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Abstract

In a number of scaling limits, we prove estimates relating the solutions of the Camassa-

Holm equation to the solutions of the associated KdV equation. As a consequence, suit-

able solutions of the water wave problem and solutions of the Camassa-Holm equation

stay close together for long times.

1 Introduction

The Camassa-Holm equation [11]

∂tu + ∂xu +
3

2
ε u∂xu + δ2

(1

6
− ν − σ

2

)
∂3

xu

− δ2ν ∂t∂
2
xu−

1

2
εδ2ν(u ∂3

xu + 2∂xu ∂2
xu) + δ4β ∂5

xu = 0, (1)

with u(x, t) ∈ R, x ∈ R, t ∈ R, parametersν, σ, β ∈ R, and small parametersε, δ > 0, has

been derived [4, 12, 13] as an amplitude equation for the description of unidirectional surface

water waves of an irrotational, inviscid fluid in an infinitely long canal of fixed constant

depth, up to residual terms of orderO(δ6 + δ4ε + δ2ε2 + ε3). It is obtained in the limit of

small amplitude, i.e., the amplitude scales asε, and in the limit of long waves, i.e.,δ is the

scaling of space and (as a consequence) also that of time. Often the parameterν is fixed as

ν =
1

60

19− 30σ − 45σ2

1− 3σ
, (σ 6= 1/3), (2)

whereσ ≥ 0 is the parameter for the surface tension in the linear dispersion relation

ω2 = (k + σk3) tanh(k)
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of the water wave problem. With this choice ofν, the coefficient

β = −1

6
(1− 3σ)ν +

1

360
(19− 30σ − 45σ2)

in front of the fifth-order termδ4∂5
xu vanishes; see [11] for more details. However, since

for technical reasons we will needν > 0, we just consider (1) with independent parameters

ν > 0 andσ, β ∈ R.

The Camassa-Holm equation recently attracted a lot of interest, due to its complete integra-

bility and the presence of so called peakon solutions; see for instance [4, 3, 1, 2] and the

references therein. However, the question whether solutions of the water wave problem can

really be approximated by solutions of the Camassa-Holm equation so far remained open. In

[10, 11] it has been argued that the KdV 5-equation and the Camassa-Holm equation are for-

mally related by a Kodama transformation. Moreover, special solutions and their occurrence

in the water wave problem are discussed.

Our approach to the problem is as follows. In Section 2 we prove an approximation theorem,

which says that in the limitδ2 ≤ ε → 0 solutions of the Camassa-Holm equation remain

close to the solutions of the associated KdV equation

∂tv + ∂xv +
3

2
ε v∂xv + δ2

(1

6
− σ

2

)
∂3

xv = 0 (3)

on anO(1/ε)-time scale. For the particular choiceε = δ2, a number of approximation

theorems have been established recently [8, 15, 16], showing that the water waves under

consideration can be approximated on anO(1/δ2)-time scale by the solutions of (3). Com-

bining these two observations, we conclude that in this limit the solutions of the water wave

problem can be approximated by the solutions of the Camassa-Holm equation.

Acknowledgment: Guido Schneider is grateful for discussions with Darryl Holm who pro-

posed the problem considered in this paper.

2 KdV dynamics in the Camassa-Holm equation

In this section we prove that in the limitδ2 ≤ ε → 0 the solutions of the Camassa-Holm

equation (1) can be approximated through the solutions of the associated KdV equation (3)

on anO(1/ε)-time scale.

Theorem 2.1 Let s ∈ N and s ≥ 5. For all T0 > 0 and C1 > 0 there existε0 > 0 and

C2 > 0 such that for allδ2 ≤ ε ≤ ε0 the following holds. Letv ∈ C([0, T0/ε], H
s+5(R)) be

a solution of the KdV equation (3) satisfying

sup
t∈[0,T0/ε]

‖v(·, t)‖Hs+5(R) ≤ C1. (4)
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Then there exists a solutionu ∈ C([0, T0/ε], H
s(R)) of the Camassa-Holm equation (1) so

thatu(x, 0) = v(x, 0) for x ∈ R and

sup
t∈[0,T0/ε]

‖u(·, t)− v(·, t)‖Hs(R) ≤ C2 ε.

Proof : The proof is based on suitable energy estimates. In order to findu, we make the

ansatzu = v + εR. A short calculation reveals that then we need solve the equation

∂tR + ∂xR +
3

2
ε (v∂xR + R∂xv) + δ2(

1

6
− ν − σ

3
) ∂3

xR− δ2ν∂t∂
2
xR

−1

2
εδ2ν(v∂3

xR + R∂3
xv + 2∂xv∂2

xR + 2∂xR∂2
xv) + δ4β∂5

xR +
3

2
ε2 R∂xR

−1

2
ε2δ2ν(R∂3

xR + 2∂xR∂2
xR)− 1

2
δ2ν(v∂3

xv + 2∂xv∂2
xv) + δ4ε−1β ∂5

xv

− δ2ε−1ν (∂t∂
2
xv + ∂3

xv) = 0 (5)

for R, and in addition we have to verify that

sup
t∈[0,T0/ε]

‖R(·, t)‖Hs(R) ≤ C2. (6)

As initial data forR we chooseR(x, 0) = 0. Since the Camassa-Holm equation possesses

local unique solutions inHs, cf. [7, 14, 9], also (5) has local unique solutions inHs. Fur-

thermore, the solutions do not blow up, as long as theHs-norm of u = v + εR, resp.R,

is bounded; here and in the sequel we writeHj in place ofHj(R) and suppress thet-

dependence of the functions. Hence it remains to show (6). For this, we let

Ej(R) =

∫
(∂j

xR)2 dx + δ2ν

∫
(∂j+1

x R)2 dx, j ∈ {0, . . . , s},
and

E(R) =
s∑

j=0

Ej(R);

it is for the definition ofEj(R) that we had to assumeν > 0. Note also that‖R‖2
Hs +

δ2ν‖∂s+1
x R‖2

L2 ≤ E(R) ≤ C(‖R‖2
Hs + δ2‖∂s+1

x R‖2
L2) for δ ≤ 1. In order to estimateE(R),

we consider a smooth and compactly supported solutionR of (5). We take∂j
x of (5), multiply

by ∂j
xR, and integrate overx ∈ R. Then we obtain

1

2
∂t

∫
(∂j

xR)2 dx +
3ε

2

∫
∂j

x(v∂xR + R∂xv) ∂j
xR dx +

1

2
δ2ν∂t

∫
(∂j+1

x R)2 dx

−1

2
εδ2ν

∫
∂j

x(v∂3
xR + R∂3

xv + 2∂xv∂2
xR + 2∂xR∂2

xv) ∂j
xR dx

+
3

2
ε2

∫
∂j

x(R∂xR) ∂j
xR dx− 1

2
ε2δ2ν

∫
∂j

x(R∂3
xR + 2∂xR∂2

xR) ∂j
xR dx

−1

2
δ2ν

∫
∂j

x(v∂3
xv + 2∂xv∂2

xv) ∂j
xR dx + β δ4ε−1

∫
∂j+5

x v ∂j
xR dx

− δ2ε−1ν

∫
(∂t∂

j+2
x v + ∂j+3

x v) ∂j
xR dx = 0, (7)
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where we used that
∫

∂j+1
x R ∂j

xR dx = 0,

∫
∂j+3

x R ∂j
xR dx = 0,

∫
∂j+5

x R ∂j
xR dx = 0;

this follows through an odd number of integrations by parts. The remaining contributions to

(7) we have to consider term by term. To begin with, for coefficientsck,

A1 =

∫
∂j

x(v∂xR) ∂j
xR dx =

j−1∑

k=0

ck

∫
∂j−k

x v ∂k+1
x R ∂j

xR dx +

∫
v ∂j+1

x R ∂j
xR dx

=: a11 + a12.

Sincesupt∈[0,T0/ε] ‖v(t)‖Cs+4
b (R) ≤ C by (4), we have|a11| ≤ C‖R‖2

Hj by Hölder’s inequal-

ity. For a12 we integrate by parts and get

a12 =

∫
v ∂j+1

x R ∂j
xR dx = −

∫
∂x(v ∂j

xR) ∂j
xR dx = −1

2

∫
∂xv (∂j

xR)2 dx,

so that|a12| ≤ C‖R‖2
Hj and hence|A1| ≤ C‖R‖2

Hj ≤ CE(R). For the expressionA2 =∫
∂j

x(R∂xv) ∂j
xR dx we directly obtain|A2| ≤ C‖R‖2

Hj ≤ CE(R), as only derivatives ofR

occur up to the orderj. Next we consider

A3 =

∫
∂j

x(v∂3
xR) ∂j

xR dx

=

j−3∑

k=0

ck

∫
∂j−k

x v ∂k+3
x R ∂j

xR dx + cj−2

∫
∂2

xv ∂j+1
x R ∂j

xR dx

+cj−1

∫
∂xv ∂j+2

x R ∂j
xR dx +

∫
v ∂j+3

x R ∂j
xR dx

=: a31 + a32 + a33 + a34.

Clearly|a31|+|a32| ≤ C‖R‖2
Hj as before, cf.a11 anda12. Now we observe the useful general

formulas
∫

f∂xg ∂2
xg dx = −1

2

∫
∂xf (∂xg)2 dx, (8)

∫
fg ∂3

xg dx = −1

2

∫
∂3

xf g2 dx +
3

2

∫
∂xf (∂xg)2 dx, (9)

for smooth and compactly supported functionsf and g. Thus |a33| ≤ C‖∂j+1
x R‖2

L2 as

well as |a34| ≤ C(‖R‖2
Hj + ‖∂j+1

x R‖2
L2) is found, and consequently|A3| ≤ C(‖R‖2

Hj +

‖∂j+1
x R‖2

L2) ≤ C(E(R) + ‖∂j+1
x R‖2

L2). For the term

A4 =

∫
∂j

x(R∂3
xv + 2∂xv∂2

xR + 2∂xR∂2
xv) ∂j

xR dx
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we can argue analogously using (8) and (9), so that also|A4| ≤ C(E(R) + ‖∂j+1
x R‖2

L2). The

next contribution to (7) is

A5 =

∫
∂j

x(R∂xR) ∂j
xR dx.

If j = 0, thenA5 = 1
3

∫
∂x(R

3) dx = 0. If j = 1 we getA5 = 1
2

∫
(∂xR)3 dx through

integration by parts, whence|A5| ≤ C‖R‖H2‖R‖2
H1 ≤ CE(R)3/2 for j = 1. If j ≥ 2, then

we split

A5 =

j−1∑

k=1

ck

∫
∂j−k

x R ∂k+1
x R ∂j

xR dx +

∫
∂xR (∂j

xR)2 dx +

∫
R ∂j+1

x R ∂j
xR dx

=: a51 + a52 + a53.

It follows that |a51| ≤ C‖R‖3
Hj , since‖R‖Cl−1

b
≤ C‖R‖Hl for l ≥ 1. For the same reason

we have|a52| ≤ C‖R‖3
Hj , and (8) shows thata53 = −1

2
a52 obeys the same estimate|a53| ≤

C‖R‖3
Hj . Consequently, we see that|A5| ≤ CE(R)3/2 for all j. Further, let

A6 =

∫
∂j

x(R∂3
xR + 2∂xR ∂2

xR) ∂j
xR dx.

If j = 0, thenA6 =
∫

∂x(R
2∂2

xR) dx = 0. If j = 1, then

A6 = −
∫

(R∂3
xR + 2∂xR ∂2

xR) ∂2
xR dx = −3

2

∫
∂xR (∂2

xR)2 dx

by (8), so that|A6| ≤ C‖R‖3
H2 ≤ CE(R)3/2 for j = 1. If j = 2, then

A6 = −
∫

∂x(R∂3
xR + 2∂xR ∂2

xR) ∂3
xR dx = −5

2

∫
∂xR (∂3

xR)2 dx +
2

3

∫
∂x(∂

2
xR)3 dx

= −5

2

∫
∂xR (∂3

xR)2 dx,

once again by (8). Thus|A6| ≤ C‖R‖H2‖R‖2
H3 for j = 2. If j = 3, then a similar calculation

leads to

A6 = −
∫

∂2
x(R∂3

xR+2∂xR ∂2
xR) ∂4

xR dx = −7

2

∫
∂xR (∂4

xR)2 dx−7

∫
∂2

xR ∂3
xR ∂4

xR dx,

and accordingly|A6| ≤ C‖R‖H3‖R‖2
H4 for j = 3. If j ≥ 4, we write

A6 =
( j−2∑

k=0

ck

∫
(∂j−k

x R ∂k+3
x R + 2∂j−k+1

x R ∂k+2
x R) ∂j

xR dx

+2cj−1

∫
∂2

xR ∂j+1
x R ∂j

xR dx
)

+ (cj−1 + 2)

∫
∂xR ∂j+2

x R ∂j
xR dx

+

∫
R ∂j+3

x R ∂j
xR dx

=: a61 + a62 + a63.
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Then|a61| ≤ C‖R‖Hj‖R‖2
Hj+1, since in each term ofa61 one order of derivative is≤ (j−1).

Also by (8),|a62| ≤ C| ∫ ∂2
xR (∂j+1

x R)2 dx| ≤ C‖R‖Hj‖R‖2
Hj+1, and (9) yields

|a63| ≤ C
∣∣∣− 1

2

∫
∂3

xR (∂j
xR)2 dx +

3

2

∫
∂xR (∂j+1

x R)2 dx
∣∣∣ ≤ C‖R‖Hj‖R‖2

Hj+1 .

In summary, we obtain|A6| ≤ C‖R‖Hj‖R‖2
Hj+1 ≤ CE(R)1/2‖R‖2

Hj+1 for j 6= 1, whereas

|A6| ≤ CE(R)3/2 for j = 1. Next, for the expressionA7 =
∫

∂j
x(v∂3

xv+2∂xv∂2
xv) ∂j

xR dx we

directly get|A7| ≤ C‖R‖Hj ≤ CE(R)1/2 from the bound onv. ThenA8 =
∫

∂j+5
x v ∂j

xR dx

is estimated as|A8| ≤ C‖R‖Hj ≤ CE(R)1/2, and finally we have to bound the residual

terms

A9 =

∫
(∂t∂

j+2
x v + ∂j+3

x v) ∂j
xR dx.

Using the KdV equation (3),A9 can be rewritten as

A9 = −3

2
ε

∫
∂j+2

x (v∂xv) ∂j
xR dx− δ2

(1

6
− σ

2

) ∫
∂j+5

x v ∂j
xR dx,

from where we get|A9| ≤ C max{ε, δ2}‖R‖Hj ≤ C max{ε, δ2}E(R)1/2. Summarizing the

foregoing estimates onA1, . . . , A9, we conclude from (7) that forδ2 ≤ ε ≤ 1,

d

dt
E(R) ≤ C

s∑
j=0

(
εE(R) + εδ2(E(R) + ‖∂j+1

x R‖2

L2) + ε2E(R)3/2

+ε2δ2(E(R)1/2‖R‖2
Hj+1 + E(R)3/2) + δ2E(R)1/2 + δ4ε−1E(R)1/2

+δ2ε−1 max{ε, δ2}E(R)1/2
)

≤ C
(
εE(R) + ε2E(R)3/2 + εE(R)1/2

)

≤ C∗
(
εE(R) + ε2E(R)3/2 + ε

)
, (10)

with the constantsC and C∗ depending only onC1 from (4); we also used the general

inequality |x|1/2 ≤ 1 + |x|. Let C2 = C∗T0 exp(2C∗T0) and consider the longest time

interval [0, τ1] so thatE(R(t)) ≤ C2 on this time interval. Then (10) in conjunction with

R(x, 0) = 0 and Gronwall’s inequality yields fort ∈ [0, T0/ε] the estimate

E(R(t)) ≤ C∗εt exp(C∗[1 + C
1/2
2 ε]εt) ≤ C∗T0 exp(C∗[1 + C

1/2
2 ε]T0) < C2,

provided thatε ≤ ε0 andε0 > 0 is chosen sufficiently small. Therefore[0, τ1] ⊃ [0, T0/ε],

and the bound‖R(·, t)‖2
Hs ≤ E(R(t)) ≤ C2 is verified for allt ∈ [0, T0/ε]. Writing C2 in

the place ofC1/2
2 , this shows (6) and hence completes the proof of Theorem 2.1.

3 Camassa-Holm dynamics in the water wave problem

It is the purpose of this section to provide error estimates relating the solutions of the

Camassa-Holm equation (1) to the solutions of the associated water wave problem in the case
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whereε = δ2. We refer to the water wave problem without and with surface tension as stated

in [15, 16]. There are used the spacesHs(2), equipped with the norm‖u‖Hs(2) = ‖uρ‖Hs,

whereρ(x) = 1 + x2. Moreover, we have to make the following remark.

Remark 3.1 The KdV equation (3) still contains the small parameterδ. However, it can be

made independent ofδ by changing variablesv(x, t) = w(x− t, δ2t) for w = w(ξ, τ). Then

∂τw + (
1

6
− σ

2
) ∂3

ξw +
3

2
w∂ξw = 0, (11)

whereδ dropped out. In this sense the KdV equation is unique amongst all long wave models.

The solutions to the water wave problem are determined by the evolution of the free top

surface. For the solutions under consideration, the elevation of this free top surface is a

graphη = η(x, t) over the flat bottom which is parameterized byx ∈ R. In [15, 16] the

following has been shown.

(KdV App) Fix σ ≥ 0 with σ 6= 1/3 and takes ∈ N with s ≥ 6. Then for everyA1 > 0

there existsδ0 > 0 and A2 > 0 such that the following holds. Ifδ ∈ (0, δ0) and if w ∈
C([0, T0], H

s(2)) is a solution of the KdV equation (11) so that‖w(·, 0)‖Hs(2) ≤ A1 for the

initial data, then there is a solutionη of the water wave problem satisfying

sup
t∈[0,T0/δ2]

sup
x∈R

|η(x, t)− w(x− t, δ2t)| ≤ A2 δ1/2,

or equivalently,

sup
t∈[0,T0/δ2]

sup
x∈R

|η(x, t)− v(x, t)| ≤ A2 δ1/2.

Remark 3.2 In comparing [15, 16] with (KdV App), note thatx, t, η in (KdV App) are

already scaled variables which correspond toδx, δt, δ2η in [15, 16].

Combining Theorem 2.1 with (KdV App) gives that solutions of the water wave problem and

solutions of the Camassa-Holm equation stay close together over a time interval of length

O(1/δ2).

Theorem 3.3 Fix σ ≥ 0 with σ 6= 1/3, let ν > 0, assumes ∈ N and s ≥ 6, and take

ε = δ2. Then for allC3 > 0 there existδ0 > 0 andC4, C5 > 0 such that for allδ ∈ (0, δ0)

the following holds. Letu0 ∈ Hs+5(2) be such that‖u0‖Hs+5(2) ≤ C3. Then the associated

solutionu ∈ C([0, T0/δ
2], Hs+5(R)) of the Camassa-Holm equation (1) with initial data

u(x, 0) = u0(x) satisfies

sup
t∈[0,T0/δ2]

‖u(·, t)‖Hs(R) ≤ C4, (12)
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and there is a solutionη of the water wave problem so that

sup
t∈[0,T0/δ2]

sup
x∈R

|η(x, t)− u(x, t)| ≤ C5 δ1/2.

Proof : Solve the KdV equation (11) with initial dataw(x, 0) = u0(x) ∈ Hs+5(2). The

solutions of the KdV equation (11) are known to exist inHs+5(2) for all t ∈ R, see [15]. By

the continuity of the map which sends initial data to the solutions, there existsC1 > 0 such

that for the solutionsw of (11) with initial data bounded byC3,

sup
τ∈[0,T0]

‖w(·, τ)‖Hs+5(2) ≤ C1.

Since (11) is independent ofδ, C1 is independent ofδ as well. Therefore

sup
t∈[0,T0/δ2]

‖w(·, δ2t)‖Hs+5 ≤ C1,

or equivalently for the solutionsv(x, t) = w(x− t, δ2t) of (3),

sup
t∈[0,T0/δ2]

‖v(·, t)‖Hs+5 ≤ C1.

Hence the assumptions of Theorem 2.1 and (KdV App) are satisfied, takingA1 = C1 for

the latter. Consequently there is a solutionu ∈ C([0, T0/δ
2], Hs(R)) of the Camassa-Holm

equation (1) such thatu(x, 0) = v(x, 0) = w(x, 0) = u0(x) and

sup
t∈[0,T0/δ2]

‖u(·, t)− v(·, t)‖Hs ≤ C2δ
2.

This yields (12), and using (KdV App) we can moreover estimate

|η(x, t)− u(x, t)| ≤ |η(x, t)− v(x, t)|+ ‖v(·, t)− u(·, t)‖L∞ ≤ A2 δ1/2 + Cδ2

uniformly in t ∈ [0, T0/δ
2] andx ∈ R, which gives the desired result.

Remark 3.4 If we retain the conditionβ = 0, as a consequence of (2), then the Camassa-

Holm equation (1) can be rewritten in terms ofm = u− 10gνδ2∂2
xu as

∂tm + ∂xm +
ε

2
(u∂xm + 2m∂xu) + δ2

(1

6
− σ

2

)
∂3

xu = 0.

In this formulation, the peakon equation (the equation which possesses the solitary waves

with discontinuous derivative at the peaks) can be obtained in the case whereσ = 1/3.

However, in the original Camassa-Holm equation, the limitσ → 1/3 is singular by the choice

of ν in (2), and as already stated in [11], the peakon equation cannot strictly be derived from

the Euler equation and hence it is at most a phenomenological model. Moreover, the limit

equation forσ = 1/3 is no longer the KdV equation, but the Kawahara equation; see [16].
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