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Abstract

In a number of scaling limits, we prove estimates relating the solutions of the Camassa-
Holm equation to the solutions of the associated KdV equation. As a consequence, suit-
able solutions of the water wave problem and solutions of the Camassa-Holm equation
stay close together for long times.

1 Introduction

The Camassa-Holm equation [11]
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with u(z,t) € R, x € R, t € R, parameterg, o, 5 € R, and small parameteesy > 0, has

been derived [4, 12, 13] as an amplitude equation for the description of unidirectional surface
water waves of an irrotational, inviscid fluid in an infinitely long canal of fixed constant
depth, up to residual terms of ordé(§° + d%c + 6% + *). It is obtained in the limit of

small amplitude, i.e., the amplitude scalesaand in the limit of long waves, i.ed, is the
scaling of space and (as a consequence) also that of time. Often the paramditezd as
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(o #1/3), (2)
wheres > 0 is the parameter for the surface tension in the linear dispersion relation

w? = (k + ok®) tanh(k)



of the water wave problem. With this choiceafthe coefficient
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in front of the fifth-order termy*9>u vanishes; see [11] for more details. However, since

for technical reasons we will need> 0, we just consider (1) with independent parameters

v > 0ando, g € R.

The Camassa-Holm equation recently attracted a lot of interest, due to its complete integra-
bility and the presence of so called peakon solutions; see for instance [4, 3, 1, 2] and the
references therein. However, the question whether solutions of the water wave problem can
really be approximated by solutions of the Camassa-Holm equation so far remained open. In
[10, 11] it has been argued that the KdV 5-equation and the Camassa-Holm equation are for-
mally related by a Kodama transformation. Moreover, special solutions and their occurrence
in the water wave problem are discussed.

Our approach to the problem is as follows. In Section 2 we prove an approximation theorem,
which says that in the limif? < ¢ — 0 solutions of the Camassa-Holm equation remain
close to the solutions of the associated KdV equation

1
6
on anO(1/e)-time scale. For the particular choiee= 4%, a number of approximation
theorems have been established recently [8, 15, 16], showing that the water waves under
consideration can be approximated onafi /5?)-time scale by the solutions of (3). Com-
bining these two observations, we conclude that in this limit the solutions of the water wave
problem can be approximated by the solutions of the Camassa-Holm equation.

3 2 O\ o3,
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2 KdV dynamics in the Camassa-Holm equation

In this section we prove that in the limit < ¢ — 0 the solutions of the Camassa-Holm
equation (1) can be approximated through the solutions of the associated KdV equation (3)
on anO(1/e)-time scale.

Theorem2.1Lets € Nands > 5. Forall 7T, > 0 andC; > 0 there existt, > 0 and
Cy > 0 such that for alli* < e < ¢ the following holds. Let € C([0, Ty/c], H***(R)) be
a solution of the KdV equation (3) satisfying

sup ||v(-, 1)]

Hs+5(R) < Cl- (4)
t€[0,To /<]



Then there exists a solutiane C([0,7;/¢], H*(R)) of the Camassa-Holm equation (1) so
thatu(z,0) = v(x,0) forz € R and
sup Ju(-,£) = v(, )| oy < Cae
t€[0,Tp /€]
Proof: The proof is based on suitable energy estimates. In order tafinee make the
ansatz: = v + ¢R. A short calculation reveals that then we need solve the equation
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for R, and in addition we have to verify that
sup || R(, )| gsry < Co (6)
t€[0,To/¢]

As initial data for R we chooseR(x,0) = 0. Since the Camassa-Holm equation possesses
local unique solutions ii/#, cf. [7, 14, 9], also (5) has local unique solutionsHri. Fur-
thermore, the solutions do not blow up, as long asitienorm ofu = v + R, resp.R,

is bounded; here and in the sequel we wiifé in place of H/(R) and suppress the
dependence of the functions. Hence it remains to show (6). For this, we let

Ej(R):/(agR)deJr521//(8;'“}%)2619;, jefo,...,s},
and

E(R) =D _ Ey(R);

it is for the definition of £;(R) that we had to assume > 0. Note also that|R||7,. +
82|05t R[5, < E(R) < C(|R|[5. + 62|01 R||3,) for & < 1. In order to estimaté(R),
we consider a smooth and compactly supported solution(5). We taked? of (5), multiply
by &/ R, and integrate over € R. Then we obtain

1 . . . 1 ,
3 O /(856}%)2 dx + % / 02 (v0, R + ROv) 02R dx + 3 520, /(8;+1R)2 dz
1 A A
-3 0% / O (vO2R + ROPv + 20,002 R + 20, RO*v) & R dw
3 o ' j L 50 i (Pa3 2 j
+§€ 0’ (RO.R) 0’Rdx — 53¢ v | 02(RO,;R + 20, RO;R) 0°.R dx
—% % / 0 (020 + 20,00%v) P Rdx + B 6*e! /Q{’L% & R dx
— 0%ty /(@tﬁg{“v +0I30) ¥ Rdx = 0, (7)
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where we used that
[orrard =0, [aoRoRa =0, [ RORd =0

this follows through an odd number of integrations by parts. The remaining contributions to
(7) we have to consider term by term. To begin with, for coefficiepts

j—1
A = / 0} (v, R) A Rdx =Y ¢ / Ok PRI R dx + / v RO Rdx
k=0

=! a1 + ao.

Sincesup;e(o 7,/ V(1) oty <O by (4), we havéa,,| < C||R||3,; by Holder’s inequal-
ity. For a;, we integrate by parts and get

gy = /v@;HR@;R(U — _/81,(”00;]%) I Rdx = —5/8951) (01 R)? du,

so that|a;s| < C||R|3,; and henceA,| < C||R||3; < CE(R). For the expressior, =
[ 9(R8,v) &R dx we directly obtain A,| < C||R|)%, < CE(R), as only derivatives oR
occur up to the ordef. Next we consider

Ay — / 59 (vO°R) &1 R da
j—3
- Y / 00 S RI R dr + ¢;s / 20 ¥ ROIR da
k=0

+¢j1 / 0,0 PRI Rdx + / v’ PR R dx

=: a3z1 + azy + azz + az4.

Clearly|as |+ |asz2| < CHRH?N as before, cfa;; anda;;. Now we observe the useful general
formulas

[ rogetgae = —5 [o.s (@97 d, ®
[to2gae = —5 [ an s [ou(@oran, ©

for smooth and compactly supported functiohsind g. Thus |ass| < C||ag+1R||i2 as
well aslass| < C(|R||%; + @7 R|[7.) is found, and consequentis| < C(||R|%; +
|3+ R|[2,) < C(E(R) + |09+ R|%,). For the term

Ay = / O (ROPv + 20,002 R + 20, R0%v) &) R dw



we can argue analogously using (8) and (9), so that|also< C(E(R) + H@gE'“RHiQ). The
next contribution to (7) is
Ay — / 9 (ROLR) 0V R da.

If j =0, thends = § [0.(R*)dx = 0. If j = 1 we getd; = ; [(0,R)*dx through
integration by parts, whendel;| < (J||R||H2||R||i,1 < CE(R)¥?forj = 1. If j > 2, then
we split
j—1
4 = Y / D ROIR Y R dr + / 0, (I R)2 dx + / ROVIROIR dz
k=1
=! @51 + a52 + Gs3.

It follows that|as,| < C||R|[3,;, since||R||Clz7_1 < C||R||j for I > 1. For the same reason
we havelasy| < C||R||%,;, and (8) shows thaty; = — a5 obeys the same estimate;| <
C||R|)%,,;. Consequently, we see that;| < CE(R)*? for all j. Further, let

Ag = / O (ROPR + 20,RO’R) O R dx.
If j =0, thends = [ 9,(R*02R)dx = 0. If j =1, then
Ag = — /(Ra;“;R +20,RO’R) 0*Rdx = —g /8$R(8§R)2dx
by (8), so thatAg| < C||R|[3,, < CE(R)¥?for j = 1. If j = 2, then
Ay — — / 0.(RIR + 20, RO2R) O} Rk = — / 0, R (P R)? da +§ / 0, (2R da

— —g/axR(c‘)ﬁR)de,

once again by (8). Thusls| < C||R| ;2| |3 for j = 2. If j = 3, then a similar calculation
leads to

Ag = — / O2(ROPR+20,R0°R) 0*R dx — —; / 0,R (9'R)® dz—T7 / PPROPRO'R dr,

and accordinglyAs| < C||R|| s || R||5: for j = 3. If j > 4, we write

j—2
Ay = (ch / (OIT*ROMBR + 200" ROM2R) & R dw

k=0
+2¢j_1 / agRag;“Rangx) + (¢j-1+2) / 0, ROPRY R dx
+ / ROTRYRdx

=: Qg1 1+ ag2 + ag3.



Then|ag | < C||R| ;|| Rl%,,+:, Since in each term afs, one order of derivative i (j—1).
Also by (8),|aga| < C| [ 2R (954 R)? dx| < C||R|ly, | Rl3+:, and (9) yields

1 A 3 ,
ol <C| =5 [RR@R? dx+ 3 [ 0RO R ds] < ORI Bl

In summary, we obtainds| < C||R|| ;|| R|35:10 < CE(R)Y?||R|[5,;:1 for j # 1, whereas
|Ag| < CE(R)*?for j = 1. Next, for the expressiod; = [ 07 (v92v+20,v0?v) LR dx we
directly get|A;| < C||R||,;;, < CE(R)Y? from the bound om. ThenAg = [ 89°0 9 R dx
is estimated agds| < C||R|,;; < CE(R)Y?, and finally we have to bound the residual
terms

Ay = /(@83{*2@ + &13) O R dx.

Using the KdV equation (3)44 can be rewritten as
3 . . 1 o . .
_ _ = j+2 J R v Jj+5,, 97
Ay = 25/836 (vV0,V) P Rdx — 6 <6 2) /QE v’ Rdz,
from where we getAy| < C max{e, 8?}||R||;; < C max{e, §*}€(R)Y2. Summarizing the

foregoing estimates oA, . . ., Ay, we conclude from (7) that fa? < ¢ < 1,

d ° 2 i+1 2 2 3/2
S E(R) < 0%(&:(3)%5 (E(R) + 0771 R|%,) + 2E(R)

+262(E(R)V2||R|2540 + E(R)*?) 4+ 2E(R)Y? 4 5% 71 E(R)V/?
+6%e ! max{e, (52}5(1%)1/2)

IN

0(55(3) 4 28(RY? + 55(3)1/2)
< c <58(R) 4 28(RP2 ¢ 5) , (10)

with the constants’ and C* depending only orC; from (4); we also used the general
inequality |z|'/2 < 1+ |z|. LetCy, = C*Tyexp(2C*Ty) and consider the longest time
interval [0, 7] so that€(R(t)) < C, on this time interval. Then (10) in conjunction with
R(z,0) = 0 and Gronwall’s inequality yields far € [0, 7/¢] the estimate

E(R(t)) < C*etexp(C*[1 + O %elet) < C*Tyexp(C*[1 + Co3*e|Ty) < Cs,

provided that: < ¢5 andey > 0 is chosen sufficiently small. Therefoi@ =] > [0, Ty/<],

and the bound R(-,t)||3,. < E(R(t)) < C, is verified for allt € [0,Ty/<]. Writing Cy in

the place 0021/2, this shows (6) and hence completes the proof of Theorem2.1. N

3 Camassa-Holm dynamics in the water wave problem

It is the purpose of this section to provide error estimates relating the solutions of the
Camassa-Holm equation (1) to the solutions of the associated water wave problem in the case
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wheres = §2. We refer to the water wave problem without and with surface tension as stated
in [15, 16]. There are used the spadéy2), equipped with the normju|| ;. oy = [[upll g,
wherep(z) = 1 + 2. Moreover, we have to make the following remark.

Remark 3.1 The KdV equation (3) still contains the small paraméteHowever, it can be
made independent éfby changing variables(z, t) = w(x — t, 6*t) for w = w(¢, 7). Then

1 o
6 2
whered dropped out. In this sense the KdV equation is unique amongst all long wave models.

Orw + ( ) 0w + ;wagw =0, (11)

The solutions to the water wave problem are determined by the evolution of the free top
surface. For the solutions under consideration, the elevation of this free top surface is a
graphn = n(x,t) over the flat bottom which is parameterized by= R. In [15, 16] the
following has been shown.

(KdV App) Fix o > 0 with o # 1/3 and takes € N with s > 6. Then for every4; > 0
there exists), > 0 and A, > 0 such that the following holds. & € (0,4y) and ifw €
C([0,To], H*(2)) is a solution of the KdV equation (11) so that(-, 0) || ;. < A for the
initial data, then there is a solution of the water wave problem satisfying

sup  sup |n(z,t) — w(x —t,0%t)] < Ay V2,
t€[0,7p/62] R
or equivalently,

sup  sup |n(x,t) — vz, t)] < Ay 52
te[0,70/6%]) ze€R

Remark 3.2 In comparing [15, 16] with (KdV App), note that,t,n in (KdV App) are
already scaled variables which corresponditoit, 5% in [15, 16].

Combining Theorem 2.1 with (KdV App) gives that solutions of the water wave problem and
solutions of the Camassa-Holm equation stay close together over a time interval of length
O(1/6%).

Theorem 3.3Fix ¢ > Owitho # 1/3, letrv > 0, assumes € N ands > 6, and take

e = 2. Then for allC; > 0 there exist), > 0 andC}, C5 > 0 such that for alld € (0, dy)
the following holds. Let,, € H*5(2) be such that|uo| y+s5) < Cs. Then the associated
solutionu € C([0,T,/6%], H***(R)) of the Camassa-Holm equation (1) with initial data
u(x,0) = ug(x) satisfies

sup |fu(-, 7)|

Hs (R) S 047 (12)
te[0,70/62]



and there is a solution of the water wave problem so that

sup sup |n(x,t) —u(z,t)| < C5 542,
t€[0,7p/62] z€R
Proof: Solve the KdV equation (11) with initial data(x,0) = uy(z) € H**°(2). The
solutions of the KdV equation (11) are known to existfi>(2) for all ¢ € R, see [15]. By
the continuity of the map which sends initial data to the solutions, there &xists0 such
that for the solutions of (11) with initial data bounded bg,

sup |Jw(-, 7)]

Hs+5(2) < Cl~
TG[O,TQ]

Since (11) is independent 6f C is independent of as well. Therefore

sup [w(-, 6°t)]
t€[0,T0/482]

Hs+5 S 017

or equivalently for the solutions(z, t) = w(x — t, §t) of (3),

sup lv(-, )] s < Ch.

tE[O,To/(SQ]

Hence the assumptions of Theorem 2.1 and (KdV App) are satisfied, taking C; for
the latter. Consequently there is a solutior C([0,Ty/6%], H*(R)) of the Camassa-Holm
equation (1) such that(z,0) = v(z,0) = w(z,0) = ue(z) and

sup  lu(+,t) —v(-, )| gs < Ca6°.

t€[0,Tp /2]

This yields (12), and using (KdV App) we can moreover estimate
(@, 1) = ulw, )] < (e t) = v(@, )] + [0 8) = ul 6] < A20Y2 + CF
uniformly in¢ € [0, Ty/6% andz € R, which gives the desired result. |

Remark 3.4 If we retain the conditiors = 0, as a consequence of (2), then the Camassa-
Holm equation (1) can be rewritten in termsrof= « — 10gv§%0%u as

1
6
In this formulation, the peakon equation (the equation which possesses the solitary waves
with discontinuous derivative at the peaks) can be obtained in the case wheré /3.
However, in the original Camassa-Holm equation, the limit- 1/3 is singular by the choice

of v in (2), and as already stated in [11], the peakon equation cannot strictly be derived from
the Euler equation and hence it is at most a phenomenological model. Moreover, the limit
equation foro = 1/3 is no longer the KdV equation, but the Kawahara equation; see [16].

om + O,m + g(uamm + 2mad,u) + 52( — %)8§u = 0.
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