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1 Introduction

In this paper, we establish the long-time behavior of the solutions to the
discrete Schrödinger and Klein-Gordon equations in one space dimension.
We extend a general strategy introduced by Vainberg [12], Jensen-Kato [6],
and Murata [8], which concerns the wave, Klein-Gordon, and Schrödinger
equations, to the discrete case. Namely, we establish the Puiseux expansion
for a resolvent of a stationary problem. Then the long-time asymptotics can
be obtained by means of the (inverse) Fourier-Laplace transform.

We adopt the general scheme of [8] and make all constructions for the
concrete case in detail. We restrict ourselves to a “nonsingular case”, in the
sense of [8], where the truncated resolvent is bounded at the ends of the
continuous spectrum; this holds for a generic potential. It is just this case
which allows us to get the desired time decay of order ∼ t−3/2, as is desirable
for applications to scattering problems.
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First we consider the 1D discrete version of the Schrödinger equation

{
iψ̇(x, t) = Hψ(x, t) := (−∆ + V (x))ψ(x, t)
ψ

∣∣
t=0

= ψ0

∣∣∣∣ x ∈ Z, t ∈ R. (1.1)

Here ∆ stands for the difference Laplacian in Z, defined by

∆ψ(x) = ψ(x+ 1)− 2ψ(x) + ψ(x− 1), x ∈ Z,

for functions ψ : Z→ C. Denote by S the set of real functions on the lattice
Z with a finite support. For the potential V we assume that V ∈ S. If we
apply the Fourier-Laplace transform

ψ̃(x, ω) =

∞∫

0

eiωtψ(x, t) dt, Imω > 0,

to (1.1), then the stationary equation

(H − ω)ψ̃(ω) = −iψ0, Imω > 0, (1.2)

is obtained. Here ψ̃(ω) := ψ̃(·, ω). Note that the integral converges, since
‖ψ(·, t)‖l2 = const by charge conservation. Hence we get as the solution

ψ̃(ω) = −i R(ω)ψ0, (1.3)

where R(ω) = (H − ω)−1 is the resolvent of the Schrödinger operator H.
We are going to use the function spaces which are the discrete version of

the Agmon spaces [1]. These are the weighted Hilbert spaces l2σ = l2σ(Z) with
the norm

‖u‖l2σ
=

∥∥(1 + x2)σ/2u
∥∥

l2
, σ ∈ R.

Let us denote

B(σ, σ′) = L(l2σ, l
2
σ′), B(σ, σ′) = L(l2σ ⊕ l2σ, l

2
σ′ ⊕ l2σ′)

the space of bounded linear operators from l2σ to l2σ′ and from l2σ⊕l2σ to l2σ′⊕l2σ′ ,
respectively. Concerning further notation, we write K = Op(K(x, y)) for the
operator with kernel K(x, y), i.e.,

(Ku)(x) =
∑

y∈Z
K(x, y)u(y), x ∈ Z.

We prove below that the continuous spectrum of the operator H coincides
with the interval [0, 4]. Then our main results are as follows. For a generic
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potential V ∈ S (see Definition 5.1) satisfying the condition
∑
x∈Z

V (x) 6= 0,

we derive the Puiseux expansion for the resolvent at the singular spectral
points µ = 0 and µ = 4 as

R(µ+ ω) = Rµ
0 +Rµ

1ω
1/2 +Rµ

2ω +Rµ
3ω

3/2 + ...+O(|ω|N/2), ω → 0. (1.4)

This expansion is valid in the norm B(σ, −σ) with a σ depending on N .
Then taking the inverse Fourier-Laplace transform of (1.3), it follows that
for σ > 7/2

∥∥∥∥∥e
−itH −

n∑
j=1

e−itωjPj

∥∥∥∥∥
B(σ,−σ)

= O(t−3/2), t→∞. (1.5)

Here Pj are the orthogonal projections in l2 onto the eigenspaces of H, cor-
responding to the discrete eigenvalues ωj ∈ R.

For the proof, we first calculate an explicit formula for the resolvent of the
free equation in the case where V = 0. This formula allows us to construct
the expansion of the type (1.4) for the free resolvent. Then we prove (1.4)
for V 6= 0, developing the Fredholm alternative arguments similar to [6], [8].
Finally, Lemma 10.2 of Jensen-Kato [6] plays a crucial role in verifying the
decay (1.5).

We also obtain similar results for the discrete Klein-Gordon equation

{
ψ̈(x, t) = (∆−m2 − V (x))ψ(x, t)

ψ
∣∣
t=0

= ψ0, ψ̇
∣∣
t=0

= π0

∣∣∣∣ x ∈ Z, t ∈ R. (1.6)

Set Ψ(t) ≡ (
ψ(·, t), ψ̇(·, t)), Ψ0 ≡

(
ψ0, π0

)
. Then (1.6) takes the form

iΨ̇(t) = HΨ(t), t ∈ R; Ψ(0) = Ψ0, (1.7)

where

H =

(
0 i

i(∆−m2 − V ) 0

)

The resolvent R(ω) = (H − ω)−1 of the operator H can be expressed in
terms of the resolvent R(ω), and this expression yields the corresponding
properties of R(ω). In particular, we derive the asymptotic expansion of the
type (1.4) for R(ω), and also the long-time asymptotics of the type (1.5) for
the solution.

Let us comment on previous results in this direction. Eskina [3] and
Shaban–Vainberg [10] considered the difference Schrödinger equation in di-
mensions n ≥ 1. They proved the limiting absorption principle and applied
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it to the Sommerfeld radiation condition. However, [3, 10] do not concern
the asymptotic expansion of R(ω) and the long-time asymptotics of the type
(1.5).

The asymptotic expansion of the resolvent and the asymptotics (1.5) for
continuous hyperbolic equations were obtained in [7], [11], [12], [13], and for
Schrödinger equation in [4], [5], [6], [8]; also see [9] for an up-to-date review
and many references concerning dispersive properties of solutions to the con-
tinuous Schrödinger equation in various norms. For the discrete Schrödinger
and Klein-Gordon equations, the asymptotic expansion (1.4) and long-time
asymptotics (1.5) seem to be obtained for the first time in the present paper.

The paper is organized as follows. In Section 2 we obtain an explicit for-
mula for the free resolvent. In Section 3 we derive the asymptotic expansion
of the free resolvent. The limiting absorption principle for the perturbed
resolvent is proved in Section 4. In Sections 5 and 6 we get the Puiseux
expansion of the perturbed resolvent. In Section 7 we prove the long-time
asymptotics (1.5). In Section 8 we extend the results to the discrete Klein-
Gordon equation. Finally, in an appendix we illustrate the presence of a
discrete spectrum for potentials which are supported at one or two points.

2 The free resolvent

We start with an investigation of the unperturbed problem for equation (1.1)
with V = 0.The discrete Fourier transform of u : Z → C is defined by the
formula

û(θ) =
∑

x∈Z
u(x)eiθx, θ ∈ T := R/2πZ.

After taking the Fourier transform, the operator H0 = −∆ becomes the
operator of multiplication by φ(θ) = 2− 2 cos θ:

−∆̂u(θ) = φ(θ)û(θ).

Thus, the operatorH0 is selfadjoint and its spectrum is absolutely continuous.
It coincides with the range of the function φ, that is SpecH0 = [0, 4]. Denote
by R0(ω) = (H0 − ω)−1 the resolvent of the difference Laplacian. Then the
kernel of the resolvent R0(ω) = (H0 − ω)−1 reads as

R0(ω, x, y) =
1

2π

∫

T

e−iθ(x−y)

φ(θ)− ω
dθ, ω ∈ C \ [0, 4]. (2.1)

Let us calculate an explicit formula for R0(ω, x, y) using the Cauchy residue
theorem.
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Lemma 2.1. For ω ∈ C \ [0, 4] the resolvent is given by

R0(ω, x, y) = −i e
−iθ(ω)|x−y|

2 sin θ(ω)
, x, y ∈ Z, (2.2)

where θ(ω) is the unique solution of the equation

2− 2 cos θ = ω (2.3)

in the domain D := {−π ≤ Re θ ≤ π, Im θ < 0}.
Proof. First let us assume that x− y ≥ 0. Denote by Γ = Γ1 ∪ Γ2 ∪ Γ3 ∪ Γ4

the path indicated in Fig. 1, where

Γ1 : Re θ = −π, Im θ ∈ [−∞, 0],

Γ2 : Im θ = 0, Re θ ∈ [−π, 0],

Γ3 : Im θ = 0, Re θ ∈ [0, π],

Γ4 : Re θ = π, Im θ ∈ [0,−∞].

The map θ 7−→ φ(θ) = 2− 2 cos θ transforms the paths Γ1, Γ2, Γ3, Γ4 to the
(oriented) intervals of the real axis (∞, 4], [4, 0], [0, 4], [4,∞) respectively.
Note, that the path Γc : Re θ = 0, −∞ < Im θ ≤ 0 is mapped onto the
interval (−∞, 0) and the region D is transformed to the complex plane with
the cut [0, 4]. Hence, there exists a unique solution θ(ω) of the equation
φ(θ) = ω, ω 6∈ [0, 4], in the domain D.

Therefore the integrand in (2.1) has one simple pole at the point θ(ω),
and from the Cauchy residue theorem it follows that

R0(ω, x, y) =
1

2π

∫

Γ

e−iθ(x−y)

φ(θ)− ω
dθ = −i resθ(ω)

(
e−iθ(x−y)

φ(θ)− ω

)
.

This implies (2.2) for x − y ≥ 0. If x − y ≤ 0, we choose a similar path in
the upper half-plane Im θ > 0 and get the same formula (2.2).

3 Puiseux expansion of the free resolvent

The free resolvent R0(ω) is an analytic function with values in B(0, 0) for
ω ∈ C \ [0, 4]. This follows directly from the formula (2.2) since Im θ(ω) < 0,
and the kernel (2.2) decays exponentially. For ω ∈ (0, 4), the decay fails due
to Im θ(ω) = 0, whereas for ω = 0 and ω = 4 the kernel does not exist since
then sin θ(ω) = 0. Nevertheless, for the free resolvent the following limiting
absorption principle holds.
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Figure 1: Conformal mapping φ(θ)

Lemma 3.1. For σ > 1/2 the following limit exists as ε→ 0+:

R0(ω ± iε)
B(σ,−σ)

−−→ R0(ω ± i0), ω ∈ (0, 4). (3.1)

Proof. R0(ω) is the operator with the kernel R0(ω, x, y). If σ > 1/2 and
ω 6∈ {0, 4}, then the formula (2.2) implies that this is a Hilbert-Schmidt
operator in the space B(σ,−σ). For ω ∈ (0, 4) and x, y ∈ Z, there exists the
pointwise limit

R0(ω ± iε, x, y) → R0(ω ± i0, x, y), ε→ 0 + .
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Moreover, |R0(ω ± iε, x, y)| ≤ C(ω). Therefore,

∑

x,y∈Z
(1 + x2)−σ|R0(ω ± iε, x, y)−R0(ω ± i0, x, y)|2(1 + y2)−σ → 0

as ε → 0+ by the Lebesgue dominated convergence theorem. Hence the
Hilbert-Schmidt norm of the difference R0(ω± iε)−R0(ω± i0) converges to
zero, and (3.1) is proved.

Remark 3.1. Note that

R0(ω − i0, x, y) = R0(ω + i0, x, y), ω ∈ (0, 4). (3.2)

This is a consequence of the relation θ(ω) = −θ(ω) for ω ∈ C \ [0, 4].

Further, we need more information on the behavior of R0(ω) near ω = 0
and ω = 4. Without loss of generality we consider only the case ω = 0. By
means of Taylor expansion we obtain from (2.3) that

1

sin θ(ω)
=

(
ω − ω2

4

)−1/2

= − 1√
ω

(1 +
ω

8
+

3ω2

128
+ . . . ), ω → 0,

where Im
√
ω > 0. This choice of the branch provides Im θ(ω) < 0 that

corresponds to the exponentially decay of the kernel (2.2). Similarly,

e−iθ(ω) = cos θ(ω)− i sin θ(ω) = 1− ω

2
+ i
√
ω(1− ω

8
− ω2

128
− . . . ), ω → 0.

Therefore, we get the formal expansion

R0(ω, x, y) ∼
∞∑

j=−1

ωj/2Rj
0(x, y), ω → 0, (3.3)

where R−1
0 (x, y) = i

2
, R0

0(x, y) = −1
2
|x − y|, and Rj

0(x, y) =
j+1∑
k=0

ckj |x− y|k

for j ∈ N, with suitable coefficients ckj ∈ C.
For the next result, cf. [6, Lemma 2.3].

Lemma 3.2. i) If σ > 1/2 + j + 1, then Rj
0 = Op

(
Rj

0(x, y)
) ∈ B(σ, −σ).

ii) The asymptotics (3.3) hold in the operator sense:

R0(ω) =
N∑

j=−1

ωj/2Rj
0 + rN(ω), ω → 0, (3.4)
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where ‖rN(ω)‖B(σ,−σ) = O(|ω|(N+1)/2) with σ > 1/2 +N + 2.

iii) In the same sense, (3.4) can be differentiated N + 2 times in ω:

(d/dω)rR0(ω) =
N∑

j=−1

(d/dω)rωj/2Rj
0 + r̃N(ω), ω → 0,

where ‖r̃N(ω)‖B(σ,−σ) = O(|ω|(N+1)/2−r) with the same σ > 1/2 +N + 2.

Proof. By Taylor expansion with remainders, it is possible to check that

rN(ω, x, y) =
(N+2∑

k=0

bk(ω)|x− y|k)ω(N+1)/2,

where all bk(ω) = O(1). It remains to note that for k = 0, . . . , N + 2 the
kernels |x − y|k define Hilbert-Schmidt operators in the spaces B(σ,−σ),
provided that σ > 1/2 + N + 2; this is due to the fact that |x − y|2k ≤
C((1 + x2)k + (1 + y2)k).

4 The limiting absorbtion principle

Let M < ∞ be the number of points in the support of V . Then the rank
of the operator of multiplication by V equals M . Therefore we have the
following result.

Lemma 4.1. i) SpecessH = [0, 4].

ii) The spectrum of H, outside the interval [0, 4], consists of real eigenvalues
ωj, j = 1, ..., n, where n ≤M .

Unfortunately we do not know an example of a potential V for which the
discrete spectrum is empty. In the appendix we provide some illustration by
showing that the discrete spectrum is nonempty, if the support of V consists
of one or two points.

In the next lemma we develop the results of [3], [10] for the 1D case and
prove the limiting absorption principle in the sense of the operator conver-
gence. It will be needed for the proof of the long-time asymptotics (1.5).

Lemma 4.2. Let V ∈ S and σ > 1/2. Then the following limits exist as
ε→ 0+

R(ω ± iε)
B(σ,−σ)

−−→ R(ω ± i0), ω ∈ (0, 4). (4.1)
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Proof. Step i) First we verify that for ω ∈ (0, 4) the operator 1+V R0(ω± i0)
has only a trivial kernel; for instance, we consider the “+”-case. Let h be a
solution of

h+ V R0(ω + i0)h = 0. (4.2)

Note that V (x) = 0 for some x ∈ Z also yields h(x) = 0, i.e., h ∈ S. Now
for x ∈ suppV , (4.2) implies

∑

y∈Z
R0(ω + i0, x, y)h(y) = − h(x)

V (x)
. (4.3)

Multiplying (4.3) by h(x) and taking the sum over x ∈ suppV , we get from
(2.2) and Lemma 3.1,

Im

[ ∑

x,y∈Z
i
e−iθ+|x−y|

2 sin θ+

h(y)h(x)

]
= 0, (4.4)

where θ+ = θ(ω+ i0) ∈ (−π, 0). Since θ+ is real, also sin θ+ is a real number.
Thus (4.4) implies

∑

x,y∈Z
cos

(
θ+(x− y)

)
h(y)h(x) = 0,

and therefore

∣∣∣∣∣
∑

x∈Z
cos(θ+x)h(x)

∣∣∣∣∣

2

+

∣∣∣∣∣
∑

x∈Z
sin(θ+x)h(x)

∣∣∣∣∣

2

= 0.

In summary, if ω ∈ (0, 4) and h is such that (4.2) holds, then ĥ(θ+) = 0
for θ+ = θ(ω + i0). Moreover, equality θ− = θ(ω − i0) = −θ+ implies

that ĥ(θ−) = 0. Hence the function ψ̂(θ) =
ĥ(θ)

φ(θ)− ω
is an entire function

of θ ∈ C. It is easy to check that the trigonometric polynomial φ(θ) − ω

has simple roots for ω ∈ (0, 4), and therefore ψ̂(θ) is also a trigonometric
polynomial. This implies that ψ(x) has a finite support; see [10, Thm. 9] for
a similar argument. Moreover, ψ is the unique solution of the equation

(−∆− ω)ψ = h. (4.5)

Next we prove that also ϕ = R0(ω + i0)h is a solution to (4.5). Indeed, the
function R0(η)h satisfies (4.5) with ω = η 6∈ (0, 4), and from Lemma 3.1 it
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follows that one can pass to the limit in the equation as η → ω + i0. Thus
the uniqueness for (4.5) yields that ψ = ϕ = R0(ω + i0)h. Consequently,

(−∆− ω + V )ψ = 0, (4.6)

since (−∆− ω + V )ψ = h+ V ψ = h+ V R0(ω + i0)h = 0 by (4.2). But the
only solution of (4.6) with a finite support is ψ ≡ 0, which implies h ≡ 0.

Step ii) Fix ω ∈ (0, 4) and σ > 1/2. Then Lemma 3.1 yields

1 + V R0(ω ± iε)
B(σ,σ)

−−→ 1 + V R0(ω ± i0), ε→ 0+ ;

For this, recall that the potential V is assumed to be compactly supported
in Z. Therefore the convergence R0(ω ± iε) → R0(ω ± i0) in B(σ,−σ) is
improved to convergence in B(σ, σ) through multiplication by V . By Step i),
the operator 1+V R0(ω±i0) has only a trivial kernel. Hence, being Fredholm
if index zero, 1 + V R0(ω ± i0) is invertible, and moreover

(
1 + V R0(ω ± iε)

)−1 B(σ,σ)

−−→ (
1 + V R0(ω ± i0)

)−1
, ε→ 0 + .

Then the representation R = R0(1 + V R0)
−1 implies (4.1).

Remark 4.1. Equation (3.2) implies

R(ω − i0, x, y) = R(ω + i0, x, y), ω ∈ (0, 4).

5 Fredholm alternative argument

In this section we are going to obtain an asymptotic expansion for the per-
turbed resolvent R(ω). In particular, we will show that no term of order
ω−1/2 appears in the series for R(ω) in the case of a generic potential V ∈ S,
regardless of the singularity of R0(ω).

Definition 5.1. i) A set V ⊂ S is called generic, if for each V ∈ S we have
αV ∈ V, with the possible exception of a discrete set of α ∈ C.

ii) We say that a property holds for a “generic” V , if it holds for all V from
a generic subset of S.

We consider the asymptotic behavior of R(ω) at the singular points ω = 0
and ω = 4. For instance, we focus on ω = 0 and construct the resolvent R(ω)
for small |ω| in the case of a generic potential V . This will be achieved by
means of the relation

R(ω) = (1 +R0(ω)V )−1R0(ω).
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According to Section 3, it remains to construct (1 + R0(ω)V )−1. First we
note that

T (ω) = 1 +R0(ω)V = Op[δ(x− y) +R0(ω, x, y)V (y)]. (5.1)

Taking into account (3.3) we decompose (5.1) as

T (ω) = Tr(ω) + Ts(ω), (5.2)

with

Tr(ω) = Op

[
δ(x− y) +

(
R0(ω, x, y)− i

2
ω−1/2

)
V (y)

]
(5.3)

and

Ts(ω) = Op
[ i
2
ω−1/2V (y)

]
(5.4)

which isolates the singular term in the expansion of T (ω). This operator acts
as

(Ts(ω)u)(x) =
i

2
ω−1/2〈V, u〉 :=

i

2
ω−1/2

∑

y∈Z
V (y)u(y), (5.5)

and hence its range is the one-dimensional subspace of constant functions.
To determine

u(ω) := R(ω)ψ = (1 +R0(ω)V )−1R0(ω)ψ

for a given function ψ, put f(ω) = R0(ω)ψ. Thus we are looking for solutions
u(ω) ∈ l2−σ, σ > 3/2 of the equation T (ω)u(ω) = f(ω). Accordingly, we
decompose the space l2−σ as the sum of orthogonal subspaces as l2−σ = V ⊥ +
V ‖, where the orthogonality refers to the l2 inner product 〈·, ·〉, and V ‖ is
the one-dimensional subspace spanned by V . Therefore we can write

u(ω) = u⊥(ω) + c(ω)v, v := V/‖V ‖, (5.6)

with suitable u⊥(ω) ∈ V ⊥ and c(ω) ∈ C; here ‖V ‖ = ‖V ‖l2 . By (5.5) we have
V ⊥ ⊂ kerTs(ω). Thus Ts(ω)u⊥(ω) = 0, and consequently T (ω)u(ω) = f(ω)
is equivalent to

Tr(ω)u⊥(ω) + c(ω)T (ω)v = f(ω). (5.7)

Lemma 5.1. Let σ > 3/2. Then for a generic potential V ∈ S the operator
Tr(ω) : l2−σ → l2−σ is invertible, provided that |ω| is sufficiently small.

Proof. First we show that for a generic potential V ∈ S the operator Tr(0) :
l2−σ → l2−σ is invertible. Since

Tr(0) = Op
[
δ(x− y)− 1

2
|x− y|V (y)

]
,
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it suffices to prove that the operator

Op
[
(1 + x2)−σ/2

(
δ(x− y)− 1

2
|x− y|V (y)

)
(1 + y2)σ/2

]

is an invertible operator in l2. And this holds generically. Indeed, for a given
potential V ∈ S we introduce

A(α) = Op
[
(1 + x2)−σ/2

(
δ(x− y)− α

2
|x− y|V (y)

)
(1 + y2)σ/2

]

= 1 + αK, α ∈ C.
Due to σ > 3/2, the function

K(x, y) = −1

2
(1 + x2)−σ/2|x− y|V (y)(1 + y2)σ/2 ∈ l2(Z× Z).

Hence K(x, y) is a Hilbert-Schmidt kernel, and accordingly the operator K =
Op(K(x, y)): l2 → l2 is compact. Further, A(α) is analytic in α ∈ C and
A(0) is invertible. It follows that A(α) is invertible for all α ∈ C outside
a discrete set; see [2]. Thus we could replace the original potential V by
αV with α arbitrarily close to 1, if necessary, to have Tr(0) invertible. Since
Tr(ω) − Tr(0) → 0 as ω → 0, also Tr(ω) is invertible for sufficiently small
|ω|.

Put
w(ω) = (T−1

r (ω))∗v,

where T−1
r (ω) exists by Lemma 5.1. Since v ∈ l2σ for any σ ∈ R, we also get

w(ω) ∈
⋂

σ>3/2

l2σ.

Furthermore, for v⊥ ∈ V ⊥ one obtains

〈w(ω), Tr(z)v
⊥〉 =

〈
(T−1

r (ω))∗v, Tr(ω)v⊥
〉

= 〈v, v⊥〉 = 0,

so that
w(ω) ⊥ Tr(ω)V ⊥.

Now, taking the inner product of (5.7) with w(ω) we find

c(ω) =
〈f(ω), w(ω)〉
〈T (ω)v, w(ω)〉 , (5.8)

provided that
〈T (ω)v, w(ω)〉 6= 0.
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Lemma 5.2. For a generic potential V ∈ S with
∑
x∈Z

V (x) 6= 0, the relation

〈T (ω)v, w(ω)〉 6= 0 holds for sufficiently small |ω| 6= 0.

Proof. Denote

Tr(0, α) = Op
[
δ(x− y)− α

2
|x− y|V (y)

]
, α ∈ C.

Then Tr(0, 1) = Tr(0), Tr(0, 0) = Op [δ(x − y)], and 〈Tr(0, 0)−11, V 〉 =
〈1, V 〉 6= 0. Hence, the meromorphic function α 7→ 〈Tr(0, α)−11, V 〉 does
not vanish identically, and thus we have 〈Tr(0, α)−11, V 〉 6= 0 for all α ∈ C
outside a discrete set. Therefore we could replace the original potential V
by αV with α arbitrarily close to 1, if necessary, to ensure that

〈T−1
r (0)1, V 〉 6= 0 (5.9)

Then for a generic potential V ∈ S with 〈1, V 〉 =
∑
x∈Z

V (x) 6= 0, we have

〈T (ω)v, w(ω)〉 = 〈Tr(ω)v, w(ω)〉+ 〈Ts(ω)v, w(ω)〉
=

〈
Tr(ω)v, (T−1

r (ω))∗v
〉

+
i

2
ω−1/2〈V, v〉〈1, w(ω)〉

= 1 +
i

2
ω−1/2‖V ‖〈T−1

r (ω)1, v〉 (5.10)

=
i

2
ω−1/2〈T−1

r (0)1, V 〉+ o(ω−1/2) 6= 0

for sufficiently small |ω| 6= 0.

By Lemma 5.1, (5.7) yields

u⊥(ω) = T−1
r (ω)

(
f(ω)− c(ω)T (ω)v

)
.

Thus (5.6) implies that

u(ω) = T−1
r (ω)

(
f(ω)− c(ω)T (ω)v

)
+ c(ω)v.

Hence we can summarize the foregoing arguments as follows:

Theorem 5.1. Let σ > 3/2. Then for a generic potential V ∈ S with∑
x∈Z

V (x) 6= 0, the resolvent R(ω) = (H − ω)−1 can be expressed as

R(ω)ψ = T−1
r (ω)

(
f(ω)− c(ω)T (ω)v

)
+ c(ω)v, (5.11)

where Tr(ω) is from ( 5.3) and invertible by Lemma 5.1, f(ω) = R0(ω)ψ,
c(ω) is given by (5.8), and T (ω) = 1 +R0(ω)V .
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6 Puiseux expansion

Theorem 6.1. Let σ > 7/2. Then for a generic potential V ∈ S with∑
x∈Z

V (x) 6= 0, the resolvent R(ω) has the expansion

R(ω) = R0 +O(|ω|1/2), ω → 0, (6.1)

where the asymptotics hold in the norm of B(σ, −σ). See ( 6.6) below for the
explicit form of R0.

Proof. Step i). Fix σ > 7/2. Equations (3.3) and (5.3) imply that for small
|ω|,

Tr(ω) = T0 + ω1/2 T1 +O(|ω|)
in B(−σ, −σ), where

T0 = Tr(0) = Op
[
δ(x− y)− 1

2
|x− y|V (y)

]
,

T1 = Op
[ 2∑

k=0

ck1 |x− y|k V (y)
]

=
i

4
Op

[(1

4
− |x− y|2

)
V (y)

]
.

Note that again the compact support of V is used here. Next we write down
the Neumann series for T−1

r (ω) about the invertible T0 = Tr(0) to obtain

T−1
r (ω) = S0 + ω1/2S1 +O(|ω|), ω → 0, (6.2)

in B(−σ, −σ), where

S0 = T−1
0 = Tr(0)−1, S1 = −T−1

0 T1T
−1
0 .

Step ii). Now let us calculate c(ω). From (6.2) we deduce

(T−1
r (ω))∗ = S∗0 + ω1/2S∗1 +O(|ω|)

in B(σ, σ) for σ > 7/2. Thus

w(ω) = (T−1
r (ω))∗v = w0 + ω1/2w1 +O(|ω|) (6.3)

in l2σ for σ > 7/2, where

w0 = S∗0v, w1 = S∗1v.
By (3.3),

R0(ω) =
i

2
ω−1/2Op(1) +R0

0 + ω1/2R1
0 +O(|ω|) (6.4)
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in B(σ, −σ) for σ > 7/2. Hence the numerator of (5.8) admits the asymptotic
expansion

〈f(ω), w(ω)〉 = 〈R0(ω)ψ,w(ω)〉
=

〈 i
2
ω−1/2Op(1)ψ +R0

0ψ + ω1/2R1
0ψ +O(|ω|),

w0 + ω1/2w1 +O(|ω|)
〉

=
i

2
ω−1/2〈1, ψ〉〈1, w0〉+

i

2
〈1, ψ〉〈1, w1〉+ 〈R0

0ψ,w0〉
+O(|ω|1/2).

Next we have to expand the denominator of (5.8). By (5.10) and (6.3),

〈T (ω)v, w(ω)〉 = 1 +
i

2
ω−1/2‖V ‖〈1, (T−1

r (ω))∗v〉

= 1 +
i

2
ω−1/2‖V ‖〈1, w0 + ω1/2w1 +O(|ω|)〉

=
i

2
ω−1/2‖V ‖〈1, w0〉+ 1 +

i

2
‖V ‖〈1, w1〉+O(|ω|1/2).

We already noticed that for a generic potential

〈1, w0〉 = 〈1, S∗0v〉 = 〈1, (T−1
r (0))∗v〉 = 〈T−1

r (0)1, v〉 6= 0,

recall (5.9). Hence (5.8) implies

c(ω) =
〈f(ω), w(ω)〉
〈T (ω)v, w(ω)〉

=
i
2
ω−1/2〈1, ψ〉〈1, w0〉+ i

2
〈1, ψ〉〈1, w1〉+ 〈R0

0ψ,w0〉+O(|ω|1/2)
i
2
ω−1/2‖V ‖〈1, w0〉+ 1 + i

2
‖V ‖〈1, w1〉+O(|ω|1/2)

= c0 + ω1/2c1 +O(|ω|), (6.5)

where c0 = ‖V ‖−1〈1, ψ〉 and c1 ∈ C is appropriate.
Step iii). Substituting (5.2), (5.4), (6.2), (6.4), and (6.5) into (5.11), and
noting the key relation

i

2
ω−1/2 Op(1)ψ − c0Op

[ i
2
ω−1/2 V (y)

]
v =

i

2
ω−1/2

(
〈1, ψ〉 − c0〈V, v〉

)
= 0,
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we obtain the following asymptotic expansion for R(ω)ψ.

R(ω)ψ = T−1
r (ω)

(
R0(ω)ψ − c(ω) [Tr(ω) + Ts(ω)]v

)
+ c(ω)v

= T−1
r (ω)

(
i

2
ω−1/2 Op(1)ψ +R0

0ψ +O(|ω|1/2)

− (c0 + ω1/2c1 +O(|ω|)) Op
[ i
2
ω−1/2 V (y)

]
v

)

= T−1
r (ω)

(
R0

0ψ +O(|ω|1/2)− i

2
(c1 +O(|ω|1/2))‖V ‖

)

=
(
S0 +O(|ω|1/2)

)(
R0

0ψ −
i

2
c1‖V ‖+O(|ω|1/2)

)

= S0

(
R0

0ψ −
i

2
c1‖V ‖

)
+O(|ω|1/2).

This expansion does not contain singular terms in ω−1/2, since they have
cancelled. Therefore defining R0ψ = S0(R

0
0ψ − i

2
c1‖V ‖), the proof of Theo-

rem 6.1 is complete; the explicit form of the operator R0 can be obtained by
calculating c1 = c1(ψ) ∈ C from (6.5). More precisely, it is found that

c1 =
‖V ‖〈R0

0ψ,w0〉 − 〈1, ψ〉
i
2
‖V ‖2〈1, w0〉

,

so that

R0ψ =

(
S0R

0
0ψ −

〈S0R
0
0ψ, V 〉

〈S0(1), V 〉 S0(1)

)
+

〈ψ, 1〉
〈S0(1), V 〉S0(1) (6.6)

is obtained. Here the first operator makes the projection of S0R
0
0ψ onto the

space V ⊥ along the vector S0(1) and the second operator is of range 1.

Corollary 6.1. Let σ > 7/2. Then for a generic potential V ∈ S with∑
x∈Z

V (x) 6= 0, the resolvent expansion of R(ω) from ( 6.1) may be differenti-

ated in ω three times, and for r = 1, 2, 3,

(d/dω)rR(ω) = O(|ω|1/2−r), ω → 0, (6.7)

in B(σ,−σ).

Proof. Note that

R(ω) = (1 +R0(ω)V )−1R0(ω),
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and R0(ω) has a differentiable asymptotic series by Lemma 3.2. Hence it
suffices to argue that the asymptotic series for (1+R0(ω)V )−1 is differentiable.
For the latter, it may be shown that

(d/dω)(1 +R0V )−1 = −(1 +R0V )−1R′0V (1 +R0V )−1,

and after some lengthy but straightforward calculation also (6.7) is found.

Remark 6.1. A similar expansion of R(ω) is valid as ω → 4.

7 Long-time asymptotics

Theorem 7.1. Let σ > 7/2. Then for a generic potential V ∈ S with∑
x∈Z

V (x) 6= 0, the asymptotics (1.5) hold, i.e.,

∥∥∥∥∥e
−itH −

n∑
j=1

e−itωjPj

∥∥∥∥∥
B(σ,−σ)

= O(t−3/2), t→∞.

Here Pj denote the projections on the eigenspaces corresponding to the eigen-
values ωj ∈ R \ [0, 4], j = 1, . . . , n.

Proof. The estimate for e−itH is based on the formula

e−itH = − 1

2πi

∮

|ω|=C

e−itωR(ω)dω, C > max{4; |ωj|, j = 1, ..., n}. (7.1)

Encircling the spectrum [0, 4] ∪ {ωj : j = 1, . . . , n} of H by smaller and
smaller pathes, it follows from

Pj = − 1

2πi

∮

|ω−ωj |=ε

R(ω) dω

for ε > 0 sufficiently small and Remark 4.1 that

e−itH −
n∑

j=1

e−itωjPj =
1

2πi

∫

[0,4]

e−itω(R(ω + i0)−R(ω − i0)) dω

=
1

π

∫

[0,4]

e−itω ImR(ω + i0) dω =

∫

[0,4]

e−itωP (ω)dω,
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where P (ω) =
1

π
ImR(ω + i0). The asymptotic expansion for P (ω) at the

singular points µ = 0 and µ = 4 can be deduced from (6.1). Thus, restricting
to ω ∈ R, we have

P (µ+ ω) = O(|ω|1/2), ω → 0. (7.2)

To prove the desired decay for large t, it is convenient to represent the func-
tion P (ω) for ω ∈ [0, 4] as

P (ω) = φ1(ω)P (ω) + φ2(ω)P (ω), (7.3)

where φj(ω) ∈ C∞0 (R) for j = 1, 2, φ1(ω)+φ2(ω) = 1 for ω ∈ [0, 4], suppφ1 ⊂
(−1, 3), and suppφ2 ⊂ (1, 5). Due to (7.2) and Corollary 6.1, we can apply
Lemma 7.1 below with F = φ1P , a = 3, B = B(σ,−σ) where σ > 7/2, and
θ = 1/2 to get

∫

[0,4]

e−itωφ1(ω)P (ω)dω = O(t−3/2), t→∞,

in B(σ,−σ). Since the same argument can be used for F = φ2P , (7.3) shows
that the proof is complete.

The following result is a special case of [6, Lemma 10.2].

Lemma 7.1. Assume B is a Banach space, a > 0, and F ∈ C(0, a;B)
satisfies F (0) = F (a) = 0, F ′ ∈ L1(0, a;B), as well as F ′′(ω) = O(ωθ−2) as
ω ↘ 0 for some θ ∈ (0, 1). Then

a∫

0

e−itωF (ω)dω = O(t−1−θ), t→∞.

8 The Klein-Gordon equation

Now we extend the results of Sections 5-7 to the case of the Klein-Gordon
equation (1.6)-(1.7). The operator H is not selfadjoint in l2 ⊕ l2. First we
prove the existence and uniqueness of the global solution Ψ := e−itHΨ0.

Lemma 8.1. For any initial data Ψ0(x) ∈ l2 ⊕ l2 there exists a unique
solution Ψ(x, t) ∈ C(R, l2 ⊕ l2) of (1.7).

Proof. The existence of a local solution for sufficiently small |t| is shown by
the contraction mapping method. That this local solution can be extended
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to a global solution follows from the energy a priori estimate. In fact, mul-
tiplying (1.6) by ψ̇(x, t) and taking the sum over x ∈ Z, we have

d

dt

(∥∥∥ψ̇(t)
∥∥∥

2

l2
+ ‖∇ψ(t)‖2

l2 +m2 ‖ψ(t)‖2
l2

)
+ 2

∑

x∈Z
V (x)ψ(x, t)ψ̇(x, t) = 0,

where (∇ψ)(x) = ψ(x + 1) − ψ(x) for x ∈ Z. Put α = −minx∈Z V (x) ≥ 0.
Since ‖∇ψ‖l2 ≤ 2 ‖ψ‖l2 , we get

∥∥∥ψ̇(t)
∥∥∥

2

l2
+‖∇ψ(t)‖2

l2 +m2 ‖ψ(t)‖2
l2 ≤ (4+m2) ‖Ψ0‖2

l2⊕l2 +α

t∫

0

‖Ψ(s)‖2
l2⊕l2 ds

and therefore

‖Ψ(t)‖2
l2⊕l2 ≤ C ‖Ψ0‖2

l2⊕l2 + α1

t∫

0

‖Ψ(s)‖2
l2⊕l2 ds.

for suitable constants C > 0 and α1 > 0. The Gronwall inequality implies
that

‖Ψ(t)‖2
l2⊕l2 ≤ Ceα1t ‖Ψ0‖2

l2⊕l2 , t > 0.

which gives the desired bound.

Now we can apply the Fourier-Laplace transform

Ψ̃(x, ω) =

∞∫

0

eiωtΨ(x, t) dt, Imω > α1 > 0,

and get the stationary equation

(H− ω)Ψ̃(ω) = −iΨ0, Imω > α1.

Let us first consider the resolvent R(ω) = (H− ω)−1 of the operator H.

Lemma 8.2. If ω2−m2 ∈ C\ [0, 4], then the resolvent R(ω) can be expressed
in terms of the resolvent R(ω) from (1.3) as

R(ω) =

(
ωR(ω2 −m2) iR(ω2 −m2)

−i(1 + ω2R(ω2 −m2)) ωR(ω2 −m2)

)
. (8.1)
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Proof. The expression for the resolvent R0(ω) = (H0 − ω)−1 of the free
equation with V = 0 in the case where ω2 −m2 ∈ C \ [0, 4] can be obtained
by inverse Fourier transform F−1

θ→x−y of the matrix

1

φ(θ)− (ω2 −m2)

(
ω i

−i(φ(θ) +m2) ω

)
.

Using that by (2.1)

F−1
θ→x−y

(
1

φ(θ)− (ω2 −m2)

)
= R0(ω

2 −m2, x, y),

we get

R0(ω) =

(
ωR0(ω

2 −m2) iR0(ω
2 −m2)

−i(1 + ω2R0(ω
2 −m2)) ωR0(ω

2 −m2)

)
.

Put

V =

(
0 0
V 0

)
.

Then the formula
R(ω) = (I− iR0(ω)V)−1R0(ω)

for the full resolvent yields (8.1).

The representation (8.1) implies the following properties of the operator H.

1) By Lemma 4.1 we have that

SpecessH = [−
√
m2 + 4,−m] ∪ [m,

√
m2 + 4].

The discrete spectrum of H is ω̃±j = ±√
m2 + ωj, where ωj are the eigenval-

ues of the operator H. Note that either ω̃±j ∈ R or ω̃±j ∈ iR.

2) Let σ > 1/2. By Lemma 4.2, the following limits exist as ε→ 0+.

R(ω ± iε)
B(σ,−σ)

−−→ R(ω ± i0),

and moreover
R(ω − i0, x, y) = R(ω + i0, x, y).

Both relations hold for ω ∈ (−√m2 + 4,−m) ∪ (m,
√
m2 + 4).

3) Let σ > 7/2. By Theorem 6.1, we have for a generic potential V ∈ S
with

∑
x∈Z

V (x) 6= 0 the following asymptotic expansion of the resolvent R in

B(σ, −σ):

R(µ+ ω) = Rµ
0 +O(|ω|1/2), ω → 0,
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where µ = ±m or µ = ±√m2 + 4.

4) Let σ > 7/2. By Theorem 7.1, for a generic potential V ∈ S with∑
x∈Z

V (x) 6= 0, the following asymptotics hold:

∥∥∥∥∥ e
−itH −

∑
±

n∑
j=1

e−itω̃±j P±
j

∥∥∥∥∥
B(σ,−σ)

= O(t−3/2), t→∞.

Here P±
j are the projections onto the eigenspaces corresponding to the eigen-

values ω̃±j , j = 1, . . . , n.
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A Appendix

Let the number of the points in the support of the potential V equal 1 or 2.
We will show that for such a potential the operator H = −∆+V always has
a real eigenvalue outside the interval [0, 4].

Example I. Let V (x) = V1δ(x− x1). We seek the solution of the equation

(−∆− ω + V )ψ = 0 (A.1)

in the form
ψ = (−∆− ω)−1h.

Then (A.1) becomes

h(x) + V (x)((−∆− ω)−1h)(x) = 0. (A.2)

Substituting the explicit formula (2.2) for the resolvent in (A.2) we obtain

h(x) + V1δ(x− x1)

[
−i

∑

y∈Z

e−iθ(ω)|x−y|

2 sin θ(ω)
h(y)

]
= 0. (A.3)

Thus h(x) = 0 for x 6= x1, and (A.3) simplifies to

h(x1)

(
1− iV1

2 sin θ(ω)

)
= 0. (A.4)
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Hence one has to solve the following equation for the eigenvalue ω of the
operator H.

2 sin θ(ω) = iV1. (A.5)

First we consider the case where V1 < 0 and seek the solution to (A.5) in
the form θ(ω) = is for s ∈ R. Then (A.5) implies s = arcsinh(V1/2) < 0.
Therefore θ(ω) = is ∈ Γc, and consequently ω ∈ (−∞, 0) is a real eigenvalue
of the operator H. Similarly, if V1 > 0, then we get a real eigenvalue ω ∈
(4,∞). It is easy to check that the corresponding eigenfunctions belong to
l2.

Example II. Let V (x) = V1δ(x− x1) + V2δ(x− x2). Similarly to (A.4), we
now get the system





h(x1)

(
iV1

2 sin θ(ω)
− 1

)
+ h(x2)

iV1

2 sin θ(ω)
e−iθ(ω)|x2−x1| = 0

h(x1)
iV2

2 sin θ(ω)
e−iθ(ω)|x2−x1| + h(x2)

(
iV2

2 sin θ(ω)
− 1

)
= 0

.

The determinant of this system equals

D(ω) = (iV1 − 2 sin θ(ω)) (iV2 − 2 sin θ(ω)) + V1V2e
−2iθ(ω)|x2−x1|.

We want to determine a real ω which is a solution to the equation D(ω) = 0.
Denoting z = e−iθ(ω), this reads as

(
V1 +

1

z
− z

)(
V2 +

1

z
− z

)
= V1V2 z

2|x2−x1|. (A.6)

Put N = |x2 − x1| ≥ 1, a = 1/V1, and b = 1/V2. Then (A.6) becomes

(az2 − z − a)(bz2 − z − b) = z2N+2. (A.7)

Denote by L(z) and R(z) the left hand side and the right hand side of (A.7),
respectively. It is easy to check that the graphs y = L(z) and y = R(z)
intersect each other at the points z = ±1. Moreover, R(0) = 0 and R(z) > 0
for z 6= 0.

First we consider the case where a, b > 0. Then the polynomial L(z)
has two roots in the interval (−1, 0), and L(0) = ab > 0. Therefore these
graphs also have an intersection at a point z = z0, with −1 < z0 < 0. It is
straightforward to prove that this point corresponds to a value ω ∈ (4,∞).

The case where a, b < 0 is handled similarly, and in this case we get a
solution ω ∈ (−∞, 0) of the equation D(ω) = 0.
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Finally, if a and b have opposite signs, then L(0) < 0. Calculating the
first derivatives of L(z) and R(z) at z = ±1, we obtain

L′(−1) = −2a− 2b− 2, L′(1) = −2a− 2b+ 2,

R′(−1) = −2N − 2, R′(1) = 2N + 2.

If N > a + b, then R′(−1) < L′(−1) and R(z) < L(z) for z > −1 and z + 1
small enough. On the other hand, L(0) < R(0). Thus the graphs of L(z)
and R(z) have an intersection in (−1, 0). Similarly, if N > −a−b, then these
graphs have an intersection in (0, 1). Therefore we have at least one root of
(A.7) in (−1, 1) \ {0}.
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