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Abstract

We consider semilinear elliptic problems of the form Au+ g(u) = f(z) with Neumann bound-
ary conditions or Au+ Aju+ g(u) = f(x) with Dirichlet boundary conditions, and we derive
conditions on g and f under which an upper bound on the number of solutions can be ob-
tained.

1 Introduction

In this paper we consider semilinear elliptic problems of the form Au+ g(u) = f(x) or Au+ Aju+
g(u) = f(z) in a smooth and bounded domain 2 C R™, assuming Neumann or Dirichlet boundary
conditions respectively on 0f2. Our aim is to derive conditions that enforce upper bounds on the
number of solutions to these equations. A key to such type of results is to verify that the associated
linear equations Au+a(z)u = 0 or Au+Au+a(z)u = 0 do not have sign-changing solutions, since
then (under certain assumptions on g and f) it follows that solutions of the nonlinear problems
cannot cross. In this context one has to define a(x) = %W for two solutions u; and us
of the nonlinear equations to make the connection between the nonlinear and the linear problems.
Therefore it is conceivable that conditions on the boundedness of ¢’ will be helpful, and this
corresponds to supposing that the L>°(Q)-norm of « is not too large. Hypotheses of this kind have
been imposed in many papers, often in connection to Ambrosetti-Prodi type results; see [1] and
the references therein.

The new feature of the present work is the observation that an assumption on an L7(§2)-norm
of a (more precisely, on its positive part) for certain o < oo will be sufficient to make the argument
go through. Translated back to g and f (for instance in the Neumann case, where our results are
more complete), this means that one can also allow for arbitrary ¢’ and ‘large’ right-hand sides f,
provided its average f = ﬁ Jo, f dz is small enough; see Corollary 4.3 below. Recently there have
been some papers on periodic ODEs, where L?-bounds on the potential have been assumed in order



to either study the stability of Hill’s equation [13] or to investigate the bifurcation values for certain
superlinear problems [8]. In this regard, our paper is a first attempt to transfer these results from
ODEs to PDEs. It should also be mentioned that there is a connection to the classical Rozenblum-
Lieb-Cwikel inequality (see e.g. [10]), since in essence everything comes down to showing that
No(—a) <1 for the number Ny(—a) of eigenvalues p to —A — « such that p < 0, i.e., the number
of non-negative eigenvalues to L = A + « (for the Neumann boundary conditions). Hence the
Rozenblum-Lieb-Cwikel inequality suggests that it is sufficient to bound an L7(€2)-norm of o in
order to obtain Ny(—«) < 1 as desired. However, in the particular case considered in this paper a
direct approach to this question can be taken which does not rely on such very general arguments.

The paper is organized as follows. In Section 2 we consider the linearized problem correspond-
ing to Neumann boundary conditions, whereas its Dirichlet counterpart is treated in Section 3.
Applications to nonlinear problems are given in Section 4.

2 Neumann boundary conditions

Let 2 C R™ be a bounded domain with smooth boundary 9€). For a € C(£2) we consider Lu =

Au + oz )u together with the Neumann boundary condition 2 = 0 on 2. The eigenvalues of

L are denoted py > ps > pz > ..., and the corresponding eigenfunctions are ¢q, ¢o, @3, ... These
eigenfunctions are understood as non-zero functions ¢; € H*(£2) such that

_/Qngi.Vudx—k/ﬂa(x)gbiudx:m/ﬂ(piudw

for any test function v € H'(Q). The standard regularity theory implies that ¢; belongs to C(€).

We fix
peE 2,00 if n=1

pe 2,00 if n=2 | (1)
pE[Q,%] if n>3

and introduce

Sw(p:2) = it {[[ VP u € HHQ), [l gy = 1, / wdr =0} >0, @)
Q
so that
Sn(p: Q)H“Hip(g) < ||VU||i2(Q) if weH'(Q) and /9de =0. (3)

The following lemma and its corollary play a key role for our results. Its proof is an adaptation
of arguments we found in [3].

Lemma 2.1 Suppose that
ogel,0] if n=1
o€]l,o0] if n=2. (4)
oc[f,00 if n>3

If
o |l o () < Sn(207:€2),

then pe < 0. Here ooy = max{ca,0} denotes the positive part of o and 1/o + 1/c* = 1.
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Proof: Assume on the contrary that ps > 0. For ¢1, ¢ € R we let ) = ¢1¢1 + co¢2 and apply the
definition of eigenfunction with u = 1. Since ¢; and ¢, are orthogonal in L*(Q2) and in H'(Q),
this yields

_/ |V¢|2dx+/a(x)w2dx = /(01/119251+C2M2¢2)(C1¢1+C2¢2)d$
Q Q Q

cfu1/¢%dx+c§,u2/¢§d:r20,
Q Q

due to puy > pe > 0. Next we choose ¢, o € R such that ¢ # 0, but fgwdaj = 0. Noting that (4)
for o is equivalent to (1) for p = 20*, (3) implies

SN(QU*;Q)HME%*(Q) < |’V¢||i2(9) S/Qoz(fc)wzdxé/m(x)w%x

Q
" 1/c - 1/c* 9
< ([aelan) (0P de) " = ol oo 91
Q Q
which leads to Sx(20™;Q) < |lat || 1o () and contradicts our assumption. O
Corollary 2.2 [If
el o) < Sn(207;€2) (5)

and if there exists a nontrivial solution u of

Y

du — () on 9N

dn

{ Au+a(z)u =0 inQ

then u does not change sign.

Proof: If u # 0, then u were a sign-changing eigenfunction of L = A + «a(x) corresponding to
the eigenvalue = 0. But the first eigenfunction ¢; corresponding to 11 does not change sign (see
[11, Thm. 11.10]), thus 0 € {uo, p3,...}. Since g > uz > ..., this yields ps > 0 in contradiction
to Lemma 2.1. a

In the remaining part of this section we further discuss condition (5) and prove that it is optimal
in one dimension if o € [5/3, c0.

Lemma 2.3 If I =]a,b[C R and o € [5/3, oc[, then there exists a € C(I) such that

(i) H@+HLU(1) = Sn(20% 1), and

(ii) there is a nontrivial and sign-changing solution u of

{ W+ ax)u=0 inl
uw'(a) =u'(b) =0 .



Proof: For bounded intervals |a, b|C R we define

. 2
SD(p; a, b) = inf {HU,HLQ(]GJ)D ‘u € Hg(]% bD, ||u||Lp(]a,b[) = 1}’

and we also let Sy(p;a,b) := Sy(p;|a, b]); recall (2). By using a shift, it suffices for the proof to
consider the case where I =|0, ([ for some [ > 0. For p = 20* €]2, 5] deﬁne v = Sp(p;0,1) > 0. Let
¢ denote the unique solution of ¢” + |¢|P~2¢ = 0 with minimal period 2I such that A = ¢(0) >
and ¢'(0) = 0. This solution does exist, since the orbits of the ODE cover the (¢, ¢’)-phase plane,
with a continuous and monotone minimal period function that approaches infinity at the origin
and zero at infinity. Then ¢(—z) = ¢(x) holds, since z — ¢(—=x) satisfies the same initial value
problem as ¢. Let xg > 0 be the first zero of ¢, so that ¢'(x) > 0 for x €] — x¢,0], ¢'(z) < 0
for z €0, zo[, and ¢'(+x9) = 0. As E = E(z) = 3¢/(2)? + L|g(z)[P = 1AP is constant along the
orbit, it follows that |¢(£x)| = A. From the definition of xy we deduce that ¢(+zo) < A and so
o(£xo) = —A. The solutions ¢(z) and —¢(z + z) satisfy the same initial conditions at z = 0 and
therefore they coincide. The identity ¢(x) = —¢(x + x¢) implies that 2z is the minimal period of
¢ and this leads to the identity ¢(z) = —¢(z + ). In particular, ¢(1/2) = —p(—1/2) = —¢(1/2)
gives ¢(—1/2) = ¢(1/2) = 0. Next we define

un(x) = 6(z),  a(r) =ylun (@) = uy (@)Y, and up(z) = ¢z —1/2), = €[0,1).

Then uy solves (6) on [0,{] and changes sign. Finally to verify (i), we observe that also u7, +
Yup|P?up = 0, u > 0 on ]0,1[, and up(0) = up(l) = 0. Next let u € H}(]0,I[) be the positive
minimizer for Sp(p;0,1) = v. Then u” + A|u[P"2u = 0 for some Lagrange multiplier A € R, and
u(0) = u(l) = 0. Upon multiplication of the equation by u and integration over [0,[], we get
v = fo dox = )‘fo uP dx = Mul?, o) = A, and consequently up = u by the uniqueness for
positive solutlons of the Dirichlet problem Therefore ¢(z) = —¢p(x — ) results in

e ll ooy = /Iu |2”_”dx> = Yun P00y = unlZegou
= Al =7 = Sp(p:0,1) = Sx(p; 0,1) = Sx (2010, 1)),

where we also used the following Lemma 2.4. This completes the proof. O

Lemma 2.4 For bounded intervals |a,b[C R we consider

. 2
SD(p;a,b) = inf {||u/||L2(]a,b[) Tu e H(%(}Chb[)? ||u||Lp(}a7b[) = 1}
and b
. 2
Sn(p;a,b) = inf {HUIHLQ(]a,bD ru € H(Ja, b), [lull pogapy = 1 / uwdr = O}’

see (2). Then
Sp(p;a,b) = Sn(p;a,b), p €]L,5].

Proof: Passing from a function u(z) for x €|a, b[ to a(x) = u((b—a)x/2+ (a+0b)/2) for x €] —1,1],
it is found that Sp and Sy scale as

Y

bh— a) (1+2/p)

b — a\ —(1+2/p)
2 )

and SN(p;a,b):SN(p)< 5

Sp(p;a,b) = SD(Z?)(
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where Sp(p) := Sp(p; —1,1) and Sy(p) := Sn(p; —1,1), respectively. Therefore it suffices to verify
that

Sp(p) = Sn(p), p €L, 5] (7)
1.) Let
~ . Hu/HLQ(]fl,l[) 1 !
Sn(p) =inf{ —————=:ue H (] - 1,1]), udr =07 > 0.
HU||LP(]—1,1[) ~1
Due to [6, Thm. 1a)] there exists a minimizer @ such that u is odd. Then u(z) = Hﬂ||;,}(]_1’1[)ﬂ(x)

yields an odd minimizer for Sy(p). Next we introduce

wx+1) : ze[-1,0]

v(z) =

—u(z—1) : x€][0,1]
and note that v(—1) = u(0) = 0 = —u(0) = v(1), when;:e v e H] —21, 1[). Also [[v|l o1 =
[ull 11,1 = 1 is found, and consequently Sp(p) < [[V/[|72q_11p = 14/ I72q-11p = Sn(p). In other
words, Sp(p) < Sn(p) holds for p €]1,5].
2.) Conversely, by rearrangement there exists an even minimizer u for Sp(p) such that u is radially
decreasing and u(—1) = u(1) = 0 = u/(0); see [6, Thm. 3a)] for a related result. Letting

o )_{ wx+1) : ze[-1,0]

| —ul@—1) : ze0,1]

bl

)

we get f_llvdm = foluda: - ffludm = 0 due to u(—z) = u(z), and moreover |[v|[;,q_1 ) =

2 2 .
HUHLP(]—I,I[) = 1. Hence Sy(p) < ||U,||L2(]—1,1[) = ||UIHL2(}—1,1[) = Sp(p). Accordingly, Sn(p) <
Sp(p) is satisfied for p €]1, co. O

Remark 2.5 (a) From [6, Thm. 1b)] it is known that the Neumann minimizers for Q =] — 1,1]
are not odd for p > 6, so that (7) will not hold in this regime. The range p €]5, 6] seems to be
open.

(b) In view of [2, (5.40)] we have [|ul[ 501y < c®)[[t']| 1201 for v € H{(]0,1]), where

o)=L PO+ 2/p)'/?

clp) ==

P2 /2 5(1/p,1/2)

is the best constant, with §(z,y) = I'(2)['(y)/I'(z + y) the beta function. Therefore Sp(p;0,1) =

c(p)~2, and thus using Lemma 2.4 and provided that o € [5/3, oo[, we obtain the explicit expression
SN0 1) = Sp(20%: 1) = Sp(20°50, DI = e(a0") 21+

ﬁ(l/QJ*v 1/2)2 |I|7(1+1/a*)
0-*(1 +O-*)1/0'

for the relevant constant from (5) in the one-dimensional case.

(c) The paper [8] deals with periodic solutions, but some of its results are easily adapted to the
Neumann problem. In particular one can apply Proposition 2.1 in [8] to deduce that, for Q =|a, b],
the conclusion of Corollary 2.2 still holds if (5) is replaced by

levt [l Lo gapp < Sp(20750,b).

Hence (5) is not optimal for 2 an interval and 20* > 6, which is equivalent to o < 3/2. &
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It is an open problem to determine for which {2 C R" condition (5) is optimal in dimensions
n > 2. Certainly it seems reasonable to expect that the optimal values could only be determined
for special domains like balls or rectangles.

3 Dirichlet boundary conditions

In this section we consider the Dirichlet boundary condition v = 0 on 9€). Let A\; > 0 be the
corresponding first eigenvalue of —A with associated eigenfunction ¢ > 0; the other eigenvalues
are denoted \; < Ay < A3 < .... We recall the Hardy inequality

u 112

¢T

Su(p,7; Q) ‘

2
Le(@) < |Vullzz@), ue€ Hy(Q), 7elo,1],

(r—q)
_ 1—77 only, but since ”#H%q(g) < \Q‘Qiqq

2 137120 0

for ¢ < p, (8) also holds in the generality stated for a suitable constant Sy (p, ;) > 0. Further-
more, we will need the constant

see [, p. 75]. This reference gives (8) for é =

Sp(p;€2) = inf {“VUHiQ(Q) tu € Hy(Q), ||u||LP(Q) =1, /Q?@dfﬂ = 0} >0

for p = 2. In this case an expansion of u € H} () in terms of the eigenfunctions of —A shows that
Sp(2;92) = Ay. Consequently,

/\2Hu||i2(m < ||Vu||ig(9) if uwe Hy(Q) and /ngbdm = 0. 9)

The following lemma parallels Lemma 2.1. Here we write g > uo > ... for the eigenvalues of
Lu = Au+ Mu+ a(x)u and ¢, ¢g, . .. for the associated eigenfunctions.

Lemma 3.1 Suppose that o € [*3t, oc]. If
o]l Lo, gany < (1= MAZY)SH (20", 1/203 ),
then po < 0.

Notice that the first eigenfunction ¢ of —A is acting as a weight in the L7-norm.

Proof: Let us assume that on the contrary po, > 0. If we set 7 = % and p = 20*, then

T € [0,1] and 117 > % - I_TT is found. Next we consider ¥ = ¢1¢; + cago for ¢1,c3 € R to obtain
L = cipd1 + caprape. Since o € HJ (), this yields

—/ (V| do + A\ / Y dr + / a(x)*dr > e / ¢} dr + cg/@/ ¢3dx >0,
) Q Q Q Q
in view of yi; > i > 0. If ¢1, ¢; € R are chosen such that ¢ # 0 and [, ¢ dx = 0, then (9) implies

2 2 2 —1 2 2
/Q|V1M dazg)\l/gw d:l:—l—/ﬂa(:c)w dr < M, /Q|V¢] d:l:—l—/ﬂa(:c)w dx.



Hence from (8) we get

2

¥

(1- )\1)\2*1)SH(20*, 1/20;Q) H pL/20

LQO'* (Q)

< (1=a") [ Vifde < [ aletde < [ (au@)ee)wie ) do

< - d 1/0’ 20* —o'*/o' d 1/0’* w 2
< ([1areods) ([ 10Pr o an)" = loslon i | 55 o o
Therefore the contradiction (1 — A\ A;1) Sy (20%,1/20;9) < ] Lo (@, gar) 18 Obtained. O
Remark 3.2 A variant of Lemma 3.1 is as follows. If

Il(A1 + oz)+||LU(Q,¢dx) < Su(20*,1/20;Q),
then puy < 0. The proof is analogous to that of Lemma 3.1. %

Corollary 3.3 If

]l oo, gawy < (1 — MA)SH(20%,1/205Q) o [|[(M + ), | ) < Su(20%,1/20;Q),

Lo (Q, ¢dw

and if there exists a nontrivial solution u of

Y

Au+ Mu+a(z)u =0 inQ
u = 0 on 09

then u does not change sign.

Proof: Any sign-changing solution u # 0 is an eigenfunction of L = A + A\; + a(z) corresponding
to the eigenvalue g = 0. Since the first eigenfunction ¢; of L does not change sign, we get
0 € {po, 13, ...} and therefore ps > 0. But this is impossible due to Lemma 3.1 or Remark 3.2. O

4 Some applications to nonlinear problems

4.1 Semilinear Neumann problems
For certain nonlinearities g we consider the semilinear Neumann problems

{Au—l—g(u) = f(x) inQ

Z—Z:O on 90

(10)

with f € L®(Q) and we will decompose f(x) = f(z)+ f, where f = ﬁ Jq, f dx denotes the average

of f over Q and |, f(x)dz = 0. The following result asserts that the solutions of (10) are ordered,
if we assume (11) and (12) below for g and f. Here we say that u is a solution of (10), provided
that v € C'(Q) N H'(Q) and u solves the equation in the variational sense.
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Theorem 4.1 Suppose that o < oo satisfies (4) and g : R — R is locally Lipschitz continuous

such that () () (1) ()
9(51) — g(82)\? g(s1) + g(s2
JA\NTY JINTL) < JA\7Y L JNTL)
< 51— 5 >+_A< 9 )"—B, Sl,SQER, (11)
for some constants A, B > 0. If we denote f = ‘51' fQ fdx and if
- 1
Af+B < @SN(2O'*;Q)U, (12)

then different solutions of (10) cannot cross.

Proof: Let uy, us be solutions of (10) with u; # us. We have to show that u(z) = uy (z)—us(z) # 0
for x € Q). First we note that u is a solution of

d
Au+ a(z)u =0 in £, %zOon o090,

where

alx) =

daChglale) .y (a) £ up(e)
0 soup(x) = ug(x)

Since g is locally Lipschitz continuous, « is bounded. In view of (11) we have

||a+||(LT,U(Q) = / (g(ul(x)) — g(uQ(x))>idx < A/ (g(ul(x)) + g(w(x))) dx + BIQ|. (13)
Q Q

uy(x) — ug(x) 2

On the other hand, if we employ the test function v = 1 in the definition of solution of the
Neumann problems associated to the equations Au; + g(u;) = f = f + f over €, it follows that
Jo 9(u;) dz = |Q|f. Hence (13) yields the bound

[ 7o) < (Af + B)|Q].
Therefore (12) in conjunction with Corollary 2.2 completes the proof of the theorem. O

_ Note that (12) allows for right-hand sides f of ‘arbitrary size’, provided that B and the average
f of f are small enough. Some examples of nonlinearities that are admissible in the sense of (11)
are given below. Here we say that a locally Lipschitz continuous function g : R — R satisfies the

condition C(c; A, B), if (11) holds.

Example 4.2 (a) Let g(s) = [s|? or g(s) = (s4)? for s € R and p €]1,00[. Then g satisfies
C(p*;p”",0). Hence Theorem 4.1 applies, provided that

SN(QP; Q)p*

pell,oo] if n=1
7OO *
P

pell,oo] if n=2, and f<
pell,-5] if n>3

The existence of solution for this type of problems has been discussed by several authors. Some
references are [12, 7, 9].

(b) Let g(s) = e® for s € R. Then g satisfies C(1;1,0). Therefore in order to apply Theorem 4.1
we can take n = 1 (where o = 1 is admissible) and require f < ﬁ Sn(00; Q).

(c) Let g(s) = e® +sins for s € R. Then g satisfies C(1;1,2). Here Theorem 4.1 can be used, if
nzlandf+2<‘ﬁl|SN(oo;Q). &



See [8, Lemma 3.1]. The proof of (a) relies on the (sharp) inequality

ot (ool

2

>, 51,852 € R, 51 # 59,

51— 82

for p €]1,00[ and 1/p+1/p* = 1.
Theorem 4.1 has some direct consequences for the number of solutions to (10).

Corollary 4.3 Let g : R — R be locally Lipschitz continuous such that C(c; A, B) holds. We
moreover assume that f € L>(Q) satisfies (12).

(a) If g is strictly increasing, then (10) can have at most one solution.

(b) If g is strictly convex, then (10) can have at most two solutions.

Proof: (a) If there were two solutions g, us of (10), then by Theorem 4.1 we may suppose that
uy > uy in €. Integrating the equations over €2, this yields the contradiction |(| f=[fo9(w)dz >
Jq 9(uz) dz = |Q|f; cf. the proof of Theorem 4.1. (b) If there were three solutions uy, us, and ug
of (10), then due to Theorem 4.1 we can assume that u; > ug > ug in . Thus if we set

g(ui(z)) — g(uz(z)) g(us(z)) — g(us(w))
uy(z) —ug(x) 7 ug(z) —uz(x)

x €,

ap(x) =

as(x) =
then a;(z) > as(z) a.e. by the strict convexity of g. In addition, from (11) and (12) we obtain
il ooy < Sn(20%€0)  and [zl 1o (g) < Sn(2075€2)

as in the proof of Theorem 4.1. Denoting v; = u; — us and vy = us — ug, then v; is a nontrivial
positive solution to

Av + a(x)v =0 in Q, Z—U =0 on OS2 (14)
n

Thus p = 0 is an eigenvalue of L; = A + a;(z) with Neumann boundary conditions, and v = v;
is a corresponding eigenfunction. Therefore, by the Fredholm alternative, the inhomogeneous
problem Lijv = h can have a solution v only if [, hvydz = 0. However, from (14) we obtain
Livy = (aa(x) — ou(2))vg, hence [ (aa(x) — oy (z))vovy do < 0 leads to a contradiction. O

4.2 Semilinear Dirichlet problems

In analogy to Section 4.1 we consider the semilinear Dirichlet problems

(15)

Au+Mu+g(u) = f(x) inQ
u =0 on 0

and we retain the notation introduced previously. The only difference is in the decomposition of
f: here we use the splitting f = f¢ + f with f € R and fQ fodxr = 0. The eigenfunction ¢ has
been normalized so that [|¢[[;2q) = 1. The counterpart of Theorem 4.1 is



Theorem 4.4 Suppose o € [”TH, oo and g : R — R is locally Lipschitz continuous such that

for some constants A, B > 0. If
AF+ B/ dz < (1= MA;Y) Su(20%, 1/20: Q)° (17)
Q

then different weak solutions of (15) cannot cross.

Proof: Let uy, us be solutions of (15) with u; # ug. Then u = u; — us is a solution to
Au+ Mu+a(x)u=01in Q, u =0 on 09,

with

alz) =

sl sy (2) # ua(a)
0 soup(x) = ug(x)

From (16) we deduce

||OZ+||ZG(Q,¢dx) = /Q(g(ml(x);_g(UQ(x))>i¢(I)dx

ur(x) — ug(x)

< A [ (DD ) o [ i

2
= /(Af+3)¢dx:A7+B/¢dx,
Q Q

where we used that [, g(u;)¢de = [, fodx as a consequence of —A¢ = A\¢. Hence (17) in
conjunction with Corollary 3.3 shows that w is of one sign in 2. a

Example 4.5 We consider g(s) = |s|? or g(s) = (s.)? for s € R and p € [1, 2}]. Then we may

’ n—1

choose o = p*, A =pP", and B = 0 in (16); see Example 4.2(a). Thus Theorem 4.4 can be used, if
Af + B/ pdr < p (1= MM Su(2p,1/2p" Q)
Q

However, this condition may be not easy to verify for concrete problems. A recent result about
the existence of solution for ¢g(s) = (s4 )P can be found in [4]. O

Finally we mention that due to Theorem 4.4 upper bounds on the number of solutions to (15)
can be derived in a fashion similar to Corollary 4.3.
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