On the number of solutions to semilinear boundary value problems

Markus Kunze ${ }^{1}$ \& Rafael Ortega ${ }^{2}$
${ }^{1}$ Universität Duisburg-Essen, FB 6 - Mathematik, D-45117 Essen, Germany
${ }^{2}$ Departamento de Matemática Aplicada, Universidad de Granada, E-18071 Granada, Spain

Key words: semilinear elliptic problems, number of solutions, eigenvalue estimates

Abstract

We consider semilinear elliptic problems of the form $\Delta u+g(u)=f(x)$ with Neumann boundary conditions or $\Delta u+\lambda_{1} u+g(u)=f(x)$ with Dirichlet boundary conditions, and we derive conditions on g and f under which an upper bound on the number of solutions can be obtained.

1 Introduction

In this paper we consider semilinear elliptic problems of the form $\Delta u+g(u)=f(x)$ or $\Delta u+\lambda_{1} u+$ $g(u)=f(x)$ in a smooth and bounded domain $\Omega \subset \mathbb{R}^{n}$, assuming Neumann or Dirichlet boundary conditions respectively on $\partial \Omega$. Our aim is to derive conditions that enforce upper bounds on the number of solutions to these equations. A key to such type of results is to verify that the associated linear equations $\Delta u+\alpha(x) u=0$ or $\Delta u+\lambda_{1} u+\alpha(x) u=0$ do not have sign-changing solutions, since then (under certain assumptions on g and f) it follows that solutions of the nonlinear problems cannot cross. In this context one has to define $\alpha(x)=\frac{g\left(u_{1}(x)\right)-g\left(u_{2}(x)\right)}{u_{1}(x)-u_{2}(x)}$ for two solutions u_{1} and u_{2} of the nonlinear equations to make the connection between the nonlinear and the linear problems. Therefore it is conceivable that conditions on the boundedness of g^{\prime} will be helpful, and this corresponds to supposing that the $L^{\infty}(\Omega)$-norm of α is not too large. Hypotheses of this kind have been imposed in many papers, often in connection to Ambrosetti-Prodi type results; see [1] and the references therein.

The new feature of the present work is the observation that an assumption on an $L^{\sigma}(\Omega)$-norm of α (more precisely, on its positive part) for certain $\sigma<\infty$ will be sufficient to make the argument go through. Translated back to g and f (for instance in the Neumann case, where our results are more complete), this means that one can also allow for arbitrary g^{\prime} and 'large' right-hand sides f, provided its average $\bar{f}=\frac{1}{|\Omega|} \int_{\Omega} f d x$ is small enough; see Corollary 4.3 below. Recently there have been some papers on periodic ODEs, where L^{σ}-bounds on the potential have been assumed in order
to either study the stability of Hill's equation [13] or to investigate the bifurcation values for certain superlinear problems [8]. In this regard, our paper is a first attempt to transfer these results from ODEs to PDEs. It should also be mentioned that there is a connection to the classical Rozenblum-Lieb-Cwikel inequality (see e.g. [10]), since in essence everything comes down to showing that $N_{0}(-\alpha) \leq 1$ for the number $N_{0}(-\alpha)$ of eigenvalues μ to $-\Delta-\alpha$ such that $\mu \leq 0$, i.e., the number of non-negative eigenvalues to $L=\Delta+\alpha$ (for the Neumann boundary conditions). Hence the Rozenblum-Lieb-Cwikel inequality suggests that it is sufficient to bound an $L^{\sigma}(\Omega)$-norm of α_{+}in order to obtain $N_{0}(-\alpha) \leq 1$ as desired. However, in the particular case considered in this paper a direct approach to this question can be taken which does not rely on such very general arguments.

The paper is organized as follows. In Section 2 we consider the linearized problem corresponding to Neumann boundary conditions, whereas its Dirichlet counterpart is treated in Section 3. Applications to nonlinear problems are given in Section 4.

2 Neumann boundary conditions

Let $\Omega \subset \mathbb{R}^{n}$ be a bounded domain with smooth boundary $\partial \Omega$. For $\alpha \in C(\bar{\Omega})$ we consider $L u=$ $\Delta u+\alpha(x) u$ together with the Neumann boundary condition $\frac{d u}{d n}=0$ on $\partial \Omega$. The eigenvalues of L are denoted $\mu_{1} \geq \mu_{2} \geq \mu_{3} \geq \ldots$, and the corresponding eigenfunctions are $\phi_{1}, \phi_{2}, \phi_{3}, \ldots$ These eigenfunctions are understood as non-zero functions $\phi_{i} \in H^{1}(\Omega)$ such that

$$
-\int_{\Omega} \nabla \phi_{i} \cdot \nabla u d x+\int_{\Omega} \alpha(x) \phi_{i} u d x=\mu_{i} \int_{\Omega} \phi_{i} u d x
$$

for any test function $u \in H^{1}(\Omega)$. The standard regularity theory implies that ϕ_{i} belongs to $C(\bar{\Omega})$. We fix

$$
\left\{\begin{array}{lll}
p \in[2, \infty] & \text { if } & n=1 \tag{1}\\
p \in[2, \infty[& \text { if } & n=2 \\
p \in\left[2, \frac{2 n}{n-2}\right] & \text { if } & n \geq 3
\end{array},\right.
$$

and introduce

$$
\begin{equation*}
S_{N}(p ; \Omega)=\inf \left\{\|\nabla u\|_{L^{2}(\Omega)}^{2}: u \in H^{1}(\Omega),\|u\|_{L^{p}(\Omega)}=1, \int_{\Omega} u d x=0\right\}>0, \tag{2}
\end{equation*}
$$

so that

$$
\begin{equation*}
S_{N}(p ; \Omega)\|u\|_{L^{p}(\Omega)}^{2} \leq\|\nabla u\|_{L^{2}(\Omega)}^{2} \quad \text { if } \quad u \in H^{1}(\Omega) \quad \text { and } \quad \int_{\Omega} u d x=0 . \tag{3}
\end{equation*}
$$

The following lemma and its corollary play a key role for our results. Its proof is an adaptation of arguments we found in [3].

Lemma 2.1 Suppose that

$$
\left\{\begin{array}{lll}
\sigma \in[1, \infty] & \text { if } & n=1 \tag{4}\\
\sigma \in] 1, \infty] & \text { if } & n=2 \\
\sigma \in\left[\frac{n}{2}, \infty\right] & \text { if } & n \geq 3
\end{array}\right.
$$

If

$$
\left\|\alpha_{+}\right\|_{L^{\sigma}(\Omega)}<S_{N}\left(2 \sigma^{*} ; \Omega\right),
$$

then $\mu_{2}<0$. Here $\alpha_{+}=\max \{\alpha, 0\}$ denotes the positive part of α and $1 / \sigma+1 / \sigma^{*}=1$.

Proof: Assume on the contrary that $\mu_{2} \geq 0$. For $c_{1}, c_{2} \in \mathbb{R}$ we let $\psi=c_{1} \phi_{1}+c_{2} \phi_{2}$ and apply the definition of eigenfunction with $u=\psi$. Since ϕ_{1} and ϕ_{2} are orthogonal in $L^{2}(\Omega)$ and in $H^{1}(\Omega)$, this yields

$$
\begin{aligned}
-\int_{\Omega}|\nabla \psi|^{2} d x+\int_{\Omega} \alpha(x) \psi^{2} d x & =\int_{\Omega}\left(c_{1} \mu_{1} \phi_{1}+c_{2} \mu_{2} \phi_{2}\right)\left(c_{1} \phi_{1}+c_{2} \phi_{2}\right) d x \\
& =c_{1}^{2} \mu_{1} \int_{\Omega} \phi_{1}^{2} d x+c_{2}^{2} \mu_{2} \int_{\Omega} \phi_{2}^{2} d x \geq 0
\end{aligned}
$$

due to $\mu_{1} \geq \mu_{2} \geq 0$. Next we choose $c_{1}, c_{2} \in \mathbb{R}$ such that $\psi \neq 0$, but $\int_{\Omega} \psi d x=0$. Noting that (4) for σ is equivalent to (1) for $p=2 \sigma^{*}$, (3) implies

$$
\begin{aligned}
S_{N}\left(2 \sigma^{*} ; \Omega\right)\|\psi\|_{L^{2 \sigma^{*}}(\Omega)}^{2} & \leq\|\nabla \psi\|_{L^{2}(\Omega)}^{2} \leq \int_{\Omega} \alpha(x) \psi^{2} d x \leq \int_{\Omega} \alpha_{+}(x) \psi^{2} d x \\
& \leq\left(\int_{\Omega}\left|\alpha_{+}\right|^{\sigma} d x\right)^{1 / \sigma}\left(\int_{\Omega}|\psi|^{2 \sigma^{*}} d x\right)^{1 / \sigma^{*}}=\left\|\alpha_{+}\right\|_{L^{\sigma}(\Omega)}\|\psi\|_{L^{2 \sigma^{*}}(\Omega)}^{2}
\end{aligned}
$$

which leads to $S_{N}\left(2 \sigma^{*} ; \Omega\right) \leq\left\|\alpha_{+}\right\|_{L^{\sigma}(\Omega)}$ and contradicts our assumption.

Corollary 2.2 If

$$
\begin{equation*}
\left\|\alpha_{+}\right\|_{L^{\sigma}(\Omega)}<S_{N}\left(2 \sigma^{*} ; \Omega\right) \tag{5}
\end{equation*}
$$

and if there exists a nontrivial solution u of

$$
\left\{\begin{array}{rll}
\Delta u+\alpha(x) u & =0 & \text { in } \Omega \\
\frac{d u}{d n} & =0 & \text { on } \partial \Omega
\end{array}\right.
$$

then u does not change sign.
Proof: If $u \neq 0$, then u were a sign-changing eigenfunction of $L=\Delta+\alpha(x)$ corresponding to the eigenvalue $\mu=0$. But the first eigenfunction ϕ_{1} corresponding to μ_{1} does not change sign (see [11, Thm. 11.10]), thus $0 \in\left\{\mu_{2}, \mu_{3}, \ldots\right\}$. Since $\mu_{2} \geq \mu_{3} \geq \ldots$, this yields $\mu_{2} \geq 0$ in contradiction to Lemma 2.1.

In the remaining part of this section we further discuss condition (5) and prove that it is optimal in one dimension if $\sigma \in[5 / 3, \infty[$.

Lemma 2.3 If $I=] a, b[\subset \mathbb{R}$ and $\sigma \in[5 / 3, \infty[$, then there exists $\alpha \in C(\bar{I})$ such that
(i) $\left\|\alpha_{+}\right\|_{L^{\sigma}(I)}=S_{N}\left(2 \sigma^{*} ; I\right)$, and
(ii) there is a nontrivial and sign-changing solution u of

$$
\left\{\begin{array}{l}
u^{\prime \prime}+\alpha(x) u=0 \quad \text { in } I \tag{6}\\
u^{\prime}(a)=u^{\prime}(b)=0
\end{array} .\right.
$$

Proof: For bounded intervals $] a, b[\subset \mathbb{R}$ we define

$$
S_{D}(p ; a, b)=\inf \left\{\left\|u^{\prime}\right\|_{\left.L^{2}(] a, b \mid\right)}^{2}: u \in H_{0}^{1}(] a, b[),\|u\|_{L^{p}(|a, b|)}=1\right\},
$$

and we also let $S_{N}(p ; a, b):=S_{N}(p ;] a, b[)$; recall (2). By using a shift, it suffices for the proof to consider the case where $I=] 0, l\left[\right.$ for some $l>0$. For $\left.\left.p=2 \sigma^{*} \in\right] 2,5\right]$ define $\gamma=S_{D}(p ; 0, l)>0$. Let ϕ denote the unique solution of $\phi^{\prime \prime}+\gamma|\phi|^{p-2} \phi=0$ with minimal period $2 l$ such that $A=\phi(0)>0$ and $\phi^{\prime}(0)=0$. This solution does exist, since the orbits of the ODE cover the (ϕ, ϕ^{\prime})-phase plane, with a continuous and monotone minimal period function that approaches infinity at the origin and zero at infinity. Then $\phi(-x)=\phi(x)$ holds, since $x \mapsto \phi(-x)$ satisfies the same initial value problem as ϕ. Let $x_{0}>0$ be the first zero of ϕ^{\prime}, so that $\phi^{\prime}(x)>0$ for $\left.x \in\right]-x_{0}, 0\left[, \phi^{\prime}(x)<0\right.$ for $x \in] 0, x_{0}\left[\right.$, and $\phi^{\prime}\left(\pm x_{0}\right)=0$. As $E=E(x)=\frac{1}{2} \phi^{\prime}(x)^{2}+\frac{\gamma}{p}|\phi(x)|^{p}=\frac{\gamma}{p} A^{p}$ is constant along the orbit, it follows that $\left|\phi\left(\pm x_{0}\right)\right|=A$. From the definition of x_{0} we deduce that $\phi\left(\pm x_{0}\right)<A$ and so $\phi\left(\pm x_{0}\right)=-A$. The solutions $\phi(x)$ and $-\phi\left(x+x_{0}\right)$ satisfy the same initial conditions at $x=0$ and therefore they coincide. The identity $\phi(x)=-\phi\left(x+x_{0}\right)$ implies that $2 x_{0}$ is the minimal period of ϕ and this leads to the identity $\phi(x)=-\phi(x+l)$. In particular, $\phi(l / 2)=-\phi(-l / 2)=-\phi(l / 2)$ gives $\phi(-l / 2)=\phi(l / 2)=0$. Next we define

$$
u_{N}(x)=\phi(x), \quad \alpha(x)=\gamma\left|u_{N}(x)\right|^{p-2}=\gamma\left|u_{N}(x)\right|^{2\left(\sigma^{*}-1\right)}, \quad \text { and } \quad u_{D}(x)=\phi(x-l / 2), \quad x \in[0, l] .
$$

Then u_{N} solves (6) on $[0, l]$ and changes sign. Finally to verify (i), we observe that also $u_{D}^{\prime \prime}+$ $\gamma \mid u_{D}{ }^{p-2} u_{D}=0, u>0$ on $] 0, l\left[\right.$, and $u_{D}(0)=u_{D}(l)=0$. Next let $u \in H_{0}^{1}(] 0, l[)$ be the positive minimizer for $S_{D}(p ; 0, l)=\gamma$. Then $u^{\prime \prime}+\lambda|u|^{p-2} u=0$ for some Lagrange multiplier $\lambda \in \mathbb{R}$, and $u(0)=u(l)=0$. Upon multiplication of the equation by u and integration over $[0, l]$, we get $\gamma=\int_{0}^{l}\left(u^{\prime}\right)^{2} d x=\lambda \int_{0}^{l} u^{p} d x=\lambda\|u\|_{L^{p}(0, l \mid)}^{p}=\lambda$, and consequently $u_{D}=u$ by the uniqueness for positive solutions of the Dirichlet problem. Therefore $\phi(x)=-\phi(x-l)$ results in

$$
\begin{aligned}
\left\|\alpha_{+}\right\|_{\left.L^{\sigma}(j 0, l]\right)} & =\gamma\left(\int_{0}^{l}\left|u_{N}(x)\right|^{2 \sigma\left(\sigma^{*}-1\right)} d x\right)^{1 / \sigma}=\gamma\left\|u_{N}\right\|_{L^{p}(0, l \mid)}^{p / \sigma}=\gamma\left\|u_{D}\right\|_{L^{p}(00, l)}^{p / \sigma} \\
& =\gamma\|u\|_{L^{p}(0, l \mid)}^{p p / \sigma}=\gamma=S_{D}(p ; 0, l)=S_{N}(p ; 0, l)=S_{N}\left(2 \sigma^{*} ;\right] 0, l[),
\end{aligned}
$$

where we also used the following Lemma 2.4. This completes the proof.

Lemma 2.4 For bounded intervals $] a, b[\subset \mathbb{R}$ we consider

$$
S_{D}(p ; a, b)=\inf \left\{\left\|u^{\prime}\right\|_{\left.L^{2}(J a, b]\right)}^{2}: u \in H_{0}^{1}(] a, b[),\|u\|_{\left.L^{p}(] a, b \mid\right)}=1\right\}
$$

and

$$
S_{N}(p ; a, b)=\inf \left\{\left\|u^{\prime}\right\|_{\left.\left.L^{2}(] a, b\right]\right)}^{2}: u \in H^{1}(] a, b[),\|u\|_{\left.L^{p}(J a, b]\right)}=1, \int_{a}^{b} u d x=0\right\}
$$

see (2). Then

$$
\left.\left.S_{D}(p ; a, b)=S_{N}(p ; a, b), \quad p \in\right] 1,5\right] .
$$

Proof: Passing from a function $u(x)$ for $x \in] a, b[$ to $\tilde{u}(x)=u((b-a) x / 2+(a+b) / 2)$ for $x \in]-1,1[$, it is found that S_{D} and S_{N} scale as

$$
S_{D}(p ; a, b)=S_{D}(p)\left(\frac{b-a}{2}\right)^{-(1+2 / p)} \quad \text { and } \quad S_{N}(p ; a, b)=S_{N}(p)\left(\frac{b-a}{2}\right)^{-(1+2 / p)}
$$

where $S_{D}(p):=S_{D}(p ;-1,1)$ and $S_{N}(p):=S_{N}(p ;-1,1)$, respectively. Therefore it suffices to verify that

$$
\begin{equation*}
\left.\left.S_{D}(p)=S_{N}(p), \quad p \in\right] 1,5\right] . \tag{7}
\end{equation*}
$$

1.) Let

$$
\tilde{S}_{N}(p)=\inf \left\{\frac{\left\|u^{\prime}\right\|_{\left.L^{2}(]-1,1\right]}}{\|u\|_{\left.L^{p}(]-1,1\right]}}: u \in H^{1}(]-1,1[), \int_{-1}^{1} u d x=0\right\}>0 .
$$

Due to [6, Thm. 1a)] there exists a minimizer \tilde{u} such that u is odd. Then $u(x)=\|\tilde{u}\|_{\left.L^{p}(]-1,1\right]}^{-1} \tilde{u}(x)$ yields an odd minimizer for $S_{N}(p)$. Next we introduce

$$
v(x)=\left\{\begin{array}{cll}
u(x+1) & : & x \in[-1,0] \\
-u(x-1) & : & x \in[0,1]
\end{array},\right.
$$

and note that $v(-1)=u(0)=0=-u(0)=v(1)$, whence $v \in H_{0}^{1}(]-1,1[)$. Also $\|v\|_{\left.\left.L^{p}(]-1,1\right]\right)}=$ $\|u\|_{\left.L^{p}(]-1,1\right]}=1$ is found, and consequently $S_{D}(p) \leq\left\|v^{\prime}\right\|_{\left.L^{2}(]-1,1\right]}^{2}=\left\|u^{\prime}\right\|_{\left.L^{2}(]-1,1\right)}^{2}=S_{N}(p)$. In other words, $S_{D}(p) \leq S_{N}(p)$ holds for $\left.\left.p \in\right] 1,5\right]$.
2.) Conversely, by rearrangement there exists an even minimizer u for $S_{D}(p)$ such that u is radially decreasing and $u(-1)=u(1)=0=u^{\prime}(0)$; see [6, Thm. 3a)] for a related result. Letting

$$
v(x)=\left\{\begin{array}{cll}
u(x+1) & : & x \in[-1,0] \\
-u(x-1) & : & x \in[0,1]
\end{array},\right.
$$

we get $\int_{-1}^{1} v d x=\int_{0}^{1} u d x-\int_{-1}^{0} u d x=0$ due to $u(-x)=u(x)$, and moreover $\|v\|_{\left.L^{p}(]-1,1\right)}=$ $\|u\|_{\left.L^{p}(]-1,1\right]}=1$. Hence $S_{N}(p) \leq\left\|v^{\prime}\right\|_{\left.\left.L^{2}(]-1,1\right]\right)}^{2}=\left\|u^{\prime}\right\|_{\left.L^{2}(]-1,1\right]}^{2}=S_{D}(p)$. Accordingly, $S_{N}(p) \leq$ $S_{D}(p)$ is satisfied for $\left.p \in\right] 1, \infty[$.

Remark 2.5 (a) From [6, Thm. 1b)] it is known that the Neumann minimizers for $\Omega=]-1,1[$ are not odd for $p>6$, so that (7) will not hold in this regime. The range $p \in] 5,6]$ seems to be open.
(b) In view of $[2,(5.40)]$ we have $\|u\|_{L^{p}(00,1]} \leq c(p)\left\|u^{\prime}\right\|_{L^{2}(j 0,1[)}$ for $u \in H_{0}^{1}(] 0,1[)$, where

$$
c(p)=\frac{1}{2} \frac{p(1+2 / p)^{1 / 2}}{(1+p / 2)^{1 / p} \beta(1 / p, 1 / 2)}
$$

is the best constant, with $\beta(x, y)=\Gamma(x) \Gamma(y) / \Gamma(x+y)$ the beta function. Therefore $S_{D}(p ; 0,1)=$ $c(p)^{-2}$, and thus using Lemma 2.4 and provided that $\sigma \in[5 / 3, \infty[$, we obtain the explicit expression

$$
\begin{aligned}
S_{N}\left(2 \sigma^{*} ; I\right) & =S_{D}\left(2 \sigma^{*} ; I\right)=S_{D}\left(2 \sigma^{*} ; 0,1\right)|I|^{-\left(1+1 / \sigma^{*}\right)}=c\left(2 \sigma^{*}\right)^{-2}|I|^{-\left(1+1 / \sigma^{*}\right)} \\
& =\frac{\beta\left(1 / 2 \sigma^{*}, 1 / 2\right)^{2}}{\sigma^{*}\left(1+\sigma^{*}\right)^{1 / \sigma}}|I|^{-\left(1+1 / \sigma^{*}\right)}
\end{aligned}
$$

for the relevant constant from (5) in the one-dimensional case.
(c) The paper [8] deals with periodic solutions, but some of its results are easily adapted to the Neumann problem. In particular one can apply Proposition 2.1 in [8] to deduce that, for $\Omega=] a, b[$, the conclusion of Corollary 2.2 still holds if (5) is replaced by

$$
\left\|\alpha_{+}\right\|_{L^{\sigma}(l a, b \mid)}<S_{D}\left(2 \sigma^{*} ; a, b\right) .
$$

Hence (5) is not optimal for Ω an interval and $2 \sigma^{*}>6$, which is equivalent to $\sigma<3 / 2$.

It is an open problem to determine for which $\Omega \subset \mathbb{R}^{n}$ condition (5) is optimal in dimensions $n \geq 2$. Certainly it seems reasonable to expect that the optimal values could only be determined for special domains like balls or rectangles.

3 Dirichlet boundary conditions

In this section we consider the Dirichlet boundary condition $u=0$ on $\partial \Omega$. Let $\lambda_{1}>0$ be the corresponding first eigenvalue of $-\Delta$ with associated eigenfunction $\phi>0$; the other eigenvalues are denoted $\lambda_{1}<\lambda_{2} \leq \lambda_{3} \leq \ldots$. We recall the Hardy inequality

$$
\begin{equation*}
S_{H}(p, \tau ; \Omega)\left\|\frac{u}{\phi^{\tau}}\right\|_{L^{p}(\Omega)}^{2} \leq\|\nabla u\|_{L^{2}(\Omega)}^{2}, \quad u \in H_{0}^{1}(\Omega), \quad \tau \in[0,1], \quad \frac{1}{p} \geq \frac{1}{2}-\frac{1-\tau}{n} ; \tag{8}
\end{equation*}
$$

see [5, p. 75]. This reference gives (8) for $\frac{1}{p}=\frac{1}{2}-\frac{1-\tau}{n}$ only, but since $\left\|\frac{u}{\phi^{\tau}}\right\|_{L^{q}(\Omega)}^{2} \leq|\Omega|^{\frac{2(p-q)}{p q}}\left\|\frac{u}{\phi^{\tau}}\right\|_{L^{p}(\Omega)}^{2}$ for $q \leq p$, (8) also holds in the generality stated for a suitable constant $S_{H}(p, \tau ; \Omega)>0$. Furthermore, we will need the constant

$$
\tilde{S}_{D}(p ; \Omega)=\inf \left\{\|\nabla u\|_{L^{2}(\Omega)}^{2}: u \in H_{0}^{1}(\Omega),\|u\|_{L^{p}(\Omega)}=1, \int_{\Omega} u \phi d x=0\right\}>0
$$

for $p=2$. In this case an expansion of $u \in H_{0}^{1}(\Omega)$ in terms of the eigenfunctions of $-\Delta$ shows that $\tilde{S}_{D}(2 ; \Omega)=\lambda_{2}$. Consequently,

$$
\begin{equation*}
\lambda_{2}\|u\|_{L^{2}(\Omega)}^{2} \leq\|\nabla u\|_{L^{2}(\Omega)}^{2} \quad \text { if } \quad u \in H_{0}^{1}(\Omega) \quad \text { and } \quad \int_{\Omega} u \phi d x=0 . \tag{9}
\end{equation*}
$$

The following lemma parallels Lemma 2.1. Here we write $\mu_{1} \geq \mu_{2} \geq \ldots$ for the eigenvalues of $L u=\Delta u+\lambda_{1} u+\alpha(x) u$ and $\phi_{1}, \phi_{2}, \ldots$ for the associated eigenfunctions.

Lemma 3.1 Suppose that $\sigma \in\left[\frac{n+1}{2}, \infty\right]$. If

$$
\left\|\alpha_{+}\right\|_{L^{\sigma}(\Omega, \phi d x)}<\left(1-\lambda_{1} \lambda_{2}^{-1}\right) S_{H}\left(2 \sigma^{*}, 1 / 2 \sigma ; \Omega\right)
$$

then $\mu_{2}<0$.
Notice that the first eigenfunction ϕ of $-\Delta$ is acting as a weight in the L^{σ}-norm.
Proof: Let us assume that on the contrary $\mu_{2} \geq 0$. If we set $\tau=\frac{1}{2 \sigma}$ and $p=2 \sigma^{*}$, then $\tau \in[0,1]$ and $\frac{1}{p} \geq \frac{1}{2}-\frac{1-\tau}{n}$ is found. Next we consider $\psi=c_{1} \phi_{1}+c_{2} \phi_{2}$ for $c_{1}, c_{2} \in \mathbb{R}$ to obtain $L \psi=c_{1} \mu_{1} \phi_{1}+c_{2} \mu_{2} \phi_{2}$. Since $\psi \in H_{0}^{1}(\Omega)$, this yields

$$
-\int_{\Omega}|\nabla \psi|^{2} d x+\lambda_{1} \int_{\Omega} \psi^{2} d x+\int_{\Omega} \alpha(x) \psi^{2} d x \geq c_{1}^{2} \mu_{1} \int_{\Omega} \phi_{1}^{2} d x+c_{2}^{2} \mu_{2} \int_{\Omega} \phi_{2}^{2} d x \geq 0
$$

in view of $\mu_{1} \geq \mu_{2} \geq 0$. If $c_{1}, c_{2} \in \mathbb{R}$ are chosen such that $\psi \neq 0$ and $\int_{\Omega} \psi \phi d x=0$, then (9) implies

$$
\int_{\Omega}|\nabla \psi|^{2} d x \leq \lambda_{1} \int_{\Omega} \psi^{2} d x+\int_{\Omega} \alpha(x) \psi^{2} d x \leq \lambda_{1} \lambda_{2}^{-1} \int_{\Omega}|\nabla \psi|^{2} d x+\int_{\Omega} \alpha(x) \psi^{2} d x
$$

Hence from (8) we get

$$
\begin{aligned}
& \left(1-\lambda_{1} \lambda_{2}^{-1}\right) S_{H}\left(2 \sigma^{*}, 1 / 2 \sigma ; \Omega\right)\left\|\frac{\psi}{\phi^{1 / 2 \sigma}}\right\|_{L^{2 \sigma^{*}(\Omega)}}^{2} \\
& \quad \leq\left(1-\lambda_{1} \lambda_{2}^{-1}\right) \int_{\Omega}|\nabla \psi|^{2} d x \leq \int_{\Omega} \alpha(x) \psi^{2} d x \leq \int_{\Omega}\left(\alpha_{+}(x) \phi^{1 / \sigma}\right)\left(\psi^{2} \phi^{-1 / \sigma}\right) d x \\
& \quad \leq\left(\int_{\Omega}\left|\alpha_{+}\right|^{\sigma} \phi d x\right)^{1 / \sigma}\left(\int_{\Omega}|\psi|^{2 \sigma^{*}} \phi^{-\sigma^{*} / \sigma} d x\right)^{1 / \sigma^{*}}=\left\|\alpha_{+}\right\|_{L^{\sigma}(\Omega, \phi d x)}\left\|\frac{\psi}{\phi^{1 / 2 \sigma}}\right\|_{L^{2 \sigma^{*}}(\Omega)}^{2} .
\end{aligned}
$$

Therefore the contradiction $\left(1-\lambda_{1} \lambda_{2}^{-1}\right) S_{H}\left(2 \sigma^{*}, 1 / 2 \sigma ; \Omega\right) \leq\left\|\alpha_{+}\right\|_{L^{\sigma}(\Omega, \phi d x)}$ is obtained.

Remark 3.2 A variant of Lemma 3.1 is as follows. If

$$
\left\|\left(\lambda_{1}+\alpha\right)_{+}\right\|_{L^{\sigma}(\Omega, \phi d x)}<S_{H}\left(2 \sigma^{*}, 1 / 2 \sigma ; \Omega\right)
$$

then $\mu_{2}<0$. The proof is analogous to that of Lemma 3.1.

Corollary 3.3 If

$$
\left\|\alpha_{+}\right\|_{L^{\sigma}(\Omega, \phi d x)}<\left(1-\lambda_{1} \lambda_{2}^{-1}\right) S_{H}\left(2 \sigma^{*}, 1 / 2 \sigma ; \Omega\right) \quad \text { or } \quad\left\|\left(\lambda_{1}+\alpha\right)_{+}\right\|_{L^{\sigma}(\Omega, \phi d x)}<S_{H}\left(2 \sigma^{*}, 1 / 2 \sigma ; \Omega\right),
$$

and if there exists a nontrivial solution u of

$$
\left\{\begin{aligned}
\Delta u+\lambda_{1} u+\alpha(x) u & =0 & \text { in } \Omega \\
u & =0 & \text { on } \partial \Omega
\end{aligned}\right.
$$

then u does not change sign.
Proof: Any sign-changing solution $u \neq 0$ is an eigenfunction of $L=\Delta+\lambda_{1}+\alpha(x)$ corresponding to the eigenvalue $\mu=0$. Since the first eigenfunction ϕ_{1} of L does not change sign, we get $0 \in\left\{\mu_{2}, \mu_{3}, \ldots\right\}$ and therefore $\mu_{2} \geq 0$. But this is impossible due to Lemma 3.1 or Remark 3.2.

4 Some applications to nonlinear problems

4.1 Semilinear Neumann problems

For certain nonlinearities g we consider the semilinear Neumann problems

$$
\left\{\begin{align*}
\Delta u+g(u) & =f(x) & & \text { in } \Omega \tag{10}\\
\frac{d u}{d n} & =0 & & \text { on } \partial \Omega
\end{align*}\right.
$$

with $f \in L^{\infty}(\Omega)$ and we will decompose $f(x)=\tilde{f}(x)+\bar{f}$, where $\bar{f}=\frac{1}{|\Omega|} \int_{\Omega} f d x$ denotes the average of f over Ω and $\int_{\Omega} \tilde{f}(x) d x=0$. The following result asserts that the solutions of (10) are ordered, if we assume (11) and (12) below for g and f. Here we say that u is a solution of (10), provided that $u \in C(\bar{\Omega}) \cap H^{1}(\Omega)$ and u solves the equation in the variational sense.

Theorem 4.1 Suppose that $\sigma<\infty$ satisfies (4) and $g: \mathbb{R} \rightarrow \mathbb{R}$ is locally Lipschitz continuous such that

$$
\begin{equation*}
\left(\frac{g\left(s_{1}\right)-g\left(s_{2}\right)}{s_{1}-s_{2}}\right)_{+}^{\sigma} \leq A\left(\frac{g\left(s_{1}\right)+g\left(s_{2}\right)}{2}\right)+B, \quad s_{1}, s_{2} \in \mathbb{R} \tag{11}
\end{equation*}
$$

for some constants $A, B \geq 0$. If we denote $\bar{f}=\frac{1}{|\Omega|} \int_{\Omega} f d x$ and if

$$
\begin{equation*}
A \bar{f}+B<\frac{1}{|\Omega|} S_{N}\left(2 \sigma^{*} ; \Omega\right)^{\sigma} \tag{12}
\end{equation*}
$$

then different solutions of (10) cannot cross.
Proof: Let u_{1}, u_{2} be solutions of (10) with $u_{1} \neq u_{2}$. We have to show that $u(x)=u_{1}(x)-u_{2}(x) \neq 0$ for $x \in \Omega$. First we note that u is a solution of

$$
\Delta u+\alpha(x) u=0 \text { in } \Omega, \quad \frac{d u}{d n}=0 \text { on } \partial \Omega,
$$

where

$$
\alpha(x)=\left\{\begin{array}{ccc}
\frac{g\left(u_{1}(x)\right)-g\left(u_{2}(x)\right)}{u_{1}(x)-u_{2}(x)} & : & u_{1}(x) \neq u_{2}(x) \\
0 & : & u_{1}(x)=u_{2}(x)
\end{array} .\right.
$$

Since g is locally Lipschitz continuous, α is bounded. In view of (11) we have

$$
\begin{equation*}
\left\|\alpha_{+}\right\|_{L^{\sigma}(\Omega)}^{\sigma}=\int_{\Omega}\left(\frac{g\left(u_{1}(x)\right)-g\left(u_{2}(x)\right)}{u_{1}(x)-u_{2}(x)}\right)_{+}^{\sigma} d x \leq A \int_{\Omega}\left(\frac{g\left(u_{1}(x)\right)+g\left(u_{2}(x)\right)}{2}\right) d x+B|\Omega| . \tag{13}
\end{equation*}
$$

On the other hand, if we employ the test function $u=1$ in the definition of solution of the Neumann problems associated to the equations $\Delta u_{j}+g\left(u_{j}\right)=f=\tilde{f}+\bar{f}$ over Ω, it follows that $\int_{\Omega} g\left(u_{j}\right) d x=|\Omega| \bar{f}$. Hence (13) yields the bound

$$
\left\|\alpha_{+}\right\|_{L^{\sigma}(\Omega)}^{\sigma} \leq(A \bar{f}+B)|\Omega| .
$$

Therefore (12) in conjunction with Corollary 2.2 completes the proof of the theorem.
Note that (12) allows for right-hand sides f of 'arbitrary size', provided that B and the average \bar{f} of f are small enough. Some examples of nonlinearities that are admissible in the sense of (11) are given below. Here we say that a locally Lipschitz continuous function $g: \mathbb{R} \rightarrow \mathbb{R}$ satisfies the condition $\mathcal{C}(\sigma ; A, B)$, if (11) holds.

Example 4.2 (a) Let $g(s)=|s|^{p}$ or $g(s)=\left(s_{+}\right)^{p}$ for $s \in \mathbb{R}$ and $\left.p \in\right] 1, \infty[$. Then g satisfies $\mathcal{C}\left(p^{*} ; p^{p^{*}}, 0\right)$. Hence Theorem 4.1 applies, provided that

$$
\left\{\begin{array}{lll}
p \in[1, \infty] & \text { if } & n=1 \\
p \in[1, \infty[& \text { if } & n=2 \\
p \in\left[1, \frac{n}{n-2}\right] & \text { if } & n \geq 3
\end{array}, \quad \text { and } \quad \bar{f}<\frac{S_{N}(2 p ; \Omega)^{p^{*}}}{p^{p^{*}}|\Omega|}\right.
$$

The existence of solution for this type of problems has been discussed by several authors. Some references are [12, 7, 9].
(b) Let $g(s)=e^{s}$ for $s \in \mathbb{R}$. Then g satisfies $\mathcal{C}(1 ; 1,0)$. Therefore in order to apply Theorem 4.1 we can take $n=1$ (where $\sigma=1$ is admissible) and require $\bar{f}<\frac{1}{|\Omega|} S_{N}(\infty ; \Omega)$.
(c) Let $g(s)=e^{s}+\sin s$ for $s \in \mathbb{R}$. Then g satisfies $\mathcal{C}(1 ; 1,2)$. Here Theorem 4.1 can be used, if $n=1$ and $\bar{f}+2<\frac{1}{|\Omega|} S_{N}(\infty ; \Omega)$.

See [8, Lemma 3.1]. The proof of (a) relies on the (sharp) inequality

$$
\left|\frac{\left|s_{1}\right|^{p}-\left|s_{2}\right|^{p}}{s_{1}-s_{2}}\right|^{p^{*}} \leq p^{p^{*}}\left(\frac{\left|s_{1}\right|^{p}+\left|s_{2}\right|^{p}}{2}\right), \quad s_{1}, s_{2} \in \mathbb{R}, \quad s_{1} \neq s_{2},
$$

for $p \in] 1, \infty\left[\right.$ and $1 / p+1 / p^{*}=1$.
Theorem 4.1 has some direct consequences for the number of solutions to (10).
Corollary 4.3 Let $g: \mathbb{R} \rightarrow \mathbb{R}$ be locally Lipschitz continuous such that $\mathcal{C}(\sigma ; A, B)$ holds. We moreover assume that $f \in L^{\infty}(\Omega)$ satisfies (12).
(a) If g is strictly increasing, then (10) can have at most one solution.
(b) If g is strictly convex, then (10) can have at most two solutions.

Proof: (a) If there were two solutions u_{1}, u_{2} of (10), then by Theorem 4.1 we may suppose that $u_{1}>u_{2}$ in Ω. Integrating the equations over Ω, this yields the contradiction $|\Omega| \bar{f}=\int_{\Omega} g\left(u_{1}\right) d x>$ $\int_{\Omega} g\left(u_{2}\right) d x=|\Omega| \bar{f} ;$ cf. the proof of Theorem 4.1. (b) If there were three solutions u_{1}, u_{2}, and u_{3} of (10), then due to Theorem 4.1 we can assume that $u_{1}>u_{2}>u_{3}$ in Ω. Thus if we set

$$
\alpha_{1}(x)=\frac{g\left(u_{1}(x)\right)-g\left(u_{2}(x)\right)}{u_{1}(x)-u_{2}(x)}, \quad \alpha_{2}(x)=\frac{g\left(u_{2}(x)\right)-g\left(u_{3}(x)\right)}{u_{2}(x)-u_{3}(x)}, \quad x \in \Omega,
$$

then $\alpha_{1}(x)>\alpha_{2}(x)$ a.e. by the strict convexity of g. In addition, from (11) and (12) we obtain

$$
\left\|\alpha_{1,+}\right\|_{L^{\sigma}(\Omega)}<S_{N}\left(2 \sigma^{*} ; \Omega\right) \quad \text { and } \quad\left\|\alpha_{2,+}\right\|_{L^{\sigma}(\Omega)}<S_{N}\left(2 \sigma^{*} ; \Omega\right)
$$

as in the proof of Theorem 4.1. Denoting $v_{1}=u_{1}-u_{2}$ and $v_{2}=u_{2}-u_{3}$, then v_{i} is a nontrivial positive solution to

$$
\begin{equation*}
\Delta v+\alpha_{i}(x) v=0 \text { in } \Omega, \quad \frac{d v}{d n}=0 \text { on } \partial \Omega . \tag{14}
\end{equation*}
$$

Thus $\mu=0$ is an eigenvalue of $L_{1}=\Delta+\alpha_{1}(x)$ with Neumann boundary conditions, and $v=v_{1}$ is a corresponding eigenfunction. Therefore, by the Fredholm alternative, the inhomogeneous problem $L_{1} v=h$ can have a solution v only if $\int_{\Omega} h v_{1} d x=0$. However, from (14) we obtain $L_{1} v_{2}=\left(\alpha_{2}(x)-\alpha_{1}(x)\right) v_{2}$, hence $\int_{\Omega}\left(\alpha_{2}(x)-\alpha_{1}(x)\right) v_{2} v_{1} d x<0$ leads to a contradiction.

4.2 Semilinear Dirichlet problems

In analogy to Section 4.1 we consider the semilinear Dirichlet problems

$$
\left\{\begin{align*}
\Delta u+\lambda_{1} u+g(u) & =f(x) & & \text { in } \Omega \tag{15}\\
u & =0 & & \text { on } \partial \Omega
\end{align*}\right.
$$

and we retain the notation introduced previously. The only difference is in the decomposition of f : here we use the splitting $f=\bar{f} \phi+\tilde{f}$ with $\bar{f} \in \mathbb{R}$ and $\int_{\Omega} \tilde{f} \phi d x=0$. The eigenfunction ϕ has been normalized so that $\|\phi\|_{L^{2}(\Omega)}=1$. The counterpart of Theorem 4.1 is

Theorem 4.4 Suppose $\sigma \in\left[\frac{n+1}{2}, \infty[\right.$ and $g: \mathbb{R} \rightarrow \mathbb{R}$ is locally Lipschitz continuous such that

$$
\begin{equation*}
\left(\frac{g\left(s_{1}\right)-g\left(s_{2}\right)}{s_{1}-s_{2}}\right)_{+}^{\sigma} \leq A\left(\frac{g\left(s_{1}\right)+g\left(s_{2}\right)}{2}\right)+B, \quad s_{1}, s_{2} \in \mathbb{R} \tag{16}
\end{equation*}
$$

for some constants $A, B \geq 0$. If

$$
\begin{equation*}
A \bar{f}+B \int_{\Omega} \phi d x<\left(1-\lambda_{1} \lambda_{2}^{-1}\right)^{\sigma} S_{H}\left(2 \sigma^{*}, 1 / 2 \sigma ; \Omega\right)^{\sigma} \tag{17}
\end{equation*}
$$

then different weak solutions of (15) cannot cross.
Proof: Let u_{1}, u_{2} be solutions of (15) with $u_{1} \neq u_{2}$. Then $u=u_{1}-u_{2}$ is a solution to

$$
\Delta u+\lambda_{1} u+\alpha(x) u=0 \text { in } \Omega, \quad u=0 \text { on } \partial \Omega,
$$

with

$$
\alpha(x)=\left\{\begin{array}{ccc}
\frac{g\left(u_{1}(x)\right)-g\left(u_{2}(x)\right)}{u_{1}(x)-u_{2}(x)} & : u_{1}(x) \neq u_{2}(x) \\
0 & : & u_{1}(x)=u_{2}(x)
\end{array} .\right.
$$

From (16) we deduce

$$
\begin{aligned}
\left\|\alpha_{+}\right\|_{L^{\sigma}(\Omega, \phi d x)}^{\sigma} & =\int_{\Omega}\left(\frac{g\left(u_{1}(x)\right)-g\left(u_{2}(x)\right)}{u_{1}(x)-u_{2}(x)}\right)_{+}^{\sigma} \phi(x) d x \\
& \leq A \int_{\Omega}\left(\frac{g\left(u_{1}(x)\right)+g\left(u_{2}(x)\right)}{2}\right) \phi(x) d x+B \int_{\Omega} \phi d x \\
& =\int_{\Omega}(A f+B) \phi d x=A \bar{f}+B \int_{\Omega} \phi d x
\end{aligned}
$$

where we used that $\int_{\Omega} g\left(u_{j}\right) \phi d x=\int_{\Omega} f \phi d x$ as a consequence of $-\Delta \phi=\lambda_{1} \phi$. Hence (17) in conjunction with Corollary 3.3 shows that u is of one sign in Ω.

Example 4.5 We consider $g(s)=|s|^{p}$ or $g(s)=\left(s_{+}\right)^{p}$ for $s \in \mathbb{R}$ and $p \in\left[1, \frac{n+1}{n-1}\right]$. Then we may choose $\sigma=p^{*}, A=p^{p^{*}}$, and $B=0$ in (16); see Example 4.2(a). Thus Theorem 4.4 can be used, if

$$
A \bar{f}+B \int_{\Omega} \phi d x<p^{-p^{*}}\left(1-\lambda_{1} \lambda_{2}^{-1}\right)^{p^{*}} S_{H}\left(2 p, 1 / 2 p^{*} ; \Omega\right)^{p^{*}}
$$

However, this condition may be not easy to verify for concrete problems. A recent result about the existence of solution for $g(s)=\left(s_{+}\right)^{p}$ can be found in [4].

Finally we mention that due to Theorem 4.4 upper bounds on the number of solutions to (15) can be derived in a fashion similar to Corollary 4.3.

Acknowledgment: The authors are indebted to B. Kawohl for pointing out ref. [6] to them. The financial support of DAAD and MECD is gratefully acknowledged.

References

[1] Ambrosetti A. \& Prodi G.: A Primer of Nonlinear Analysis, Cambridge University Press, Cambridge-New York 1994
[2] Buttazzo G., Giaquinta M. \& Hildebrandt S.: One-Dimensional Variational Problems, Oxford University Press, Oxford 1998
[3] Chavel I.: Eigenvalues in Riemannian Geometry, Academic Press, Orlando-New York 1984
[4] Cuesta M., De Figueiredo D. \& Srikanth P.N.: On a resonant-superlinear problem, Calc. Var. Partial Differential Equations 17, 221-233 (2003)
[5] De Figueiredo D.: Positive solutions of semilinear elliptic equations, in Differential Equations, São Paulo 1981, Eds. de Figueiredo D. \& Hönig C.S., Lecture Notes in Mathematics Vol. 957, Springer, Berlin-New York 1982, pp. 34-87
[6] Kawohl B.: Symmetry results for functions yielding best constants in Sobolev-type inequalities, Discrete Contin. Dynam. Systems 6, 683-690 (2000)
[7] Ortega R.: Nonexistence of radial solutions of two elliptic boundary value problems, Proc. Roy. Soc. Edinburgh 114A, 27-31 (1990)
[8] Ortega R. \& Zhang M.: Optimal bounds for bifurcation values of a superlinear periodic problem, preprint 2003
[9] Runst T.: A unified approach to solvability conditions for nonlinear second-order elliptic equations at resonance, Bull. London Math. Soc. 31, 385-414 (1999)
[10] Saloff-Coste L.: Aspects of Sobolev-Type Inequalities, Cambridge University Press, Cambridge 2002
[11] Smoller J.: Shock Waves and Reaction-Diffusion Equations, 2nd edition, Springer, BerlinNew York 1994
[12] Ward J.: Perturbations with some superlinear growth for a class of second order elliptic boundary value problems, Nonlinear Analysis TMA 6, 367-374 (1982)
[13] Zhang M. \& Li W.: A Lyapunov-type stability criterion using L^{α} norms, Proc. AMS 130, 3325-3333 (2002)

