − γ̂

∣∣∣ ≤ 3δ, and
∣∣∣‖wj‖2

L2 − (1− γ̂)
∣∣∣ ≤ 9δ (4.21)

for j ≥ j0. With hj = uj − (vj + wj) then Lemma 2.9 implies

|ϕ(uj)− ϕ(vj)− ϕ(wj)| ≤ C
(
1 + ‖uj‖3

L2 + ‖vj‖3
L2 + ‖wj‖3

L2

)
‖hj‖L2

+ C
(
|Λ1(vj, wj)|+ |Λ2(vj, wj)|+ |Λ3(vj, wj)|+ Λ4(vj, wj)

)

≤ Cδ1/2 + C
(
|Λ1(vj, wj)|+ |Λ2(vj, wj)|+ |Λ3(vj, wj)|+ Λ4(vj, wj)

)
,

(4.22)

the remainder terms Λ1, . . . , Λ4 being defined in (2.20) and (2.21).

Lemma 4.3 We have the bound

|Λ1(vj, wj)|+ |Λ2(vj, wj)|+ |Λ3(vj, wj)|+ Λ4(vj, wj) ≤ Cδ1/3.

Proof : We are going to apply Lemma 2.11 with v = vj, w = wj, and ξ0 = ξj. Note that
the support assumptions on v̂ and ŵ are satisfied, since v̂j(ξ) = aj(ξ) = ρ(ξ − ξj)ûj(ξ) = 0 for
|ξ − ξj| ≥ ξ∗1 + 2δ−1, and also ŵj(ξ) = bj(ξ) = θ(ξ − ξj)ûj(ξ) = 0 for |ξ − ξj| ≤ ξ∗2 − 2δ−1, see (3)
in Lemma 3.1. Due to

Λ1(vj, wj) =

∫ 1

0

∫

R
(U(t)vj)

2(U(t)wj)
2 dxdt =

∫

R
Q(vj, wj, vj)wj dx,

cf. (2.20), (1.8), and (2.7), hence (2.27) in Lemma 2.11 yields |Λ1(vj, wj)| ≤ C‖vj‖2
L2‖wj‖2

L2δ1/3 ≤
Cδ1/3. Concerning Λ2, here we have

Λ2(vj, wj) =

∫ 1

0

∫

R
|U(t)vj|2(U(t)vj)(U(t)wj) dxdt =

∫

R
Q(vj, vj, vj)wj dx,
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thus (2.28) in Lemma 2.11 results in |Λ2(vj, wj)| ≤ Cδ1/3. For Λ3 we note that

Λ3(vj, wj) =

∫ 1

0

∫

R
|U(t)wj|2(U(t)vj)(U(t)wj) dxdt =

∫

R
Q(vj, wj, wj)wj dx.

Therefore we can apply (2.29) from Lemma 2.11 to see that also |Λ3(vj, wj)| ≤ Cδ1/3. Finally, to
bound Λ4 we have

Λ4(vj, wj) =

∫ 1

0

∫

R
|U(t)vj|2|U(t)wj|2 dxdt =

∫

R
Q(vj, vj, wj)wj dx.

Then (2.30) in Lemma 2.11 leads to Λ4(vj, wj) ≤ Cδ1/3. 2

Using Lemma 4.3 in (4.22), we thus obtain

|ϕ(uj)− ϕ(vj)− ϕ(wj)| ≤ Cδ1/2 + Cδ1/3 ≤ Cδ1/3, j ≥ j0. (4.23)

Due to this estimate we may now proceed analogously to Section 4.1.3, cf. (4.19). From (4.23),
(2.11) in Lemma 2.6, and (4.21) it follows that

ϕ(uj) ≥ ϕ(vj) + ϕ(wj)− Cδ1/3 ≥ ‖vj‖4
L2P1 + ‖wj‖4

L2P1 − Cδ1/3

≥ γ̂2P1 − 6δ|P1|+ (1− γ̂)2P1 − 18δ|P1| − Cδ1/3

≥ γ̂2P1 + (1− γ̂)2P1 − Cδ1/3

for j ≥ j0. Since (uj) is a minimizing sequence, as j →∞ this yields P1 ≥ γ̂2P1+(1−γ̂)2P1−Cδ1/3.
Taking the limit δ → 0 and recalling P1 < 0, we finally arrive at γ̂(1−γ̂) ≤ 0, contradicting γ̂ ∈]0, 1[.
Hence the case considered here is not possible.

4.4 Summary and conclusion of the proof of Theorem 1.1

At the beginning of Section 4 we have divided the argument into three cases, according to which
one of the possibilities (1), (2), or (3) of Lemma 3.1 applied to (ûj) occurs. We have seen in Sections
4.2 and 4.3 that neither (2) nor (3) can hold, hence (1) is satisfied. Then the argument has been
split further in Sections 4.1.1-4.1.3, depending on which alternative (1), (2), or (3) from Lemma
3.1 holds for (uj). It has turned out that cases (2) and (3) are impossible, whence (1) is verified
both for (ûj) and for (uj). In this single case we have shown in Section 4.1.1 that the minimizing
sequence has a strong L2-limit, which is a solution of P1. (We note that in fact it is a subsequence
of vj(x) = e−iξj(xj+x)uj(xj + x), for suitable ξj and xj, which has a strong L2-limit.) Hence there
is a minimizer u ∈ L2 for P1. By the Lagrange multiplier rule we then have −4Q(u) = 2µu,
where µ ∈ R denotes the Lagrange multiplier. Taking the inner product with u, it follows that
µ = 2ϕ(u) = 2P1, thus u = −P−1

1 Q(u) ∈ L2 ∩ L∞, cf. Lemma 2.12. This completes the proof of
Theorem 1.1. 2
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