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Abstract

We consider semilinear elliptic problems of the form ∆u+g(u) = f(x) with Neumann bound-
ary conditions or ∆u + λ1u + g(u) = f(x) with Dirichlet boundary conditions, and we derive
conditions on g and f under which an upper bound on the number of solutions can be ob-
tained.

1 Introduction

In this paper we consider semilinear elliptic problems of the form ∆u+ g(u) = f(x) or ∆u+λ1u+
g(u) = f(x) in a smooth and bounded domain Ω ⊂ Rn, assuming Neumann or Dirichlet boundary
conditions respectively on ∂Ω. Our aim is to derive conditions that enforce upper bounds on the
number of solutions to these equations. A key to such type of results is to verify that the associated
linear equations ∆u+α(x)u = 0 or ∆u+λ1u+α(x)u = 0 do not have sign-changing solutions, since
then (under certain assumptions on g and f) it follows that solutions of the nonlinear problems

cannot cross. In this context one has to define α(x) = g(u1(x))−g(u2(x))
u1(x)−u2(x)

for two solutions u1 and u2

of the nonlinear equations to make the connection between the nonlinear and the linear problems.
Therefore it is conceivable that conditions on the boundedness of g′ will be helpful, and this
corresponds to supposing that the L∞(Ω)-norm of α is not too large. Hypotheses of this kind have
been imposed in many papers, often in connection to Ambrosetti-Prodi type results; see [1] and
the references therein.

The new feature of the present work is the observation that an assumption on an Lσ(Ω)-norm
of α (more precisely, on its positive part) for certain σ <∞ will be sufficient to make the argument
go through. Translated back to g and f (for instance in the Neumann case, where our results are
more complete), this means that one can also allow for arbitrary g′ and ‘large’ right-hand sides f ,
provided its average f̄ = 1

|Ω|
∫
Ω
f dx is small enough; see Corollary 4.3 below. Recently there have

been some papers on periodic ODEs, where Lσ-bounds on the potential have been assumed in order
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to either study the stability of Hill’s equation [13] or to investigate the bifurcation values for certain
superlinear problems [8]. In this regard, our paper is a first attempt to transfer these results from
ODEs to PDEs. It should also be mentioned that there is a connection to the classical Rozenblum-
Lieb-Cwikel inequality (see e.g. [10]), since in essence everything comes down to showing that
N0(−α) ≤ 1 for the number N0(−α) of eigenvalues µ to −∆−α such that µ ≤ 0, i.e., the number
of non-negative eigenvalues to L = ∆ + α (for the Neumann boundary conditions). Hence the
Rozenblum-Lieb-Cwikel inequality suggests that it is sufficient to bound an Lσ(Ω)-norm of α+ in
order to obtain N0(−α) ≤ 1 as desired. However, in the particular case considered in this paper a
direct approach to this question can be taken which does not rely on such very general arguments.

The paper is organized as follows. In Section 2 we consider the linearized problem correspond-
ing to Neumann boundary conditions, whereas its Dirichlet counterpart is treated in Section 3.
Applications to nonlinear problems are given in Section 4.

2 Neumann boundary conditions

Let Ω ⊂ Rn be a bounded domain with smooth boundary ∂Ω. For α ∈ C(Ω) we consider Lu =
∆u + α(x)u together with the Neumann boundary condition du

dn
= 0 on ∂Ω. The eigenvalues of

L are denoted µ1 ≥ µ2 ≥ µ3 ≥ . . ., and the corresponding eigenfunctions are φ1, φ2, φ3, . . . These
eigenfunctions are understood as non-zero functions φi ∈ H1(Ω) such that

−
∫

Ω

∇φi · ∇u dx+

∫

Ω

α(x)φiu dx = µi

∫

Ω

φiu dx

for any test function u ∈ H1(Ω). The standard regularity theory implies that φi belongs to C(Ω).
We fix 




p ∈ [2,∞] if n = 1

p ∈ [2,∞[ if n = 2

p ∈ [2, 2n
n−2

] if n ≥ 3

, (1)

and introduce

SN(p; Ω) = inf
{
‖∇u‖2

L2(Ω) : u ∈ H1(Ω), ‖u‖Lp(Ω) = 1,

∫

Ω

u dx = 0
}
> 0, (2)

so that

SN(p; Ω)‖u‖2
Lp(Ω) ≤ ‖∇u‖2

L2(Ω) if u ∈ H1(Ω) and

∫

Ω

u dx = 0. (3)

The following lemma and its corollary play a key role for our results. Its proof is an adaptation
of arguments we found in [3].

Lemma 2.1 Suppose that 



σ ∈ [1,∞] if n = 1

σ ∈]1,∞] if n = 2

σ ∈ [n
2
,∞] if n ≥ 3

. (4)

If
‖α+‖Lσ(Ω) < SN(2σ∗; Ω),

then µ2 < 0. Here α+ = max{α, 0} denotes the positive part of α and 1/σ + 1/σ∗ = 1.
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Proof : Assume on the contrary that µ2 ≥ 0. For c1, c2 ∈ R we let ψ = c1φ1 + c2φ2 and apply the
definition of eigenfunction with u = ψ. Since φ1 and φ2 are orthogonal in L2(Ω) and in H1(Ω),
this yields

−
∫

Ω

|∇ψ|2 dx+

∫

Ω

α(x)ψ2 dx =

∫

Ω

(c1µ1φ1 + c2µ2φ2)(c1φ1 + c2φ2) dx

= c21µ1

∫

Ω

φ2
1 dx+ c22µ2

∫

Ω

φ2
2 dx ≥ 0,

due to µ1 ≥ µ2 ≥ 0. Next we choose c1, c2 ∈ R such that ψ 6= 0, but
∫
Ω
ψ dx = 0. Noting that (4)

for σ is equivalent to (1) for p = 2σ∗, (3) implies

SN(2σ∗; Ω)‖ψ‖2
L2σ∗ (Ω) ≤ ‖∇ψ‖2

L2(Ω) ≤
∫

Ω

α(x)ψ2 dx ≤
∫

Ω

α+(x)ψ2 dx

≤
( ∫

Ω

|α+|σ dx
)1/σ( ∫

Ω

|ψ|2σ∗ dx
)1/σ∗

= ‖α+‖Lσ(Ω)‖ψ‖2
L2σ∗ (Ω),

which leads to SN(2σ∗; Ω) ≤ ‖α+‖Lσ(Ω) and contradicts our assumption. 2

Corollary 2.2 If
‖α+‖Lσ(Ω) < SN(2σ∗; Ω) (5)

and if there exists a nontrivial solution u of

{
∆u+ α(x)u = 0 in Ω

du
dn

= 0 on ∂Ω
,

then u does not change sign.

Proof : If u 6= 0, then u were a sign-changing eigenfunction of L = ∆ + α(x) corresponding to
the eigenvalue µ = 0. But the first eigenfunction φ1 corresponding to µ1 does not change sign (see
[11, Thm. 11.10]), thus 0 ∈ {µ2, µ3, . . .}. Since µ2 ≥ µ3 ≥ . . ., this yields µ2 ≥ 0 in contradiction
to Lemma 2.1. 2

In the remaining part of this section we further discuss condition (5) and prove that it is optimal
in one dimension if σ ∈ [5/3,∞[.

Lemma 2.3 If I =]a, b[⊂ R and σ ∈ [5/3,∞[, then there exists α ∈ C(I) such that

(i) ‖α+‖Lσ(I) = SN(2σ∗; I), and

(ii) there is a nontrivial and sign-changing solution u of

{
u′′ + α(x)u = 0 in I

u′(a) = u′(b) = 0
. (6)

3



Proof : For bounded intervals ]a, b[⊂ R we define

SD(p; a, b) = inf
{
‖u′‖2

L2(]a,b[) : u ∈ H1
0 (]a, b[), ‖u‖Lp(]a,b[) = 1

}
,

and we also let SN(p; a, b) := SN(p; ]a, b[); recall (2). By using a shift, it suffices for the proof to
consider the case where I =]0, l[ for some l > 0. For p = 2σ∗ ∈]2, 5] define γ = SD(p; 0, l) > 0. Let
φ denote the unique solution of φ′′ + γ|φ|p−2φ = 0 with minimal period 2l such that A = φ(0) > 0
and φ′(0) = 0. This solution does exist, since the orbits of the ODE cover the (φ, φ′)-phase plane,
with a continuous and monotone minimal period function that approaches infinity at the origin
and zero at infinity. Then φ(−x) = φ(x) holds, since x 7→ φ(−x) satisfies the same initial value
problem as φ. Let x0 > 0 be the first zero of φ′, so that φ′(x) > 0 for x ∈] − x0, 0[, φ′(x) < 0
for x ∈]0, x0[, and φ′(±x0) = 0. As E = E(x) = 1

2
φ′(x)2 + γ

p
|φ(x)|p = γ

p
Ap is constant along the

orbit, it follows that |φ(±x0)| = A. From the definition of x0 we deduce that φ(±x0) < A and so
φ(±x0) = −A. The solutions φ(x) and −φ(x+ x0) satisfy the same initial conditions at x = 0 and
therefore they coincide. The identity φ(x) = −φ(x+ x0) implies that 2x0 is the minimal period of
φ and this leads to the identity φ(x) = −φ(x + l). In particular, φ(l/2) = −φ(−l/2) = −φ(l/2)
gives φ(−l/2) = φ(l/2) = 0. Next we define

uN(x) = φ(x), α(x) = γ|uN(x)|p−2 = γ|uN(x)|2(σ∗−1), and uD(x) = φ(x− l/2), x ∈ [0, l].

Then uN solves (6) on [0, l] and changes sign. Finally to verify (i), we observe that also u′′D +
γ|uD|p−2uD = 0, u > 0 on ]0, l[, and uD(0) = uD(l) = 0. Next let u ∈ H1

0 (]0, l[) be the positive
minimizer for SD(p; 0, l) = γ. Then u′′ + λ|u|p−2u = 0 for some Lagrange multiplier λ ∈ R, and
u(0) = u(l) = 0. Upon multiplication of the equation by u and integration over [0, l], we get

γ =
∫ l

0
(u′)2 dx = λ

∫ l

0
up dx = λ‖u‖p

Lp(]0,l[) = λ, and consequently uD = u by the uniqueness for

positive solutions of the Dirichlet problem. Therefore φ(x) = −φ(x− l) results in

‖α+‖Lσ(]0,l[) = γ
( ∫ l

0

|uN(x)|2σ(σ∗−1) dx
)1/σ

= γ‖uN‖p/σ
Lp(]0,l[) = γ‖uD‖p/σ

Lp(]0,l[)

= γ‖u‖p/σ
Lp(]0,l[) = γ = SD(p; 0, l) = SN(p; 0, l) = SN(2σ∗; ]0, l[),

where we also used the following Lemma 2.4. This completes the proof. 2

Lemma 2.4 For bounded intervals ]a, b[⊂ R we consider

SD(p; a, b) = inf
{
‖u′‖2

L2(]a,b[) : u ∈ H1
0 (]a, b[), ‖u‖Lp(]a,b[) = 1

}

and

SN(p; a, b) = inf
{
‖u′‖2

L2(]a,b[) : u ∈ H1(]a, b[), ‖u‖Lp(]a,b[) = 1,

∫ b

a

u dx = 0
}
,

see (2). Then
SD(p; a, b) = SN(p; a, b), p ∈]1, 5].

Proof : Passing from a function u(x) for x ∈]a, b[ to ũ(x) = u((b−a)x/2+(a+b)/2) for x ∈]−1, 1[,
it is found that SD and SN scale as

SD(p; a, b) = SD(p)
(b− a

2

)−(1+2/p)

and SN(p; a, b) = SN(p)
(b− a

2

)−(1+2/p)

,
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where SD(p) := SD(p;−1, 1) and SN(p) := SN(p;−1, 1), respectively. Therefore it suffices to verify
that

SD(p) = SN(p), p ∈]1, 5]. (7)

1.) Let

S̃N(p) = inf

{‖u′‖L2(]−1,1[)

‖u‖Lp(]−1,1[)

: u ∈ H1(]− 1, 1[),

∫ 1

−1

u dx = 0

}
> 0.

Due to [6, Thm. 1a)] there exists a minimizer ũ such that u is odd. Then u(x) = ‖ũ‖−1
Lp(]−1,1[)ũ(x)

yields an odd minimizer for SN(p). Next we introduce

v(x) =

{
u(x+ 1) : x ∈ [−1, 0]

−u(x− 1) : x ∈ [0, 1]
,

and note that v(−1) = u(0) = 0 = −u(0) = v(1), whence v ∈ H1
0 (] − 1, 1[). Also ‖v‖Lp(]−1,1[) =

‖u‖Lp(]−1,1[) = 1 is found, and consequently SD(p) ≤ ‖v′‖2
L2(]−1,1[) = ‖u′‖2

L2(]−1,1[) = SN(p). In other
words, SD(p) ≤ SN(p) holds for p ∈]1, 5].

2.) Conversely, by rearrangement there exists an even minimizer u for SD(p) such that u is radially
decreasing and u(−1) = u(1) = 0 = u′(0); see [6, Thm. 3a)] for a related result. Letting

v(x) =

{
u(x+ 1) : x ∈ [−1, 0]

−u(x− 1) : x ∈ [0, 1]
,

we get
∫ 1

−1
v dx =

∫ 1

0
u dx − ∫ 0

−1
u dx = 0 due to u(−x) = u(x), and moreover ‖v‖Lp(]−1,1[) =

‖u‖Lp(]−1,1[) = 1. Hence SN(p) ≤ ‖v′‖2
L2(]−1,1[) = ‖u′‖2

L2(]−1,1[) = SD(p). Accordingly, SN(p) ≤
SD(p) is satisfied for p ∈]1,∞[. 2

Remark 2.5 (a) From [6, Thm. 1b)] it is known that the Neumann minimizers for Ω =] − 1, 1[
are not odd for p > 6, so that (7) will not hold in this regime. The range p ∈]5, 6] seems to be
open.

(b) In view of [2, (5.40)] we have ‖u‖Lp(]0,1[) ≤ c(p)‖u′‖L2(]0,1[) for u ∈ H1
0 (]0, 1[), where

c(p) =
1

2

p(1 + 2/p)1/2

(1 + p/2)1/pβ(1/p, 1/2)

is the best constant, with β(x, y) = Γ(x)Γ(y)/Γ(x+ y) the beta function. Therefore SD(p; 0, 1) =
c(p)−2, and thus using Lemma 2.4 and provided that σ ∈ [5/3,∞[, we obtain the explicit expression

SN(2σ∗; I) = SD(2σ∗; I) = SD(2σ∗; 0, 1)|I|−(1+1/σ∗) = c(2σ∗)−2|I|−(1+1/σ∗)

=
β(1/2σ∗, 1/2)2

σ∗(1 + σ∗)1/σ
|I|−(1+1/σ∗)

for the relevant constant from (5) in the one-dimensional case.

(c) The paper [8] deals with periodic solutions, but some of its results are easily adapted to the
Neumann problem. In particular one can apply Proposition 2.1 in [8] to deduce that, for Ω =]a, b[,
the conclusion of Corollary 2.2 still holds if (5) is replaced by

‖α+‖Lσ(]a,b[) < SD(2σ∗; a, b).

Hence (5) is not optimal for Ω an interval and 2σ∗ > 6, which is equivalent to σ < 3/2. ♦
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It is an open problem to determine for which Ω ⊂ Rn condition (5) is optimal in dimensions
n ≥ 2. Certainly it seems reasonable to expect that the optimal values could only be determined
for special domains like balls or rectangles.

3 Dirichlet boundary conditions

In this section we consider the Dirichlet boundary condition u = 0 on ∂Ω. Let λ1 > 0 be the
corresponding first eigenvalue of −∆ with associated eigenfunction φ > 0; the other eigenvalues
are denoted λ1 < λ2 ≤ λ3 ≤ . . .. We recall the Hardy inequality

SH(p, τ ; Ω)
∥∥∥ u

φτ

∥∥∥
2

Lp(Ω)
≤ ‖∇u‖2

L2(Ω), u ∈ H1
0 (Ω), τ ∈ [0, 1],

1

p
≥ 1

2
− 1− τ

n
; (8)

see [5, p. 75]. This reference gives (8) for 1
p

= 1
2
− 1−τ

n
only, but since ‖ u

φτ ‖2
Lq(Ω) ≤ |Ω| 2(p−q)

pq ‖ u
φτ ‖2

Lp(Ω)

for q ≤ p, (8) also holds in the generality stated for a suitable constant SH(p, τ ; Ω) > 0. Further-
more, we will need the constant

S̃D(p; Ω) = inf
{
‖∇u‖2

L2(Ω) : u ∈ H1
0 (Ω), ‖u‖Lp(Ω) = 1,

∫

Ω

uφ dx = 0
}
> 0

for p = 2. In this case an expansion of u ∈ H1
0 (Ω) in terms of the eigenfunctions of −∆ shows that

S̃D(2; Ω) = λ2. Consequently,

λ2‖u‖2
L2(Ω) ≤ ‖∇u‖2

L2(Ω) if u ∈ H1
0 (Ω) and

∫

Ω

uφ dx = 0. (9)

The following lemma parallels Lemma 2.1. Here we write µ1 ≥ µ2 ≥ . . . for the eigenvalues of
Lu = ∆u+ λ1u+ α(x)u and φ1, φ2, . . . for the associated eigenfunctions.

Lemma 3.1 Suppose that σ ∈ [n+1
2
,∞]. If

‖α+‖Lσ(Ω, φdx) < (1− λ1λ
−1
2 )SH(2σ∗, 1/2σ; Ω),

then µ2 < 0.

Notice that the first eigenfunction φ of −∆ is acting as a weight in the Lσ-norm.

Proof : Let us assume that on the contrary µ2 ≥ 0. If we set τ = 1
2σ

and p = 2σ∗, then
τ ∈ [0, 1] and 1

p
≥ 1

2
− 1−τ

n
is found. Next we consider ψ = c1φ1 + c2φ2 for c1, c2 ∈ R to obtain

Lψ = c1µ1φ1 + c2µ2φ2. Since ψ ∈ H1
0 (Ω), this yields

−
∫

Ω

|∇ψ|2 dx+ λ1

∫

Ω

ψ2 dx+

∫

Ω

α(x)ψ2 dx ≥ c21µ1

∫

Ω

φ2
1 dx+ c22µ2

∫

Ω

φ2
2 dx ≥ 0,

in view of µ1 ≥ µ2 ≥ 0. If c1, c2 ∈ R are chosen such that ψ 6= 0 and
∫
Ω
ψφdx = 0, then (9) implies

∫

Ω

|∇ψ|2 dx ≤ λ1

∫

Ω

ψ2 dx+

∫

Ω

α(x)ψ2 dx ≤ λ1λ
−1
2

∫

Ω

|∇ψ|2 dx+

∫

Ω

α(x)ψ2 dx.
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Hence from (8) we get

(1− λ1λ
−1
2 )SH(2σ∗, 1/2σ; Ω)

∥∥∥ ψ

φ1/2σ

∥∥∥
2

L2σ∗ (Ω)

≤ (1− λ1λ
−1
2 )

∫

Ω

|∇ψ|2 dx ≤
∫

Ω

α(x)ψ2 dx ≤
∫

Ω

(α+(x)φ1/σ)(ψ2φ−1/σ) dx

≤
( ∫

Ω

|α+|σφ dx
)1/σ( ∫

Ω

|ψ|2σ∗φ−σ∗/σ dx
)1/σ∗

= ‖α+‖Lσ(Ω, φdx)

∥∥∥ ψ

φ1/2σ

∥∥∥
2

L2σ∗ (Ω)
.

Therefore the contradiction (1− λ1λ
−1
2 )SH(2σ∗, 1/2σ; Ω) ≤ ‖α+‖Lσ(Ω, φdx) is obtained. 2

Remark 3.2 A variant of Lemma 3.1 is as follows. If

‖(λ1 + α)+‖Lσ(Ω, φdx)
< SH(2σ∗, 1/2σ; Ω),

then µ2 < 0. The proof is analogous to that of Lemma 3.1. ♦

Corollary 3.3 If

‖α+‖Lσ(Ω, φdx) < (1− λ1λ
−1
2 )SH(2σ∗, 1/2σ; Ω) or ‖(λ1 + α)+‖Lσ(Ω, φdx)

< SH(2σ∗, 1/2σ; Ω),

and if there exists a nontrivial solution u of
{

∆u+ λ1u+ α(x)u = 0 in Ω

u = 0 on ∂Ω
,

then u does not change sign.

Proof : Any sign-changing solution u 6= 0 is an eigenfunction of L = ∆ + λ1 +α(x) corresponding
to the eigenvalue µ = 0. Since the first eigenfunction φ1 of L does not change sign, we get
0 ∈ {µ2, µ3, . . .} and therefore µ2 ≥ 0. But this is impossible due to Lemma 3.1 or Remark 3.2. 2

4 Some applications to nonlinear problems

4.1 Semilinear Neumann problems

For certain nonlinearities g we consider the semilinear Neumann problems
{

∆u+ g(u) = f(x) in Ω

du
dn

= 0 on ∂Ω
, (10)

with f ∈ L∞(Ω) and we will decompose f(x) = f̃(x)+ f̄ , where f̄ = 1
|Ω|

∫
Ω
f dx denotes the average

of f over Ω and
∫

Ω
f̃(x) dx = 0. The following result asserts that the solutions of (10) are ordered,

if we assume (11) and (12) below for g and f . Here we say that u is a solution of (10), provided
that u ∈ C(Ω) ∩H1(Ω) and u solves the equation in the variational sense.

7



Theorem 4.1 Suppose that σ < ∞ satisfies (4) and g : R → R is locally Lipschitz continuous
such that (g(s1)− g(s2)

s1 − s2

)σ

+
≤ A

(g(s1) + g(s2)

2

)
+B, s1, s2 ∈ R, (11)

for some constants A,B ≥ 0. If we denote f̄ = 1
|Ω|

∫
Ω
f dx and if

Af̄ +B <
1

|Ω| SN(2σ∗; Ω)σ, (12)

then different solutions of (10) cannot cross.

Proof : Let u1, u2 be solutions of (10) with u1 6= u2. We have to show that u(x) = u1(x)−u2(x) 6= 0
for x ∈ Ω. First we note that u is a solution of

∆u+ α(x)u = 0 in Ω,
du

dn
= 0 on ∂Ω,

where

α(x) =

{
g(u1(x))−g(u2(x))

u1(x)−u2(x)
: u1(x) 6= u2(x)

0 : u1(x) = u2(x)
.

Since g is locally Lipschitz continuous, α is bounded. In view of (11) we have

‖α+‖σ
Lσ(Ω) =

∫

Ω

(g(u1(x))− g(u2(x))

u1(x)− u2(x)

)σ

+
dx ≤ A

∫

Ω

(g(u1(x)) + g(u2(x))

2

)
dx+B|Ω|. (13)

On the other hand, if we employ the test function u = 1 in the definition of solution of the
Neumann problems associated to the equations ∆uj + g(uj) = f = f̃ + f̄ over Ω, it follows that∫
Ω
g(uj) dx = |Ω|f̄ . Hence (13) yields the bound

‖α+‖σ
Lσ(Ω) ≤ (Af̄ +B)|Ω|.

Therefore (12) in conjunction with Corollary 2.2 completes the proof of the theorem. 2

Note that (12) allows for right-hand sides f of ‘arbitrary size’, provided that B and the average
f̄ of f are small enough. Some examples of nonlinearities that are admissible in the sense of (11)
are given below. Here we say that a locally Lipschitz continuous function g : R → R satisfies the
condition C(σ;A,B), if (11) holds.

Example 4.2 (a) Let g(s) = |s|p or g(s) = (s+)p for s ∈ R and p ∈]1,∞[. Then g satisfies
C(p∗; pp∗ , 0). Hence Theorem 4.1 applies, provided that





p ∈ [1,∞] if n = 1

p ∈ [1,∞[ if n = 2

p ∈ [1, n
n−2

] if n ≥ 3

, and f̄ <
SN(2p; Ω)p∗

pp∗ |Ω| .

The existence of solution for this type of problems has been discussed by several authors. Some
references are [12, 7, 9].

(b) Let g(s) = es for s ∈ R. Then g satisfies C(1; 1, 0). Therefore in order to apply Theorem 4.1
we can take n = 1 (where σ = 1 is admissible) and require f̄ < 1

|Ω| SN(∞; Ω).

(c) Let g(s) = es + sin s for s ∈ R. Then g satisfies C(1; 1, 2). Here Theorem 4.1 can be used, if
n = 1 and f̄ + 2 < 1

|Ω| SN(∞; Ω). ♦
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See [8, Lemma 3.1]. The proof of (a) relies on the (sharp) inequality

∣∣∣ |s1|p − |s2|p
s1 − s2

∣∣∣
p∗

≤ pp∗
( |s1|p + |s2|p

2

)
, s1, s2 ∈ R, s1 6= s2,

for p ∈]1,∞[ and 1/p+ 1/p∗ = 1.
Theorem 4.1 has some direct consequences for the number of solutions to (10).

Corollary 4.3 Let g : R → R be locally Lipschitz continuous such that C(σ;A,B) holds. We
moreover assume that f ∈ L∞(Ω) satisfies (12).

(a) If g is strictly increasing, then (10) can have at most one solution.

(b) If g is strictly convex, then (10) can have at most two solutions.

Proof : (a) If there were two solutions u1, u2 of (10), then by Theorem 4.1 we may suppose that
u1 > u2 in Ω. Integrating the equations over Ω, this yields the contradiction |Ω|f̄ =

∫
Ω
g(u1) dx >∫

Ω
g(u2) dx = |Ω|f̄ ; cf. the proof of Theorem 4.1. (b) If there were three solutions u1, u2, and u3

of (10), then due to Theorem 4.1 we can assume that u1 > u2 > u3 in Ω. Thus if we set

α1(x) =
g(u1(x))− g(u2(x))

u1(x)− u2(x)
, α2(x) =

g(u2(x))− g(u3(x))

u2(x)− u3(x)
, x ∈ Ω,

then α1(x) > α2(x) a.e. by the strict convexity of g. In addition, from (11) and (12) we obtain

‖α1,+‖Lσ(Ω) < SN(2σ∗; Ω) and ‖α2,+‖Lσ(Ω) < SN(2σ∗; Ω)

as in the proof of Theorem 4.1. Denoting v1 = u1 − u2 and v2 = u2 − u3, then vi is a nontrivial
positive solution to

∆v + αi(x)v = 0 in Ω,
dv

dn
= 0 on ∂Ω. (14)

Thus µ = 0 is an eigenvalue of L1 = ∆ + α1(x) with Neumann boundary conditions, and v = v1

is a corresponding eigenfunction. Therefore, by the Fredholm alternative, the inhomogeneous
problem L1v = h can have a solution v only if

∫
Ω
hv1 dx = 0. However, from (14) we obtain

L1v2 = (α2(x)− α1(x))v2, hence
∫
Ω
(α2(x)− α1(x))v2v1 dx < 0 leads to a contradiction. 2

4.2 Semilinear Dirichlet problems

In analogy to Section 4.1 we consider the semilinear Dirichlet problems

{
∆u+ λ1u+ g(u) = f(x) in Ω

u = 0 on ∂Ω
, (15)

and we retain the notation introduced previously. The only difference is in the decomposition of
f : here we use the splitting f = fφ + f̃ with f ∈ R and

∫
Ω
f̃φ dx = 0. The eigenfunction φ has

been normalized so that ‖φ‖L2(Ω) = 1. The counterpart of Theorem 4.1 is
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Theorem 4.4 Suppose σ ∈ [n+1
2
,∞[ and g : R→ R is locally Lipschitz continuous such that

(g(s1)− g(s2)

s1 − s2

)σ

+
≤ A

(g(s1) + g(s2)

2

)
+B, s1, s2 ∈ R, (16)

for some constants A,B ≥ 0. If

Af +B

∫

Ω

φ dx < (1− λ1λ
−1
2 )

σ
SH(2σ∗, 1/2σ; Ω)σ, (17)

then different weak solutions of (15) cannot cross.

Proof : Let u1, u2 be solutions of (15) with u1 6= u2. Then u = u1 − u2 is a solution to

∆u+ λ1u+ α(x)u = 0 in Ω, u = 0 on ∂Ω,

with

α(x) =

{
g(u1(x))−g(u2(x))

u1(x)−u2(x)
: u1(x) 6= u2(x)

0 : u1(x) = u2(x)
.

From (16) we deduce

‖α+‖σ
Lσ(Ω, φdx) =

∫

Ω

(g(u1(x))− g(u2(x))

u1(x)− u2(x)

)σ

+
φ(x) dx

≤ A

∫

Ω

(g(u1(x)) + g(u2(x))

2

)
φ(x) dx+B

∫

Ω

φ dx

=

∫

Ω

(Af +B)φ dx = Af +B

∫

Ω

φ dx,

where we used that
∫

Ω
g(uj)φ dx =

∫
Ω
fφ dx as a consequence of −∆φ = λ1φ. Hence (17) in

conjunction with Corollary 3.3 shows that u is of one sign in Ω. 2

Example 4.5 We consider g(s) = |s|p or g(s) = (s+)p for s ∈ R and p ∈ [1, n+1
n−1

]. Then we may

choose σ = p∗, A = pp∗ , and B = 0 in (16); see Example 4.2(a). Thus Theorem 4.4 can be used, if

Af +B

∫

Ω

φ dx < p−p∗(1− λ1λ
−1
2 )

p∗
SH(2p, 1/2p∗; Ω)p∗ .

However, this condition may be not easy to verify for concrete problems. A recent result about
the existence of solution for g(s) = (s+)p can be found in [4]. ♦

Finally we mention that due to Theorem 4.4 upper bounds on the number of solutions to (15)
can be derived in a fashion similar to Corollary 4.3.
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