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Abstract
The problem of existence of ground states in higher order dispersion managed NLS equa-

tion is considered. The ground states are stationary solutions to dispersive equations with
nonlocal nonlinearity which arise as averaging approximations in the context of strong dis-
persion management in optical communications. The main result of this note states that
the averaged equation possesses ground state solutions in the practically and conceptually
important case of the vanishing residual dispersions.

1 Introduction

Over the past ten years, certain nonlinear dispersive equations with nonlocal nonlinearity have
arisen in the context of optical communications and have become the subject of intense numerical
and analytical study [5, 1, 11, 21, 8, 9, 12]. In general, these equations are of the form

ut = −i∇H(u) (1)

where

H(u) =
α

2

∫

R
|ux|2 − 1

4

∫ 1

0

∫

R
|T (t)u|4dxdt, (2)

∇ denotes the Frechét derivative of the Hamiltonian H, and T denotes the solution operator for
the linear dispersive equation

iut =
M∑

m=2

βm(t)(−i∂x)
mu, (3)
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where the coefficients βm(t) are piecewise constant and periodic with zero mean.
Such equations arise naturally as averaging approximations to the nonlinear dispersive equa-

tions that model pulse propagation in dispersion managed (DM) optical fibers [5, 1, 11], and a
question of great interest has been the existence and stability of solitary wave solutions. The first
work in this direction was done for the case M = 2, which in optical communications is known as
conventional dispersion management. It was shown that when α > 0, the Hamiltonian H possesses
a ground state in H1 = H1(R;C) [21, 8]. A natural extension of this work was to study the vari-
ational problem with α = 0. This problem, while interesting from an analytical point of view, is
also important physically, as certain physical effects that are destabilizing to pulse propagation in
an optical fiber are minimized in the regime α ≈ 0. [18, 20]. Due to Strichartz-type estimates for
solutions of linear dispersive equations [7], the corresponding Hamiltonian is bounded from below
in L2 = L2(R;C). However, loss of compactness of a minimizing sequence could have become a
problem, due to potential loss of control on derivatives. Nevertheless, this variational problem was
analyzed successfully in [9], where it was shown that vanishing and splitting of the minimizing
sequence (in the language of concentration compactness [10]) is not possible in both Fourier and
‘physical’ space. Hence the problem is essentially localized in Fourier and in physical space (up to
L2-errors which are controlled), and therefore one is back to the classical situation where Sobolev’s
embedding theorem can be applied. As a result, the minimizing sequence converged to a ground
state, strongly in L2.

Recent advances in manufacture techniques have made it possible to extend dispersion man-
agement to higher order dispersion, and for such a system the appropriate averaged equation is
again of the form in (1), (2), (3), but with M = 3. Analysis of the type in [21] was carried out
for the case α > 0, yielding ground states in H1 = H1(R;C) [12]. Two natural questions come to
mind when considering this case. First, can one extend the analysis for α = 0 to this equation,
and second, is it possible to further extend the analysis to cases of arbitrarily high order dispersion
management (M > 3)?

In this paper, we will show that the answer to these questions is affirmative, using the method
in [9]. We will also use a technical simplification of the method from [9], relying on a certain
multilinear estimate, which was suggested by an anonymous referee of that paper. We will discuss
compensation of both even and odd orders without lower order terms, and furthermore mixed
cases up to order three. The linear part of the equation has the general form (3). To simplify the
exposition, we will assume that all βm are periodic step-functions, more precisely that βm(t− 1) =
βm(t + 1), βm(t) = −bm 6= 0 for t ∈ (−1, 0), and βm(t) = bm for t ∈ (0, 1) hold. Considering
the more general case with βm being general piecewise constant mean-zero periodic functions does
not create any new difficulties, but makes the derivations more cumbersome. In this (symmetric)
case and with zero average dispersion, α = 0, the Hamiltonian functional of the averaged equation
reduces to

H(u) = −1

2

∫ 1

0

∫

R
|T (t)u|4 dxdt, (4)

where we have used that the integral over the period (−1, 1) is equal to the double value of the
integral over (0, 1). In (4) we denoted by T (t) the solution operator of the general equation

iut =
M∑

m=2

bm(−i∂x)
mu, (5)

which is the above linear equation (3) for t ∈ (0, 1), and therefore with constant coefficients.
Furthermore, Tm(t) stands for the solution operator of the linear equation with the single dispersion
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term ∂m
x , i.e., u(t, x) = (Tm(t)u0)(x) solves

iut = (−i∂x)
mu (6)

with initial data u(0, x) = u0(x).
Our first main result concerns the pure higher order dispersion case.

Theorem 1.1 Let m ≥ 3 and Tm(t) be defined via (6). Then the minimization problem

P1,m = inf
{

ϕm(u) : u ∈ L2,

∫

R
|u|2 dx = 1

}
< 0, (7)

with the functional ϕm given by

ϕm(u) = −
∫ 1

0

∫

R
|(Tm(t)u)(x)|4 dxdt, u ∈ L2, (8)

possesses a solution u ∈ L2.

Note that the functional H from (4) has been renamed to ϕm to allow for an easier comparison
with [9], which our strategy of proof follows; we will also use the simplification mentioned above.
The main new technical problem compared to [9] results from the fact that in the case m ≥ 3
the functional ϕm is no longer invariant under rotations, i.e., in general ϕm(eiaxu) 6= ϕm(u) for
a ∈ R. Stated differently, ϕm is not invariant under translations of the Fourier transform. The
latter property was important in [9], since it allowed us to re-center those minimal sequences which
are localized in Fourier space, but whose ‘centers’ move off to infinity. Due to the lack of invariance
of the functional ϕm a new argument had to be found. It turned out, however, that the loss of
invariance was beneficial for the construction of a minimizing sequence, as the sequences whose
‘centers‘ move to infinity could be shown to be not minimizing, see Lemma 2.5 below.

We prove the theorem in Section 2 by taking any minimizing sequence and constructing a
strongly converging subsequence (up to translation of the original sequence). The first step is to
show, in Section 2.1, that there is a subsequence which is tight in the Fourier domain. Then we
will verify in Section 2.2 that there is yet another subsequence which (up to translation) is also
tight in physical space, from which the strong convergence in L2 follows.

For the mixed cases up to third order we could obtain a similar result, which in particular
yields the existence of a ground state in the motivating problem that was described above.

Theorem 1.2 Let T (t) denote the solution operator of the equation

iut = −b2 ∂2
xu + ib3 ∂3

xu, where b2, b3 6= 0.

Then the minimization problem

P1 = inf
{

ϕ(u) : u ∈ L2,

∫

R
|u|2 dx = 1

}
< 0,

with the functional ϕ given by

ϕ(u) = −
∫ 1

0

∫

R
|(T (t)u)(x)|4 dxdt, u ∈ L2, (9)

has a solution u ∈ L2.

Remark 1.3 Note, that the case b3 = 0, b2 6= 0 has been treated in [9] and the case b3 6= 0, b2 = 0
follows from Theorem 1.1.

Up to some technical differences the proof of Theorem 1.2 naturally is quite similar to the proof
of Theorem 1.1; it will be carried out in Section 3.
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2 Proof of Theorem 1.1

2.1 Tightness of minimizing sequences in the Fourier domain

In this section we establish the tightness of every minimizing sequence in Fourier space, up to
selection of a subsequence; see (23) in Corollary 2.8 below for the notion of tightness we are using.

From (6) we obtain the representation

(Tm(t)u)(x) =

∫

R
ei(xξ−tξm)û(ξ) dξ, (10)

where here and henceforth for simplicity all 2π-factors in the Fourier transforms are dropped, so
that we have û(ξ) =

∫
R e−iξxu(x) dx. A basic related Strichartz-type estimate is

‖Tm(·)u‖
L

2(m+1)
tx (R×R)

≤ C‖u‖L2 , u ∈ L2, (11)

see [7] or [19, 5.19(b), p. 369] with n = 1, φ(ξ) = −ξm, k = m, q = 2(m + 2), and α = 0.
The following lemma states a certain refined multilinear estimate related to Tm. The usefulness
of such type of estimates was explained to the first author by an anonymous referee of [9], who
also outlined its application (see Lemmas 2.3 and 2.4 below); this help is gratefully acknowledged.
In spirit, Lemma 2.1 is similar to e.g. [16] or [3, Lemma 2.2], where refinements of Strichartz’
estimates are discussed. We remark that we did not try to optimize the decay power q(m) in (12);
for our purposes it is sufficient to obtain some q(m) > 0.

Lemma 2.1 There exists a constant C > 0 such that

‖(Tm(·)u)(Tm(·)v)‖L2
tx([0,1]×R) ≤ Cdist(I, J)−q(m) ‖u‖L2‖v‖L2 (12)

for all functions u, v ∈ L2 such that û and v̂ are supported in disjoint intervals I ⊂ R and J ⊂ R,
respectively, which are at positive distance. For m ≥ 2 the function q(m) > 0 is defined by

q(m) =

{
m−1

2
: m is even

1
6

: m is odd
. (13)

Proof : Without loss of generality we may assume that I lies to the left of J . Denoting a = sup I
and b = inf J thus dist(I, J) = b− a > 0. Writing u(t) = Tm(t)u and v(t) = Tm(t)v we have from
Parseval’s identity

‖(Tm(·)u)(Tm(·)v)‖2L2
tx([0,1]×R) =

∫

R

∫

R
|u(t, x)|2|v(t, x)|21[0,1](t) dxdt =

∫

R

∫

R
Φ(τ, ξ)G(τ, ξ) dξdτ,

with
Φ = F(uv), G = F(ūv̄1[0,1](t)),

and F denoting the space-time Fourier transform. In view of (10) thus

Φ(τ, ξ) =

∫

R

∫

R
e−i(τt+ξx)u(t, x)v(t, x) dxdt

=

∫

R

∫

R
û(ξ1)v̂(ξ2)δ0(τ + ξm

1 + ξm
2 )δ0(ξ − ξ1 − ξ2) dξ1dξ2.
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Consequently, the representation

‖(Tm(·)u)(Tm(·)v)‖2L2
tx([0,1]×R) =

∫

R

∫

R
û(ξ1)v̂(ξ2)G(−ξm

1 − ξm
2 , ξ1 + ξ2) dξ1dξ2 (14)

is obtained. Now we consider separately the two different cases.

Case 1: m is even. Here we can use a well-know argument which relies on the gain which is
obtained by introducing a suitable transformation. For this we let η = (η1, η2) = (−ξm

1 −ξm
2 , ξ1+ξ2),

dη1dη2 = m|ξm−1
2 − ξm−1

1 |dξ1dξ2, to get from (14) and Hölder’s inequality

‖(Tm(·)u)(Tm(·)v)‖2L2
tx([0,1]×R)

≤ C

∫

R

∫

R
|û(ξ1(η))| |v̂(ξ2(η))| |G(η1, η2)| dη1dη2

|ξ2(η)m−1 − ξ1(η)m−1|
≤ C

( ∫

R

∫

R
|û(ξ1(η))|2 |v̂(ξ2(η))|2 dη1dη2

|ξ2(η)m−1 − ξ1(η)m−1|2
)1/2

‖G‖L2
τξ

≤ C
( ∫

R

∫

R
|û(ξ1)|2 |v̂(ξ2)|2 dξ1dξ2

|ξ2
m−1 − ξ1

m−1|
)1/2

‖G‖L2
τξ

≤ C(bm−1 − am−1)
−1/2‖u‖L2‖v‖L2 ‖G‖L2

τξ
.

Since m − 1 is odd, bm−1 − am−1 ≥ C(b − a)m−1 = C dist(I, J)m−1, cf. Lemma 2.2(i) below.
Observing

‖G‖L2
τξ

= ‖uv1[0,1](t)‖L2
tx

= ‖(Tm(·)u)(Tm(·)v)‖L2
tx([0,1]×R),

we thus obtain (12) for even m.

Case 2: m is odd, m = 2n + 1. First we are going to argue that without loss of generality
we can assume that b − a ≥ 1. Indeed, Hölder’s inequality, the elementary inequality |z|4 ≤
ε−2|z|2 + ε2(m−1)|z|2(m+1) with ε = ‖u‖−1

L2 , and (11) yield

‖(Tm(·)u)(Tm(·)v)‖L2
tx([0,1]×R) ≤ ‖Tm(·)u‖L4

tx([0,1]×R) ‖Tm(·)v‖L4
tx([0,1]×R)

≤ C
(
ε−2

∫ 1

0

‖u‖2L2 dt + ε2(m−1)‖u‖2(m+1)

L2

)1/4

×
(
ε−2

∫ 1

0

‖v‖2L2 dt + ε2(m−1)‖v‖2(m+1)

L2

)1/4

≤ C‖u‖L2‖v‖L2 ;

observe that ̂(Tm(t)u)(ξ) = e−itξm
û(ξ), whence Tm(t) preserves all Hs-norms. Thus if b − a ≤ 1,

then we can produce any factor 1 ≤ (b− a)−q = dist(I, J)−q on the right-hand side. Therefore

we will suppose in the sequel that b − a ≥ 1. Inserting the factor |ξm−1
2 − ξm−1

1 |−1/3+1/3
in (14),

Hölder’s inequality leads to

‖(Tm(·)u)(Tm(·)v)‖2L2
tx([0,1]×R) ≤ C

( ∫

R

∫

R

|û(ξ1)|3/2|v̂(ξ2)|3/2

|ξm−1
2 − ξm−1

1 |1/2
dξ1dξ2

)2/3

×
( ∫

R

∫

R
|ξm−1

2 − ξm−1
1 ||G(−ξm

1 − ξm
2 , ξ1 + ξ2)|3 dξ1dξ2

)1/3
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≤ C
( ∫

I

∫

J

|û(ξ1)|3/2|v̂(ξ2)|3/2

|ξ2n
2 − ξ2n

1 |1/2
dξ1dξ2

)2/3

×
( ∫

R

∫

R
|G(η1, η2)|3 dη1dη2

)1/3

,

where in the last step we have again used the transformation (η1, η2) = (−ξm
1 − ξm

2 , ξ1 + ξ2). To
bound the first term, we note that for ξ2 ∈ J and ξ1 ∈ I the estimate

ξ2n
2 − ξ2n

1 = (ξ2
2 − ξ2

1)
(
(ξ2

1)
n−1 + (ξ2

1)
n−2ξ2

2 + ... + ξ2
1(ξ

2
2)

n−2 + (ξ2
2)

n−1
)

≥ |ξ2 − ξ1||ξ2 + ξ1|
(
ξ

2(n−1)
1 + ξ

2(n−1)
2

)
≥ C(b− a)|ξ2 + ξ1|

follows from b−a ≥ 1, see Lemma 2.2(ii). Therefore the Hardy-Littlewood-Sobolev inequality [17,
p. 31] implies

‖(Tm(·)u)(Tm(·)v)‖2L2
tx([0,1]×R) ≤ C dist(I, J)−1/3

( ∫

R

∫

R

|û(ξ1)|3/2|v̂(ξ2)|3/2

|ξ2 + ξ1|1/2
dξ1dξ2

)2/3

‖G‖L3
τξ

≤ C dist(I, J)−1/3
∥∥∥|û|3/2

∥∥∥
2/3

L4/3

∥∥∥|v̂|3/2
∥∥∥

2/3

L4/3
‖G‖L3

τξ

≤ C dist(I, J)−1/3‖u‖L2‖v‖L2‖G‖L3
τξ

. (15)

Thus it remains to estimate ‖G‖L3
τξ

. For this purpose, we note that

‖G‖L3
τξ

= ‖F(ūv̄1[0,1](t))‖L3
τξ
≤ C‖ūv̄1[0,1](t)‖L3/2

tx
= C

( ∫ 1

0

∫

R
|u(t, x)|3/2|v(t, x)|3/2 dxdt

)2/3

≤ C
(∫ 1

0

∫

R
|u(t, x)|3 dxdt

)1/3( ∫ 1

0

∫

R
|v(t, x)|3 dxdt

)1/3

. (16)

Using the elementary inequality |z|3 ≤ ε−1|z|2 + ε2m−1|z|2(m+1) with ε = ‖u‖−1
L2 and (11), we get

similarly as before

∫ 1

0

∫

R
|u(t, x)|3 dxdt ≤ C

(
ε−1

∫ 1

0

‖u‖2L2 dt + ε2m−1‖u‖2(m+1)

L2

)
≤ C‖u‖3L2 .

Thus (12) follows from (15) and (16). This completes the proof of Lemma 2.1. 2

The following technical lemma has been needed in the above proof.

Lemma 2.2 (i) Let n ∈ N be odd. Then bn− an ≥ 21−n(b− a)n for every a, b ∈ R with b ≥ a. (ii)
Let k ∈ N. There exists a constant C > 0 such that whenever a, b ∈ R with b− a ≥ 1, then ξ1 ≤ a
and ξ2 ≥ b implies ξ2k

1 + ξ2k
2 ≥ C.

Proof : (i) We have bn − an = n
∫ b

a
xn−1 dx. If b ≥ a ≥ 0, then

∫ b

a
xn−1 dx ≥ ∫ b−a

0
xn−1 dx =

n−1(b − a)n. If b ≥ 0 ≥ a and b + a ≥ 0, then
∫ b

a
xn−1 dx =

∫ (b−a)/2

a
xn−1 dx +

∫ b

(b−a)/2
xn−1 dx ≥∫ (b−a)/2

a
xn−1 dx+

∫ (b−a)/2

−a
xn−1 dx =

∫ (b−a)/2

−(b−a)/2
xn−1 dx = n−121−n(b−a)n. If b ≥ 0 ≥ a and b+a ≤ 0,

then
∫ b

a
xn−1 dx =

∫ −(b−a)/2

a
xn−1 dx +

∫ b

−(b−a)/2
xn−1 dx ≥ ∫ −b

−(b−a)/2
xn−1 dx +

∫ b

−(b−a)/2
xn−1 dx =
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∫ (b−a)/2

−(b−a)/2
xn−1 dx = n−121−n(b − a)n. The last case a ≤ b ≤ 0 is symmetric to b ≥ a ≥ 0. (ii) If

b ≥ a ≥ 0, then b ≥ 1 + a ≥ 1, whence ξ2k
1 + ξ2k

2 ≥ b2k ≥ 1. If b ≥ 0 ≥ a and a ≤ −1/2, then
ξ2k
1 +ξ2k

2 ≥ a2k ≥ 2−2k. If b ≥ 0 ≥ a and a ≥ −1/2, then b ≥ 1+a ≥ 1/2, thus ξ2k
1 +ξ2k

2 ≥ b2k ≥ 2−2k.
Finally, if a ≤ b ≤ 0, then |a| = −a ≥ 1− b ≥ 1 yields ξ2k

1 + ξ2k
2 ≥ |a|2k ≥ 1. 2

Next we need to establish yet another technical lemma; recall (7) for the definition of P1,m.

Lemma 2.3 There exists a constant C1 > 0 with the following property. Let ε > 0, N ∈ N, and
u ∈ L2 with ‖u‖L2 = 1 be given and choose a < b such that

∫ a

−∞ |û(ξ)|2 dξ = ε/2 =
∫∞

b
|û(ξ)|2 dξ.

Then

‖Tm(·)u‖L4
tx([0,1]×R) ≤

[
(−P1,m)

(
1− ε2

2

)
+

C1N
q(m)

(b− a)q(m)
+

C1N
2q(m)

(b− a)2q(m)

]1/4

+ C1N
−1/2,

with q(m) > 0 from (13).

Proof : For a fixed u as in the assumption we divide the interval [a, b] into N subintervals of
equal length (b− a)/N . Then there must be one of the N subintervals, denoted [a′, b′], such that∫ b′

a′ |û(ξ)|2 dξ ≤ N−1. We introduce ul, u0, ur ∈ L2 through

ûl = 1]−∞,a′[ û, û0 = 1[a′,b′] û, and ûr = 1]b′,∞[ û.

It follow that u = ul + u0 + ur and moreover that

‖u0‖2L2 = ‖û0‖2L2 =

∫ b′

a′
|û(ξ)|2 dξ ≤ N−1.

Furthermore,

1 =

∫ ∞

−∞
|û(ξ)|2 dξ ≥

∫ a′

−∞
|û(ξ)|2 dξ = ‖ul‖2L2 ≥

∫ a

−∞
|û(ξ)|2 dξ =

ε

2
.

In summary, taking into account the analogous bounds on ‖ur‖L2 , we have shown that

‖u0‖L2 ≤ N−1/2,
√

ε/2 ≤ ‖ul‖L2 ≤ 1, and
√

ε/2 ≤ ‖ur‖L2 ≤ 1.

In addition, we also have

‖ul‖2L2 + ‖ur‖2L2 =

∫ a′

−∞
|û(ξ)|2 dξ +

∫ ∞

b′
|û(ξ)|2 dξ ≤

∫ ∞

−∞
|û(ξ)|2 dξ = 1,

hence

‖ul‖4L2 + ‖ur‖4L2 ≤ 1− 2‖ul‖2L2‖ur‖2L2 ≤ 1− ε2

2
.

Since the supports of ûl and ûr have distance at least b′ − a′ = (b− a)/N , Lemma 2.1 implies

∫ 1

0

∫

R
|Tm(t)ul|2|Tm(t)ur|2 dxdt ≤ CN2q

(b− a)2q ‖ul‖2L2‖ur‖2L2 ≤ CN2q

(b− a)2q ,
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where q = q(m). On the other hand, by definition of P1,m we also have
∫ 1

0

∫

R
|Tm(t)ul|4 dxdt ≤ (−P1,m)‖ul‖4L2 ≤ C,

and analogously ∫ 1

0

∫

R
|Tm(t)ur|4 dxdt ≤ (−P1,m)‖ur‖4L2 ≤ C.

¿From Hölder’s inequality we thus deduce
∫ 1

0

∫

R
|Tm(t)ul|3|Tm(t)ur| dxdt ≤

( ∫ 1

0

∫

R
|Tm(t)ul|4 dxdt

)1/2( ∫ 1

0

∫

R
|Tm(t)ul|2|Tm(t)ur|2 dxdt

)1/2

≤ CN q

(b− a)q ,

and the same estimate is obtained if the roles of ul and ur are exchanged. Expanding

|Tm(t)(ul + ur)|4 = |Tm(t)ul|4 + 4|Tm(t)ul|3|Tm(t)ur|+ 6|Tm(t)ul|2|Tm(t)ur|2
+ 4|Tm(t)ul||Tm(t)ur|3 + |Tm(t)ur|4

and invoking the above estimates, it follows that
∫ 1

0

∫

R
|Tm(t)(ul + ur)|4 dxdt ≤ (−P1,m)

(
‖ul‖4L2 + ‖ur‖4L2

)
+

CN q

(b− a)q +
CN2q

(b− a)2q

≤ (−P1,m)
(
1− ε2

2

)
+

CN q

(b− a)q +
CN2q

(b− a)2q .

If we finally take into account
∫ 1

0

∫

R
|Tm(t)u0|4 dxdt ≤ (−P1,m)‖u0‖4L2 ≤ CN−2,

then the triangle inequality ‖Tm(·)u‖L4
tx([0,1]×R) ≤ ‖Tm(·)(ul + ur)‖L4

tx([0,1]×R) + ‖Tm(·)u0‖L4
tx([0,1]×R)

completes the proof of the lemma. 2

The next lemma is a useful consequence of Lemma 2.3.

Lemma 2.4 For every ε > 0 there exist δ = δε > 0 and R = Rε > 0 with the following property.
If u ∈ L2 satisfies ‖u‖L2 = 1 and ϕ(u) ≤ P1,m + δ, and if a < b are such that

∫ a

−∞ |û(ξ)|2 dξ =

ε/2 =
∫∞

b
|û(ξ)|2 dξ, then b− a ≤ R.

Proof : Denote C1 > 0 the constant from Lemma 2.3, and for given ε > 0 set

δ =
|P1,m|ε2

8
and R = max

{
N,

(16C1N
q(m)

|P1,m|ε2

)1/q(m) }
,

where N = Nε is introduced in (17) below. If u ∈ L2 satisfies ‖u‖L2 = 1 and ϕ(u) ≤ P1,m + δ, and
if a < b are such that

∫ a

−∞ |û(ξ)|2 dξ = ε/2 =
∫∞

b
|û(ξ)|2 dξ, then b− a > R cannot occur. Indeed,

if b− a > R, then Lemma 2.3 would yield

[
(−P1,m)

(
1− ε2

8

)]1/4

= [−P1,m − δ]1/4 ≤ [−ϕ(u)]1/4 = ‖T (·)u‖L4
tx([0,1]×R)

≤
[
(−P1,m)

(
1− ε2

2

)
+

C1N
q(m)

Rq(m)
+

C1N
2q(m)

R2q(m)

]1/4

+ C1N
−1/2

8



for every N ∈ N. If we select N = Nε ∈ N such that

C1N
−1/2 ≤

[
(−P1,m)

(
1− ε2

8

)]1/4

−
[
(−P1,m)

(
1− ε2

4

)]1/4

, (17)

then we obtain by definition of R the contradiction

(−P1,m)
ε2

4
≤ C1N

q(m)

Rq(m)
+

C1N
2q(m)

R2q(m)
≤ 2C1N

q(m)

Rq(m)
≤ (−P1,m)

ε2

8
.

Hence we must in fact have b− a ≤ R. 2

After this preparation we can take the main step towards finding a minimizing sequence which
is tight in the Fourier domain.

Lemma 2.5 Let m ≥ 3 and (uj) be any minimizing sequence for P1,m. Then there exist a subse-
quence (which is not relabelled) and ξj ∈ R for j ∈ N such that the following holds:

(a) supj∈N |ξj| <∞, and

(b) for every ε > 0 there is R = Rε > 0 and jε ∈ N so that

∫

|ξ−ξj |<R

|ûj|2 dξ ≥ 1− ε, j ≥ jε .

Proof : For a fixed sequence εk ↘ 0 we choose δk = δεk
↘ 0 and Rk = Rεk

↗∞ correspondingly
by means of Lemma 2.4. Since (uj) is a minimizing sequence for P1,m, it follows from ϕ(uj)→ P1,m

that for every k ∈ N there is jk ∈ N such that ϕ(uj) ≤ P1,m+δk for j ≥ jk. Passing to a subsequence
if necessary we therefore may assume ϕ(uj) ≤ P1,m + δk for j ≥ k.

Let us start by fixing j = 1. We first select a
(1)
1 < b

(1)
1 such that

∫ a
(1)
1

−∞ |û1|2 dξ = ε1/2 =∫∞
b
(1)
1
|û1|2 dξ. Since ϕ(u1) ≤ P1,m + δ1, we obtain from Lemma 2.4 that b

(1)
1 − a

(1)
1 ≤ R1. Denoting

ξ1 = (a
(1)
1 + b

(1)
1 )/2 the center of the interval [a

(1)
1 , b

(1)
1 ], it follows that

∫

|ξ−ξ1|<R1

|û1|2 dξ =

∫ ξ1+R1

ξ1−R1

|û1|2 dξ ≥
∫ b

(1)
1

a
(1)
1

|û1|2 dξ = 1− ε1.

The next step is to fix j = 2 and to consider u2. First we choose a
(1)
2 < b

(1)
2 with the property

that
∫ a

(1)
2

−∞ |û2|2 dξ = ε1/2 =
∫∞

b
(1)
2
|û2|2 dξ. Due to ϕ(u2) ≤ P1,m + δ1, Lemma 2.4 yields b

(1)
2 − a

(1)
2 ≤

R1. Next we select a
(2)
2 < a

(1)
2 and b

(2)
2 > b

(1)
2 such that

∫ a
(2)
2

−∞ |û2|2 dξ = ε2/2 =
∫∞

b
(2)
2
|û2|2 dξ.

Then ϕ(u2) ≤ P1,m + δ2 in conjunction with Lemma 2.4 implies b
(2)
2 − a

(2)
2 ≤ R2. We denote

ξ2 = (a
(1)
2 + b

(1)
2 )/2 the center of the interval [a

(1)
2 , b

(1)
2 ]. Then b

(1)
2 − a

(1)
2 ≤ R1 implies ξ2 + R1 ≥ b

(1)
2

as well as ξ2 −R1 ≤ a
(1)
2 , whence

∫

|ξ−ξ2|<R1

|û2|2 dξ =

∫ ξ2+R1

ξ2−R1

|û2|2 dξ ≥
∫ b

(1)
2

a
(1)
2

|û2|2 dξ = 1− ε1.
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In addition, we also have ξ2 ≥ a
(1)
2 ≥ a

(2)
2 , thus ξ2 +R2 ≥ a

(2)
2 +R2 ≥ b

(2)
2 , and similarly ξ2 ≤ b

(1)
2 ≤

b
(2)
2 yields ξ2 −R2 ≤ b

(2)
2 −R2 ≤ a

(2)
2 . Therefore

∫

|ξ−ξ2|<R2

|û2|2 dξ =

∫ ξ2+R2

ξ2−R2

|û2|2 dξ ≥
∫ b

(2)
2

a
(2)
2

|û2|2 dξ = 1− ε2.

This procedure can be continued inductively to yield a sequence (ξj) ⊂ R such that

∫

|ξ−ξj |<Rk

|ûj|2 dξ ≥ 1− εk, 1 ≤ k ≤ j,

holds. Then (b) is satisfied, since given ε > 0 we may choose k0 ∈ N with εk0 ≤ ε and set R = Rk0

and jε = k0. Then j ≥ jε = k0 implies

∫

|ξ−ξj |<R

|ûj|2 dξ =

∫

|ξ−ξj |<Rk0

|ûj|2 dξ ≥ 1− εk0 ≥ 1− ε,

as was to be shown. Consequently, it remains to prove the boundedness of (ξj). To do so, we
can assume that on the contrary there is a subsequence (not relabelled) such that ξj → ∞; the
case that ξj → −∞ along a subsequence can be handled similarly. Now we fix ε > 0 and choose
R = Rε > 0 and jε ∈ N according to (b). Then we decompose

ûj = v̂j + ŵj, with v̂j = 1[ξj−R, ξj+R] ûj, j ≥ jε.

Hence a Lipschitz estimate for ϕm, analogous to [9, (2.5)], in conjunction with ‖uj‖L2 = 1 and
Lemma 2.6 below yields for j ∈ N sufficiently large,

|ϕm(uj)| ≤ |ϕm(uj)− ϕm(vj)|+ |ϕm(vj)|
≤ C

(
‖uj‖3L2 + ‖vj‖3L2

)
‖uj − vj‖L2 + Cξ

−(m−2)/3
j ‖vj‖4L2

≤ C‖ŵj‖L2 + Cξ
−(m−2)/3
j = C

( ∫

|ξ−ξj |>R

|ûj(ξ)|2 dξ

)1/2

+ Cξ
−(m−2)/3
j

= C
(
1−

∫

|ξ−ξj |<R

|ûj(ξ)|2 dξ

)1/2

+ Cξ
−(m−2)/3
j ≤ C

√
ε + Cξ

−(m−2)/3
j .

Taking the limit j →∞, this and the fact that (uj) is a minimizing sequence gives |P1,m| ≤ C
√

ε
for all ε > 0, whence P1,m = 0. However, similar to [9, Lemma 2.5] one can show that P1,m < 0,
which gives a contradiction. Hence we conclude that indeed (ξj) must be bounded. 2

We add two more technical results that have been used before.

Lemma 2.6 Let m ≥ 3 and ϕm be defined as in (8). If u ∈ L2 is such that supp(û) ⊂ [ξ∗−R, ξ∗+R]
for some ξ∗ ≥ max{1, 2R} > 0, then

|ϕm(u)| ≤ Cξ−(m−2)/3
∗ ‖u‖4L2 .
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Proof : From (10) we recall (Tm(t)u)(x) =
∫
R ei(xξ−tξm)û(ξ) dξ. By integrating out

∫ 1

0
dt

∫
R dx, it

thus follows that

|ϕm(u)| =
∫ 1

0

∫

R
|Tm(t)u|4 dxdt =

∫

R
. . .

∫

R
dξ1 . . . dξ4 û(ξ1)û(ξ2)û(ξ3)û(ξ4)

×δ0(ξ1 − ξ2 + ξ3 − ξ4)
(−i)

α
(1− e−iα),

where
α = α(ξ1, . . . , ξ4) = ξm

1 − ξm
2 + ξm

3 − ξm
4 .

Therefore we obtain

|ϕm(u)| =

∫

R

∫

R

∫

R
dξ1 dξ2 dξ3 û(ξ1)û(ξ2)û(ξ3)û(ξ1 − ξ2 + ξ3)

(−i)

β
(1− e−iβ)

≤ C

∫

R

∫

R

∫

R
dξ1 dξ2 dξ3 |û(ξ1)||û(ξ2)||û(ξ3)||û(ξ1 − ξ2 + ξ3)| 1

1 + |β| , (18)

with
β = β(ξ1, ξ2, ξ3) = ξm

1 − ξm
2 + ξm

3 − (ξ1 − ξ2 + ξ3)
m,

and we used that | 1
β
(1 − eiβ)| ≤ C(1 + |β|)−1. Case 1: m is even. We fix δ ∈]0, 1] and perform

an argument like in [9, Lemma 2.10]. (i) On the set where |ξ1 − ξ2| ≤ δ we get from Young’s
inequality, cf. [6, Cor. 4.5.2], and with g(−·)(ξ) := g(−ξ)

∫

R

∫

R

∫

R
dξ1 dξ2 dξ3 1{|ξ1−ξ2|≤δ} |û(ξ1)||û(ξ2)||û(ξ3)||û(ξ1 − ξ2 + ξ3)| 1

1 + |β|
≤

∫

R

∫

R

∫

R
dξ1 dη dξ3 1{|η|≤δ} |û(ξ1)||û(ξ1 − η)||û(ξ3)||û(η + ξ3)|

≤ C
∥∥∥|û| ∗ |û(−·)|

∥∥∥
2

L∞
δ ≤ C‖u‖4L2δ. (19)

(ii) On the set where |ξ2 − ξ3| ≤ δ, we obtain in the same manner
∫

R

∫

R

∫

R
dξ1 dξ2 dξ3 1{|ξ2−ξ3|≤δ} |û(ξ1)||û(ξ2)||û(ξ3)||û(ξ1 − ξ2 + ξ3)| 1

1 + |β| ≤ C‖u‖4L2δ. (20)

(iii) Now we consider the case that |ξ1 − ξ2| ≥ δ and |ξ2 − ξ3| ≥ δ. Due to (18) we can always
restrict our attention to ξ1, ξ2, ξ3 ∈ supp(û), whence ξ1, ξ2, ξ3 ≥ ξ∗ − R ≥ ξ∗/2 by assumption.
Accordingly, by Lemma 2.7(a) below we can estimate for an appropriate η0 > 0,

1 + |β(ξ1, ξ2, ξ3)| ≥ |ξ1 − ξ2||ξ2 − ξ3||βm−2(ξ1, ξ2, ξ3)|
≥ η0|ξ1 − ξ2||ξ2 − ξ3|

(
|ξ1|m−2 + |ξ2|m−2 + |ξ3|m−2

)

≥ 3 2−(m−2)η0 ξm−2
∗ |ξ1 − ξ2||ξ2 − ξ3|

≥ (3/2)δ2 2−(m−2)η0 ξm−2
∗ (1 + |ξ1 − ξ2||ξ2 − ξ3|).

It follows that∫

R

∫

R

∫

R
dξ1 dξ2 dξ3 1{|ξ1−ξ2|≥δ, |ξ2−ξ3|≥δ} |û(ξ1)||û(ξ2)||û(ξ3)||û(ξ1 − ξ2 + ξ3)| 1

1 + |β|
≤ Cδ−2ξ−(m−2)

∗

∫

R

∫

R

∫

R
dξ1 dξ2 dξ3 |û(ξ1)||û(ξ2)||û(ξ3)||û(ξ1 − ξ2 + ξ3)| 1

1 + |ξ1 − ξ2||ξ2 − ξ3|
≤ Cδ−2ξ−(m−2)

∗ ‖u‖4L2 , (21)
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where for the last estimate one can for instance use the bound obtained from [9, (2.23)], with δ = 1
and A = 2 there, also noting that Γ̂(A) ≤ ‖u‖2L2 for every A > 0 and moreover that now Φ ∼ û
gives ‖Φ‖L2 ≤ ‖u‖L2 rather than ‖Φ‖L2 ≤ C‖u‖3L2 , as we had in [9]. By (18), and summarizing
(19), (20), and (21), we see that

|ϕm(u)| ≤ C
(
δ + δ−2ξ−(m−2)

∗
)
‖u‖4L2 ≤ Cξ−(m−2)/3

∗ ‖u‖4L2 ,

where we have chosen the optimal δ = ξ
−(m−2)/3
∗ ≤ 1. Case 2: m is odd. In principle we follow

the same lines as before. Now we use Lemma 2.7(b) below to obtain

1 + |β(ξ1, ξ2, ξ3)| ≥ |ξ1 − ξ2||ξ2 − ξ3||ξ1 + ξ3||βm−3(ξ1, ξ2, ξ3)|
≥ η1|ξ1 − ξ2||ξ2 − ξ3||ξ1 + ξ3|(|ξ1|m−3 + |ξ2|m−3 + |ξ3|m−3).

Thus if ξ1, ξ2, ξ3 ≥ ξ∗ −R ≥ ξ∗/2, then |ξ1 + ξ3| = ξ1 + ξ3 ≥ ξ∗, and |ξ1 − ξ2|, |ξ2 − ξ3| ≥ δ yields

1 + |β(ξ1, ξ2, ξ3)| ≥ 3 2−(m−3)η1 ξm−2
∗ |ξ1 − ξ2||ξ2 − ξ3|

≥ (3/2)δ2 2−(m−3)η1 ξm−2
∗ (1 + |ξ1 − ξ2||ξ2 − ξ3|).

Hence the preceding argument can be applied once more. 2

Lemma 2.7 Let m ∈ N and

β(x, y, z) = xm − ym + zm − (x− y + z)m, x, y, z ∈ R.

(a) If m is even, then we can write β(x, y, z) = (x − y)(y − z)βm−2(x, y, z) with a polynomial
βm−2 of degree m− 2 such that |βm−2(x, y, z)| ≥ η0(|x|m−2 + |y|m−2 + |z|m−2) for some η0 > 0
and all x, y, z ∈ R.

(b) If m ≥ 3 is odd, then we have β(x, y, z) = (x− y)(y − z)(x + z)βm−3(x, y, z), where βm−3 is
a polynomial of degree m− 3 so that |βm−3(x, y, z)| ≥ η1(|x|m−3 + |y|m−3 + |z|m−3) holds for
some η1 > 0 and all x, y, z ∈ R.

Proof : (a) We can assume that m ≥ 4. First we show that β(x, y, z) = 0 implies x = y or
y = z. For this purpose we fix y0 6= z0 and consider the function f(x) = β(x, y0, z0). Then
f(y0) = 0 and moreover f ′(x) = mxm−1 −m(x − y0 + z0)

m−1 for x ∈ R. Since (m − 1) is even,
u 7→ um−1 is one-to-one on R. Hence it follows that f ′(x) 6= 0 for x ∈ R, i.e., f is either strictly
increasing of strictly decreasing. In both cases we obtain f(x) 6= 0 for x 6= y0 as claimed, and
this leads to β(x, y, z) = (x − y)k(y − z)lB(x, y, z) for some maximal k, l ∈ N and a polynomial
B of degree (m − k − l). Differentiating both sides w.r. to x yields mxm−1 −m(x − y + z)m−1 =
(x − y)k−1(y − z)l[(x − y)∂xB + kB] for all x, y, z ∈ R. Thus if k ≥ 2, then x = y enforces
mxm−1 − mzm−1 = 0 for all x, z ∈ R, which is impossible. It follows that k = 1, and similarly
l = 1, so that we obtain β(x, y, z) = (x − y)(y − z)βm−2(x, y, z), where βm−2 is a polynomial of
degree m− 2. Next we claim that

βm−2(x0, y0, z0) = 0 =⇒ x0 = y0 = z0 = 0. (22)

Indeed, if βm−2(x0, y0, z0) = 0, then also β(x0, y0, z0) = 0, and consequently x0 = y0 or y0 = z0.
Assuming y0 6= z0 we can further factor βm−2(x, y0, z0) = (x − x0)β̃m−2(x, y0, z0) for x ∈ R,
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so that β(x, y0, z0) = (x − y0)(y0 − z0)βm−2(x, y0, z0) = (x − y0)
2(y0 − z0)β̃m−2(x, y0, z0) due to

x0 = y0. Differentiating the original form of β w.r. to x we see that m(xm−1− (x− y0 + z0)
m−1) =

(x − y0)(y0 − z0)[(x − y0)∂xβ̃m−2 + 2β̃m−2] for x ∈ R, which at x = x0 = y0 yields m(xm−1
0 −

zm−1
0 ) = 0. Hence the contradiction y0 = x0 = z0 is found. Therefore we have seen that in fact

βm−2(x0, y0, z0) = 0 implies x0 = y0 = z0. Differentiating β(x, y, z) = (x − y)(y − z)βm−2(x, y, z)
w.r. to x and y, we get m(m− 1)(x− y + z)m−2 = (x− y)(y − z)∂2

xyβm−2 + (x− 2y + z)∂xβm−2 +

(y − z)∂yβm−2 + βm−2. At x0 = y0 = z0, this gives m(m − 1)zm−2
0 = 0, i.e., (22) holds. Thus we

must have the estimate |βm−2(x, y, z)| ≥ η0(|x|m−2 + |y|m−2 + |z|m−2) for some constant η0 > 0
and all x, y, z ∈ R. Otherwise there would exist sequences (xj), (yj), (zj) ⊂ R and ηj → 0+ such
that |βm−2(xj, yj, zj)| < ηj(|xj|m−2 + |yj|m−2 + |zj|m−2) for all j ∈ N. If we assume w.l.o.g that
0 < |zj| = max{|xj|, |yj|, |zj|} and define x̃j = xj/|zj|, ỹj = yj/|zj|, and z̃j = zj/|zj|, then
|x̃j|, |ỹj| ≤ 1 = |z̃j|, so that we can suppose that x̃j → x0, ỹj → y0, and z̃j → z0 as j →∞, where
|z0| = 1. But β(x, y, z) = (x − y)(y − z)βm−2(x, y, z) shows that βm−2 is homogeneous of degree
m− 2, thus as j →∞

|βm−2(x0, y0, z0)| ← |βm−2(x̃j, ỹj, z̃j)| = |zj|−(m−2)|βm−2(xj, yj, zj)|
< |zj|−(m−2)ηj(|xj|m−2 + |yj|m−2 + |zj|m−2) ≤ 3ηj → 0, j →∞.

We hence obtain βm−2(x0, y0, z0) = 0, which however contradicts (22) in view of |z0| = 1. (b) The
proof of (b) can be carried out along similar lines as in (a), so we do not expand the details. 2

Finally we are in the position to show that any minimizing sequence is (up to a subsequence)
tight in Fourier space.

Corollary 2.8 Let m ≥ 3 and (uj) be any minimizing sequence for P1,m. Then there exists
a subsequence (which is not relabelled) such that the following holds: For every ε > 0 there is
R = Rε > 0 and jε ∈ N so that

∫ R

−R

|ûj|2 dξ ≥ 1− ε, j ≥ jε . (23)

Proof : Let the subsequence of (uj) be chosen as in Lemma 2.5, and let R1 = supj∈N |ξj|. If

ε > 0 is given, then we set Rε = R1 + R̃ε > 0 and jε = j̃ε ∈ N, where R̃ε and j̃ε are se-
lected corresponding to ε by means of Lemma 2.5. Then [ξj − R̃ε, ξj + R̃ε] ⊂ [−Rε, Rε] implies∫ Rε

−Rε
|ûj|2 dξ ≥ ∫

|ξ−ξj |<R̃ε
|ûj|2 dξ ≥ 1− ε for j ≥ jε. 2

2.2 Tightness in physical space and convergence

In the previous section, we have shown that any minimizing sequence possesses a subsequence
which is tight in Fourier space. Now, we will prove that there is yet another subsequence which
(up to translation) will be tight in x-space, leading to the strong convergence (in L2) to a minimizer.
The proofs in this section are rather similar to the ones in [9], and therefore we provide details
only when necessary.

We first prove one estimate which will be used to rule out the alternatives ‘vanishing’ and
‘splitting’ in the concentration compactness lemma. Since this part of the argument does not rely
on the pure higher order dispersion form, we will more generally consider T (t) defined via (5),
instead of Tm(t) as obtained from (6).
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Lemma 2.9 Let T (t) be the solution operator associated to (5). If u ∈ HM−1 = HM−1(R;C),
A > 0, and t ∈ R, then

∫ A

−A

|T (t)u|2 dx ≤
∫ 2A

−2A

|u|2 dx + CA−1|t| ‖u‖2HM−1 .

Proof : Let u(t, x) = (T (t)u)(x). From the equation (5) we obtain

∂t(|u|2) = 2Re(ūut) = 2Im
(
ū

M∑
m=2

bm(−i∂x)
mu

)
.

Thus if we choose a function ζ ∈ C∞
0 (R) with values in [0, 1] such that ζ(x) = 1 for |x| ≤ A,

ζ(x) = 0 for |x| ≥ 2A, and ‖ζ ′‖L∞(R) ≤ CA−1, then is follows with I(t) =
∫
R ζ(x)|u(t, x)|2 dx that

İ(t) = 2
M∑

m=2

bm Im
(
(−i)m

∫

R
ζū ∂m

x u dx
)
.

Now ∫

R
ζū ∂m

x u dx = −
∫

R
[ζ ′ū + ζ(∂xū)] ∂m−1

x u dx =: J1(t)−
∫

R
ζ(∂xū) ∂m−1

x u dx,

where |J1(t)| ≤ CA−1‖u(t)‖L2‖u(t)‖HM−1 ≤ CA−1‖u‖2HM−1 ; for the latter estimate, note that

û(t)(ξ) = e−it(
PM

m=2 bmξm)û(ξ), whence ‖u(t)‖Hs = ‖u‖Hs for s ∈ R. Then we may continue
∫

R
ζū ∂m

x u dx = J1(t) +

∫

R
[ζ ′(∂xū) + ζ(∂2

xū)] ∂m−2
x u dx =: J1(t) + J2(t) +

∫

R
ζ(∂2

xū) ∂m−2
x u dx,

where again |J2(t)| ≤ CA−1‖u‖2HM−1 . Thus the repeated application of this procedure finally yields
∫

R
ζū ∂m

x u dx = J(t) + (−1)m

∫

R
ζ(∂m

x ū)u dx,

with |J(t)| ≤ CA−1‖u‖2HM−1 . Therefore

İ(t) = 2
M∑

m=2

bm Im
(
(−i)m

∫

R
ζū ∂m

x u dx
)

=
M∑

m=2

bm Im
(
(−i)mJ(t)

)

leads to |İ(t)| ≤ CA−1‖u‖2HM−1 . Hence for t ≥ 0,

∫ A

−A

|T (t)u|2dx ≤
∫

R
ζ|u(t)|2 dx = I(t) = I(0) +

∫ t

0

İ(s) ds ≤
∫

R
ζ|u|2 dx + CA−1|t| ‖u‖2HM−1 ,

which implies the required estimate. 2

Following the lines of [9, Lemma 2.7], one then establishes the next estimate.

Lemma 2.10 For u ∈ HM−1, t ∈ [0, 1], and A ≥ 1 we have

∫

R
|T (t)u|4 dx ≤ C

(
sup
x0∈R

∫ x0+2A

x0−2A

|u|2 dx + A−1‖u‖2HM−1

)
‖u‖2H1 .
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Now, we are ready complete the proof of Theorem 1.1. Our argument varies only slightly from
the original one in [9]. From Corollary 2.8 we already know that by passing to a subsequence of
any minimizing sequence (uj), we may assume that (ûj) is tight, in the sense of (23). Then the
concentration compactness lemma is applied to (uj), see [10] or [9, Lemma 3.1] for the form which
is to be used here. This leads to three alternatives for (a further subsequence of) the sequence (uj),
namely ‘tightness’, ‘vanishing’, or ‘splitting’. In the first case one can follow the reasoning in [9,
Section 4.1.1] to prove that (uj) has a strong limit in L2, which then yields the desired minimizer
for P1,m. This argument only relies on the shift invariance ϕm(u(· + x0)) = ϕm(u), which holds
here, since (T (t)u(· + x0))(x) = (T (t)u)(x + x0) is a consequence of the fact that both sides have

Fourier transform eix0ξ−it(
PM

m=2 bmξm)û(ξ). Finally, to rule out ‘vanishing’ one can just copy the
argument given in [9, Section 4.1.2] using Lemma 2.10, and that ‘splitting’ is impossible may be
verified as in [9, Section 4.1.3]. 2

3 Proof of Theorem 1.2

Given the similarity of Theorem 1.2 to Theorem 1.1, we do only point out which modifications are
necessary to carry through the argument elaborated in Section 2. Lemma 2.1 has to be replaced
by the following

Lemma 3.1 There exists a constant C > 0 such that

‖(T (·)u)(T (·)v)‖L2
tx([0,1]×R) ≤ Cdist(I, J)−1/6 ‖u‖L2‖v‖L2

for all functions u, v ∈ L2 such that û and v̂ are supported in disjoint intervals I ⊂ R and J ⊂ R,
respectively, which are at positive distance.

Proof : The relation

u(t, x) = (T (t)u)(x) =

∫

R
eixξe−it(b2ξ2+b3ξ3)û(ξ) dξ (24)

yields, in the notation of Lemma 2.1,

Φ(τ, ξ) =

∫

R

∫

R
û(ξ1)v̂(ξ2)δ0(τ + σ(ξ1) + σ(ξ2))δ0(ξ − ξ1 − ξ2) dξ1dξ2,

whence

‖(T (·)u)(T (·)v)‖2L2
tx([0,1]×R) =

∫

R

∫

R
û(ξ1)v̂(ξ2)G(−σ(ξ1)− σ(ξ2), ξ1 + ξ2) dξ1dξ2,

where σ(ξ) = b2ξ
2 + b3ξ

3. Then we proceed as in Lemma 2.1 in the Case 2 (m odd) and insert the
factor |σ′(ξ1)− σ′(ξ2)|−1/3+1/3 into the integral. To estimate the second resulting term

R2 =
( ∫

R

∫

R
|σ′(ξ1)− σ′(ξ2)||G(−σ(ξ1)− σ(ξ2), ξ1 + ξ2)|3 dξ1dξ2

)1/3

,

we introduce the transformation (η1, η2) = (−σ(ξ1)−σ(ξ2), ξ1+ξ2), which leads to R2 ≤ C‖G‖L3
τξ
≤

C‖u‖L2‖v‖L2 as before. For the first resulting term

R1 =
( ∫

I

∫

J

|û(ξ1)|3/2|v̂(ξ2)|3/2

|σ′(ξ1)− σ′(ξ2)|1/2
dξ1dξ2

)2/3

,
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we observe that |σ′(ξ1) − σ′(ξ2)| = |3b3(ξ
2
1 − ξ2

2) + 2b2(ξ1 − ξ2)| = |ξ1 − ξ2|||3b3(ξ1 + ξ2) + 2b2| ≥
C(b − a)|ξ1 + ξ2 + γ| for ξ1 ∈ I and ξ2 ∈ J , with γ = 2b2/(3b3). Then in the subsequent
application of the Hardy-Littlewood-Sobolev inequality the constant γ can be absorbed through
e.g. the transformation (η1, η2) = (ξ1, ξ2 + γ). Hence it is found that ‖(T (·)u)(T (·)v)‖2L2

tx([0,1]×R) ≤
CR1R2 ≤ Cdist(I, J)−1/3 ‖u‖2L2‖v‖2L2 , as before. 2

The only other place in Section 2.1 where the particular form σ(ξ) = ξm of the dispersion
function in the pure higher order dispersion case was used is Lemma 2.6. Accordingly, we have
to derive an appropriate modification for the mixed case considered here, where we have σ(ξ) =
b2ξ

2 + b3ξ
3.

Lemma 3.2 Let ϕ be given by (9). If u ∈ L2 is such that supp(û) ⊂ [ξ∗ − R, ξ∗ + R] for some
ξ∗ ≥ max{1, 2R, 2|b2|/|b3|} > 0, then

|ϕ(u)| ≤ Cξ−1/3
∗ ‖u‖4L2 .

Proof : From (24) one deduces in analogy to (18),

|ϕ(u)| ≤ C

∫

R

∫

R

∫

R
dξ1 dξ2 dξ3 |û(ξ1)||û(ξ2)||û(ξ3)||û(ξ1 − ξ2 + ξ3)| 1

1 + |β| ,

where
β = β(ξ1, ξ2, ξ3) = σ(ξ1)− σ(ξ2) + σ(ξ3)− σ(ξ1 − ξ2 + ξ3).

With σ(ξ) = b2ξ
2 + b3ξ

3, this is evaluated as

β = (ξ1 − ξ2)(ξ2 − ξ3)
(
2b2 + 3b3(ξ1 + ξ3)

)
,

and if |ξ1 − ξ2|, |ξ2 − ξ3| ≥ δ and ξ1, ξ2, ξ3 ≥ ξ∗ − R ≥ ξ∗/2 as well as ξ∗ ≥ 2|b2|/|b3|, then for
δ ∈]0, 1],

1 + |β| ≥ |ξ1 − ξ2||ξ2 − ξ3|
(
3|b3|(ξ1 + ξ3)− 2|b2|

)
≥ |ξ1 − ξ2||ξ2 − ξ3|

(
3|b3|ξ∗ − 2|b2|

)

≥ 2|b3| |ξ1 − ξ2||ξ2 − ξ3| ξ∗ ≥ δ2|b3| (1 + |ξ1 − ξ2||ξ2 − ξ3|) ξ∗.

Therefore it is clear that the argument from Lemma 2.6 can be applied to obtain the desired
estimate. 2

Since we have seen that the necessary modifications compared to Section 2.1 are possible, it
follows as in Corollary 2.8 that any minimizing sequence (uj) for P1 has a subsequence (which is
not relabelled) such that (ûj) is tight, in the sense of (23). Next we observe that concerning the
application of the concentration compactness lemma to (uj) in Section 2.2, we already established
Lemmas 2.9 and 2.10 for the general mixed dispersion case, i.e., for T (t) defined via (5). Thus
these results in particular are valid in the mixed third order case which is considered here. Hence
one can follow the reasoning which is outlined in Section 2.2 and elaborated in [9] to complete the
proof of Theorem 1.2. 2
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