Dispersive Estimates for 1D Discrete Schrödinger and Klein-Gordon Equations

A.I. KOMECH ${ }^{1}$, E.A. KOPYLOVA ${ }^{2}$, M. KUNZE ${ }^{3}$

Abstract

We derive the long-time asymptotics for solutions of the discrete 1D Schrödinger and Klein-Gordon equations. Keywords: discrete Schrödinger and Klein-Gordon equations, lattice, Cauchy problem, long-time asymptotics. 2000 Mathematics Subject Classification: 39A11, 35L10.

1 Introduction

In this paper, we establish the long-time behavior of the solutions to the discrete Schrödinger and Klein-Gordon equations in one space dimension. We extend a general strategy introduced by Vainberg [12], Jensen-Kato [6], and Murata [8], which concerns the wave, Klein-Gordon, and Schrödinger equations, to the discrete case. Namely, we establish the Puiseux expansion for a resolvent of a stationary problem. Then the long-time asymptotics can be obtained by means of the (inverse) Fourier-Laplace transform.

We adopt the general scheme of [8] and make all constructions for the concrete case in detail. We restrict ourselves to a "nonsingular case", in the sense of [8], where the truncated resolvent is bounded at the ends of the continuous spectrum; this holds for a generic potential. It is just this case which allows us to get the desired time decay of order $\sim t^{-3 / 2}$, as is desirable for applications to scattering problems.

[^0]First we consider the 1D discrete version of the Schrödinger equation

$$
\left\{\left.\begin{array}{l}
i \dot{\psi}(x, t)=H \psi(x, t):=(-\Delta+V(x)) \psi(x, t) \tag{1.1}\\
\left.\psi\right|_{t=0}=\psi_{0}
\end{array} \right\rvert\, \quad x \in \mathbb{Z}, \quad t \in \mathbb{R} .\right.
$$

Here Δ stands for the difference Laplacian in \mathbb{Z}, defined by

$$
\Delta \psi(x)=\psi(x+1)-2 \psi(x)+\psi(x-1), \quad x \in \mathbb{Z}
$$

for functions $\psi: \mathbb{Z} \rightarrow \mathbb{C}$. Denote by \mathcal{S} the set of real functions on the lattice \mathbb{Z} with a finite support. For the potential V we assume that $V \in \mathcal{S}$. If we apply the Fourier-Laplace transform

$$
\tilde{\psi}(x, \omega)=\int_{0}^{\infty} e^{i \omega t} \psi(x, t) d t, \quad \operatorname{Im} \omega>0
$$

to (1.1), then the stationary equation

$$
\begin{equation*}
(H-\omega) \tilde{\psi}(\omega)=-i \psi_{0}, \quad \operatorname{Im} \omega>0 \tag{1.2}
\end{equation*}
$$

is obtained. Here $\tilde{\psi}(\omega):=\tilde{\psi}(\cdot, \omega)$. Note that the integral converges, since $\|\psi(\cdot, t)\|_{l^{2}}=$ const by charge conservation. Hence we get as the solution

$$
\begin{equation*}
\tilde{\psi}(\omega)=-i R(\omega) \psi_{0} \tag{1.3}
\end{equation*}
$$

where $R(\omega)=(H-\omega)^{-1}$ is the resolvent of the Schrödinger operator H.
We are going to use the function spaces which are the discrete version of the Agmon spaces [1]. These are the weighted Hilbert spaces $l_{\sigma}^{2}=l_{\sigma}^{2}(\mathbb{Z})$ with the norm

$$
\|u\|_{l_{\sigma}^{2}}=\left\|\left(1+x^{2}\right)^{\sigma / 2} u\right\|_{l^{2}}, \quad \sigma \in \mathbb{R} .
$$

Let us denote

$$
B\left(\sigma, \sigma^{\prime}\right)=\mathcal{L}\left(l_{\sigma}^{2}, l_{\sigma^{\prime}}^{2}\right), \quad \mathbf{B}\left(\sigma, \sigma^{\prime}\right)=\mathcal{L}\left(l_{\sigma}^{2} \oplus l_{\sigma}^{2}, l_{\sigma^{\prime}}^{2} \oplus l_{\sigma^{\prime}}^{2}\right)
$$

the space of bounded linear operators from l_{σ}^{2} to $l_{\sigma^{\prime}}^{2}$ and from $l_{\sigma}^{2} \oplus l_{\sigma}^{2}$ to $l_{\sigma^{\prime}}^{2} \oplus l_{\sigma^{\prime}}^{2}$, respectively. Concerning further notation, we write $K=\operatorname{Op}(K(x, y))$ for the operator with kernel $K(x, y)$, i.e.,

$$
(K u)(x)=\sum_{y \in \mathbb{Z}} K(x, y) u(y), \quad x \in \mathbb{Z} .
$$

We prove below that the continuous spectrum of the operator H coincides with the interval $[0,4]$. Then our main results are as follows. For a generic
potential $V \in \mathcal{S}$ (see Definition 5.1) satisfying the condition $\sum_{x \in \mathbb{Z}} V(x) \neq 0$, we derive the Puiseux expansion for the resolvent at the singular spectral points $\mu=0$ and $\mu=4$ as

$$
\begin{equation*}
R(\mu+\omega)=R_{0}^{\mu}+R_{1}^{\mu} \omega^{1 / 2}+R_{2}^{\mu} \omega+R_{3}^{\mu} \omega^{3 / 2}+\ldots+\mathcal{O}\left(|\omega|^{N / 2}\right), \omega \rightarrow 0 \tag{1.4}
\end{equation*}
$$

This expansion is valid in the norm $B(\sigma,-\sigma)$ with a σ depending on N. Then taking the inverse Fourier-Laplace transform of (1.3), it follows that for $\sigma>7 / 2$

$$
\begin{equation*}
\left\|e^{-i t H}-\sum_{j=1}^{n} e^{-i t \omega_{j}} P_{j}\right\|_{B(\sigma,-\sigma)}=\mathcal{O}\left(t^{-3 / 2}\right), \quad t \rightarrow \infty \tag{1.5}
\end{equation*}
$$

Here P_{j} are the orthogonal projections in l^{2} onto the eigenspaces of H, corresponding to the discrete eigenvalues $\omega_{j} \in \mathbb{R}$.

For the proof, we first calculate an explicit formula for the resolvent of the free equation in the case where $V=0$. This formula allows us to construct the expansion of the type (1.4) for the free resolvent. Then we prove (1.4) for $V \neq 0$, developing the Fredholm alternative arguments similar to [6], [8]. Finally, Lemma 10.2 of Jensen-Kato [6] plays a crucial role in verifying the decay (1.5).

We also obtain similar results for the discrete Klein-Gordon equation

$$
\left\{\left.\begin{array}{l}
\ddot{\psi}(x, t)=\left(\Delta-m^{2}-V(x)\right) \psi(x, t) \tag{1.6}\\
\left.\psi\right|_{t=0}=\psi_{0},\left.\dot{\psi}\right|_{t=0}=\pi_{0}
\end{array} \right\rvert\, \quad x \in \mathbb{Z}, \quad t \in \mathbb{R}\right.
$$

Set $\boldsymbol{\Psi}(t) \equiv(\psi(\cdot, t), \dot{\psi}(\cdot, t)), \boldsymbol{\Psi}_{0} \equiv\left(\psi_{0}, \pi_{0}\right)$. Then (1.6) takes the form

$$
\begin{equation*}
i \dot{\mathbf{\Psi}}(t)=\mathbf{H} \boldsymbol{\Psi}(t), \quad t \in \mathbb{R} ; \quad \boldsymbol{\Psi}(0)=\boldsymbol{\Psi}_{0} \tag{1.7}
\end{equation*}
$$

where

$$
\mathbf{H}=\left(\begin{array}{cc}
0 & i \\
i\left(\Delta-m^{2}-V\right) & 0
\end{array}\right)
$$

The resolvent $\mathbf{R}(\omega)=(\mathbf{H}-\omega)^{-1}$ of the operator \mathbf{H} can be expressed in terms of the resolvent $R(\omega)$, and this expression yields the corresponding properties of $\mathbf{R}(\omega)$. In particular, we derive the asymptotic expansion of the type (1.4) for $\mathbf{R}(\omega)$, and also the long-time asymptotics of the type (1.5) for the solution.

Let us comment on previous results in this direction. Eskina [3] and Shaban-Vainberg [10] considered the difference Schrödinger equation in dimensions $n \geq 1$. They proved the limiting absorption principle and applied
it to the Sommerfeld radiation condition. However, [3, 10] do not concern the asymptotic expansion of $R(\omega)$ and the long-time asymptotics of the type (1.5).

The asymptotic expansion of the resolvent and the asymptotics (1.5) for continuous hyperbolic equations were obtained in [7], [11], [12], [13], and for Schrödinger equation in [4], [5], [6], [8]; also see [9] for an up-to-date review and many references concerning dispersive properties of solutions to the continuous Schrödinger equation in various norms. For the discrete Schrödinger and Klein-Gordon equations, the asymptotic expansion (1.4) and long-time asymptotics (1.5) seem to be obtained for the first time in the present paper.

The paper is organized as follows. In Section 2 we obtain an explicit formula for the free resolvent. In Section 3 we derive the asymptotic expansion of the free resolvent. The limiting absorption principle for the perturbed resolvent is proved in Section 4. In Sections 5 and 6 we get the Puiseux expansion of the perturbed resolvent. In Section 7 we prove the long-time asymptotics (1.5). In Section 8 we extend the results to the discrete KleinGordon equation. Finally, in an appendix we illustrate the presence of a discrete spectrum for potentials which are supported at one or two points.

2 The free resolvent

We start with an investigation of the unperturbed problem for equation (1.1) with $V=0$. The discrete Fourier transform of $u: \mathbb{Z} \rightarrow \mathbb{C}$ is defined by the formula

$$
\hat{u}(\theta)=\sum_{x \in \mathbb{Z}} u(x) e^{i \theta x}, \quad \theta \in T:=\mathbb{R} / 2 \pi \mathbb{Z}
$$

After taking the Fourier transform, the operator $H_{0}=-\Delta$ becomes the operator of multiplication by $\phi(\theta)=2-2 \cos \theta$:

$$
-\widehat{\Delta u}(\theta)=\phi(\theta) \widehat{u}(\theta) .
$$

Thus, the operator H_{0} is selfadjoint and its spectrum is absolutely continuous. It coincides with the range of the function ϕ, that is Spec $H_{0}=[0,4]$. Denote by $R_{0}(\omega)=\left(H_{0}-\omega\right)^{-1}$ the resolvent of the difference Laplacian. Then the kernel of the resolvent $R_{0}(\omega)=\left(H_{0}-\omega\right)^{-1}$ reads as

$$
\begin{equation*}
R_{0}(\omega, x, y)=\frac{1}{2 \pi} \int_{T} \frac{e^{-i \theta(x-y)}}{\phi(\theta)-\omega} d \theta, \quad \omega \in \mathbb{C} \backslash[0,4] . \tag{2.1}
\end{equation*}
$$

Let us calculate an explicit formula for $R_{0}(\omega, x, y)$ using the Cauchy residue theorem.

Lemma 2.1. For $\omega \in \mathbb{C} \backslash[0,4]$ the resolvent is given by

$$
\begin{equation*}
R_{0}(\omega, x, y)=-i \frac{e^{-i \theta(\omega)|x-y|}}{2 \sin \theta(\omega)}, \quad x, y \in \mathbb{Z} \tag{2.2}
\end{equation*}
$$

where $\theta(\omega)$ is the unique solution of the equation

$$
\begin{equation*}
2-2 \cos \theta=\omega \tag{2.3}
\end{equation*}
$$

in the domain $D:=\{-\pi \leq \operatorname{Re} \theta \leq \pi, \operatorname{Im} \theta<0\}$.
Proof. First let us assume that $x-y \geq 0$. Denote by $\Gamma=\Gamma_{1} \cup \Gamma_{2} \cup \Gamma_{3} \cup \Gamma_{4}$ the path indicated in Fig. 1, where

$$
\begin{array}{ll}
\Gamma_{1}: & \operatorname{Re} \theta=-\pi, \operatorname{Im} \theta \in[-\infty, 0], \\
\Gamma_{2}: & \operatorname{Im} \theta=0, \operatorname{Re} \theta \in[-\pi, 0], \\
\Gamma_{3}: & \operatorname{Im} \theta=0, \operatorname{Re} \theta \in[0, \pi], \\
\Gamma_{4}: & \operatorname{Re} \theta=\pi, \operatorname{Im} \theta \in[0,-\infty] .
\end{array}
$$

The map $\theta \longmapsto \phi(\theta)=2-2 \cos \theta$ transforms the paths $\Gamma_{1}, \Gamma_{2}, \Gamma_{3}, \Gamma_{4}$ to the (oriented) intervals of the real axis $(\infty, 4],[4,0],[0,4],[4, \infty)$ respectively. Note, that the path $\Gamma_{c}: \operatorname{Re} \theta=0,-\infty<\operatorname{Im} \theta \leq 0$ is mapped onto the interval $(-\infty, 0)$ and the region D is transformed to the complex plane with the cut $[0,4]$. Hence, there exists a unique solution $\theta(\omega)$ of the equation $\phi(\theta)=\omega, \omega \notin[0,4]$, in the domain D.

Therefore the integrand in (2.1) has one simple pole at the point $\theta(\omega)$, and from the Cauchy residue theorem it follows that

$$
R_{0}(\omega, x, y)=\frac{1}{2 \pi} \int_{\Gamma} \frac{e^{-i \theta(x-y)}}{\phi(\theta)-\omega} d \theta=-i \operatorname{res}_{\theta(\omega)}\left(\frac{e^{-i \theta(x-y)}}{\phi(\theta)-\omega}\right)
$$

This implies (2.2) for $x-y \geq 0$. If $x-y \leq 0$, we choose a similar path in the upper half-plane $\operatorname{Im} \theta>0$ and get the same formula (2.2).

3 Puiseux expansion of the free resolvent

The free resolvent $R_{0}(\omega)$ is an analytic function with values in $B(0,0)$ for $\omega \in \mathbb{C} \backslash[0,4]$. This follows directly from the formula (2.2) since $\operatorname{Im} \theta(\omega)<0$, and the kernel (2.2) decays exponentially. For $\omega \in(0,4)$, the decay fails due to $\operatorname{Im} \theta(\omega)=0$, whereas for $\omega=0$ and $\omega=4$ the kernel does not exist since then $\sin \theta(\omega)=0$. Nevertheless, for the free resolvent the following limiting absorption principle holds.

Figure 1: Conformal mapping $\phi(\theta)$

Lemma 3.1. For $\sigma>1 / 2$ the following limit exists as $\varepsilon \rightarrow 0+$:

$$
\begin{equation*}
R_{0}(\omega \pm i \varepsilon) \xrightarrow{\mathcal{B}(\sigma,-\sigma)} R_{0}(\omega \pm i 0), \quad \omega \in(0,4) . \tag{3.1}
\end{equation*}
$$

Proof. $R_{0}(\omega)$ is the operator with the kernel $R_{0}(\omega, x, y)$. If $\sigma>1 / 2$ and $\omega \notin\{0,4\}$, then the formula (2.2) implies that this is a Hilbert-Schmidt operator in the space $B(\sigma,-\sigma)$. For $\omega \in(0,4)$ and $x, y \in \mathbb{Z}$, there exists the pointwise limit

$$
R_{0}(\omega \pm i \varepsilon, x, y) \rightarrow R_{0}(\omega \pm i 0, x, y), \quad \varepsilon \rightarrow 0+
$$

Moreover, $\left|R_{0}(\omega \pm i \varepsilon, x, y)\right| \leq C(\omega)$. Therefore,

$$
\sum_{x, y \in \mathbb{Z}}\left(1+x^{2}\right)^{-\sigma}\left|R_{0}(\omega \pm i \varepsilon, x, y)-R_{0}(\omega \pm i 0, x, y)\right|^{2}\left(1+y^{2}\right)^{-\sigma} \rightarrow 0
$$

as $\varepsilon \rightarrow 0+$ by the Lebesgue dominated convergence theorem. Hence the Hilbert-Schmidt norm of the difference $R_{0}(\omega \pm i \varepsilon)-R_{0}(\omega \pm i 0)$ converges to zero, and (3.1) is proved.

Remark 3.1. Note that

$$
\begin{equation*}
R_{0}(\omega-i 0, x, y)=\overline{R_{0}(\omega+i 0, x, y)}, \quad \omega \in(0,4) \tag{3.2}
\end{equation*}
$$

This is a consequence of the relation $\overline{\theta(\omega)}=-\theta(\bar{\omega})$ for $\omega \in \mathbb{C} \backslash[0,4]$.
Further, we need more information on the behavior of $R_{0}(\omega)$ near $\omega=0$ and $\omega=4$. Without loss of generality we consider only the case $\omega=0$. By means of Taylor expansion we obtain from (2.3) that

$$
\frac{1}{\sin \theta(\omega)}=\left(\omega-\frac{\omega^{2}}{4}\right)^{-1 / 2}=-\frac{1}{\sqrt{\omega}}\left(1+\frac{\omega}{8}+\frac{3 \omega^{2}}{128}+\ldots\right), \omega \rightarrow 0
$$

where $\operatorname{Im} \sqrt{\omega}>0$. This choice of the branch provides $\operatorname{Im} \theta(\omega)<0$ that corresponds to the exponentially decay of the kernel (2.2). Similarly,

$$
e^{-i \theta(\omega)}=\cos \theta(\omega)-i \sin \theta(\omega)=1-\frac{\omega}{2}+i \sqrt{\omega}\left(1-\frac{\omega}{8}-\frac{\omega^{2}}{128}-\ldots\right), \omega \rightarrow 0
$$

Therefore, we get the formal expansion

$$
\begin{equation*}
R_{0}(\omega, x, y) \sim \sum_{j=-1}^{\infty} \omega^{j / 2} R_{0}^{j}(x, y), \quad \omega \rightarrow 0 \tag{3.3}
\end{equation*}
$$

where $R_{0}^{-1}(x, y)=\frac{i}{2}, R_{0}^{0}(x, y)=-\frac{1}{2}|x-y|$, and $R_{0}^{j}(x, y)=\sum_{k=0}^{j+1} c_{k j}|x-y|^{k}$ for $j \in \mathbb{N}$, with suitable coefficients $c_{k j} \in \mathbb{C}$.

For the next result, cf. [6, Lemma 2.3].
Lemma 3.2. i) If $\sigma>1 / 2+j+1$, then $R_{0}^{j}=\operatorname{Op}\left(R_{0}^{j}(x, y)\right) \in B(\sigma,-\sigma)$.
ii) The asymptotics (3.3) hold in the operator sense:

$$
\begin{equation*}
R_{0}(\omega)=\sum_{j=-1}^{N} \omega^{j / 2} R_{0}^{j}+r_{N}(\omega), \quad \omega \rightarrow 0, \tag{3.4}
\end{equation*}
$$

where $\left\|r_{N}(\omega)\right\|_{B(\sigma,-\sigma)}=\mathcal{O}\left(|\omega|^{(N+1) / 2}\right)$ with $\sigma>1 / 2+N+2$.
iii) In the same sense, (3.4) can be differentiated $N+2$ times in ω :

$$
(d / d \omega)^{r} R_{0}(\omega)=\sum_{j=-1}^{N}(d / d \omega)^{r} \omega^{j / 2} R_{0}^{j}+\tilde{r}_{N}(\omega), \quad \omega \rightarrow 0
$$

where $\left\|\tilde{r}_{N}(\omega)\right\|_{B(\sigma,-\sigma)}=\mathcal{O}\left(|\omega|^{(N+1) / 2-r}\right)$ with the same $\sigma>1 / 2+N+2$.
Proof. By Taylor expansion with remainders, it is possible to check that

$$
r_{N}(\omega, x, y)=\left(\sum_{k=0}^{N+2} b_{k}(\omega)|x-y|^{k}\right) \omega^{(N+1) / 2}
$$

where all $b_{k}(\omega)=\mathcal{O}(1)$. It remains to note that for $k=0, \ldots, N+2$ the kernels $|x-y|^{k}$ define Hilbert-Schmidt operators in the spaces $B(\sigma,-\sigma)$, provided that $\sigma>1 / 2+N+2$; this is due to the fact that $|x-y|^{2 k} \leq$ $C\left(\left(1+x^{2}\right)^{k}+\left(1+y^{2}\right)^{k}\right)$.

4 The limiting absorbtion principle

Let $M<\infty$ be the number of points in the support of V. Then the rank of the operator of multiplication by V equals M. Therefore we have the following result.

Lemma 4.1. i) $\operatorname{Spec}_{\text {ess }} H=[0,4]$.
ii) The spectrum of H, outside the interval $[0,4]$, consists of real eigenvalues $\omega_{j}, j=1, \ldots, n$, where $n \leq M$.

Unfortunately we do not know an example of a potential V for which the discrete spectrum is empty. In the appendix we provide some illustration by showing that the discrete spectrum is nonempty, if the support of V consists of one or two points.

In the next lemma we develop the results of [3], [10] for the 1D case and prove the limiting absorption principle in the sense of the operator convergence. It will be needed for the proof of the long-time asymptotics (1.5).

Lemma 4.2. Let $V \in \mathcal{S}$ and $\sigma>1 / 2$. Then the following limits exist as $\varepsilon \rightarrow 0+$

$$
\begin{equation*}
R(\omega \pm i \varepsilon) \xrightarrow{B(\sigma,-\sigma)} R(\omega \pm i 0), \quad \omega \in(0,4) . \tag{4.1}
\end{equation*}
$$

Proof. Step i) First we verify that for $\omega \in(0,4)$ the operator $1+V R_{0}(\omega \pm i 0)$ has only a trivial kernel; for instance, we consider the " + "-case. Let h be a solution of

$$
\begin{equation*}
h+V R_{0}(\omega+i 0) h=0 . \tag{4.2}
\end{equation*}
$$

Note that $V(x)=0$ for some $x \in \mathbb{Z}$ also yields $h(x)=0$, i.e., $h \in \mathcal{S}$. Now for $x \in \operatorname{supp} V$, (4.2) implies

$$
\begin{equation*}
\sum_{y \in \mathbb{Z}} R_{0}(\omega+i 0, x, y) h(y)=-\frac{h(x)}{V(x)} . \tag{4.3}
\end{equation*}
$$

Multiplying (4.3) by $\bar{h}(x)$ and taking the sum over $x \in \operatorname{supp} V$, we get from (2.2) and Lemma 3.1,

$$
\begin{equation*}
\operatorname{Im}\left[\sum_{x, y \in \mathbb{Z}} i \frac{e^{-i \theta_{+}|x-y|}}{2 \sin \theta_{+}} h(y) \bar{h}(x)\right]=0 \tag{4.4}
\end{equation*}
$$

where $\theta_{+}=\theta(\omega+i 0) \in(-\pi, 0)$. Since θ_{+}is real, also $\sin \theta_{+}$is a real number. Thus (4.4) implies

$$
\sum_{x, y \in \mathbb{Z}} \cos \left(\theta_{+}(x-y)\right) h(y) \bar{h}(x)=0,
$$

and therefore

$$
\left|\sum_{x \in \mathbb{Z}} \cos \left(\theta_{+} x\right) h(x)\right|^{2}+\left|\sum_{x \in \mathbb{Z}} \sin \left(\theta_{+} x\right) h(x)\right|^{2}=0
$$

In summary, if $\omega \in(0,4)$ and h is such that (4.2) holds, then $\widehat{h}\left(\theta_{+}\right)=0$ for $\theta_{+}=\theta(\omega+i 0)$. Moreover, equality $\theta_{-}=\theta(\omega-i 0)=-\theta_{+}$implies that $\widehat{h}\left(\theta_{-}\right)=0$. Hence the function $\widehat{\psi}(\theta)=\frac{\widehat{h}(\theta)}{\phi(\theta)-\omega}$ is an entire function of $\theta \in \mathbb{C}$. It is easy to check that the trigonometric polynomial $\phi(\theta)-\omega$ has simple roots for $\omega \in(0,4)$, and therefore $\widehat{\psi}(\theta)$ is also a trigonometric polynomial. This implies that $\psi(x)$ has a finite support; see [10, Thm. 9] for a similar argument. Moreover, ψ is the unique solution of the equation

$$
\begin{equation*}
(-\Delta-\omega) \psi=h . \tag{4.5}
\end{equation*}
$$

Next we prove that also $\varphi=R_{0}(\omega+i 0) h$ is a solution to (4.5). Indeed, the function $R_{0}(\eta) h$ satisfies (4.5) with $\omega=\eta \notin(0,4)$, and from Lemma 3.1 it
follows that one can pass to the limit in the equation as $\eta \rightarrow \omega+i 0$. Thus the uniqueness for (4.5) yields that $\psi=\varphi=R_{0}(\omega+i 0) h$. Consequently,

$$
\begin{equation*}
(-\Delta-\omega+V) \psi=0 \tag{4.6}
\end{equation*}
$$

since $(-\Delta-\omega+V) \psi=h+V \psi=h+V R_{0}(\omega+i 0) h=0$ by (4.2). But the only solution of (4.6) with a finite support is $\psi \equiv 0$, which implies $h \equiv 0$.
Step ii) Fix $\omega \in(0,4)$ and $\sigma>1 / 2$. Then Lemma 3.1 yields

$$
1+V R_{0}(\omega \pm i \varepsilon) \xrightarrow{\mathcal{B}(\sigma, \sigma)} 1+V R_{0}(\omega \pm i 0), \quad \varepsilon \rightarrow 0+
$$

For this, recall that the potential V is assumed to be compactly supported in \mathbb{Z}. Therefore the convergence $R_{0}(\omega \pm i \varepsilon) \rightarrow R_{0}(\omega \pm i 0)$ in $B(\sigma,-\sigma)$ is improved to convergence in $B(\sigma, \sigma)$ through multiplication by V. By Step i), the operator $1+V R_{0}(\omega \pm i 0)$ has only a trivial kernel. Hence, being Fredholm if index zero, $1+V R_{0}(\omega \pm i 0)$ is invertible, and moreover

$$
\left(1+V R_{0}(\omega \pm i \varepsilon)\right)^{-1} \xrightarrow{\mathcal{B}(\sigma, \sigma)}\left(1+V R_{0}(\omega \pm i 0)\right)^{-1}, \quad \varepsilon \rightarrow 0+.
$$

Then the representation $R=R_{0}\left(1+V R_{0}\right)^{-1}$ implies (4.1).
Remark 4.1. Equation (3.2) implies

$$
R(\omega-i 0, x, y)=\overline{R(\omega+i 0, x, y)}, \quad \omega \in(0,4)
$$

5 Fredholm alternative argument

In this section we are going to obtain an asymptotic expansion for the perturbed resolvent $R(\omega)$. In particular, we will show that no term of order $\omega^{-1 / 2}$ appears in the series for $R(\omega)$ in the case of a generic potential $V \in \mathcal{S}$, regardless of the singularity of $R_{0}(\omega)$.

Definition 5.1. i) A set $\mathcal{V} \subset \mathcal{S}$ is called generic, if for each $V \in \mathcal{S}$ we have $\alpha V \in \mathcal{V}$, with the possible exception of a discrete set of $\alpha \in \mathbb{C}$.
ii) We say that a property holds for a"generic" V, if it holds for all V from a generic subset of \mathcal{S}.

We consider the asymptotic behavior of $R(\omega)$ at the singular points $\omega=0$ and $\omega=4$. For instance, we focus on $\omega=0$ and construct the resolvent $R(\omega)$ for small $|\omega|$ in the case of a generic potential V. This will be achieved by means of the relation

$$
R(\omega)=\left(1+R_{0}(\omega) V\right)^{-1} R_{0}(\omega) .
$$

According to Section 3, it remains to construct $\left(1+R_{0}(\omega) V\right)^{-1}$. First we note that

$$
\begin{equation*}
T(\omega)=1+R_{0}(\omega) V=\operatorname{Op}\left[\delta(x-y)+R_{0}(\omega, x, y) V(y)\right] . \tag{5.1}
\end{equation*}
$$

Taking into account (3.3) we decompose (5.1) as

$$
\begin{equation*}
T(\omega)=T_{r}(\omega)+T_{s}(\omega), \tag{5.2}
\end{equation*}
$$

with

$$
\begin{equation*}
T_{r}(\omega)=\mathrm{Op}\left[\delta(x-y)+\left(R_{0}(\omega, x, y)-\frac{i}{2} \omega^{-1 / 2}\right) V(y)\right] \tag{5.3}
\end{equation*}
$$

and

$$
\begin{equation*}
T_{s}(\omega)=\mathrm{Op}\left[\frac{i}{2} \omega^{-1 / 2} V(y)\right] \tag{5.4}
\end{equation*}
$$

which isolates the singular term in the expansion of $T(\omega)$. This operator acts as

$$
\begin{equation*}
\left(T_{s}(\omega) u\right)(x)=\frac{i}{2} \omega^{-1 / 2}\langle V, u\rangle:=\frac{i}{2} \omega^{-1 / 2} \sum_{y \in \mathbb{Z}} V(y) u(y) \tag{5.5}
\end{equation*}
$$

and hence its range is the one-dimensional subspace of constant functions. To determine

$$
u(\omega):=R(\omega) \psi=\left(1+R_{0}(\omega) V\right)^{-1} R_{0}(\omega) \psi
$$

for a given function ψ, put $f(\omega)=R_{0}(\omega) \psi$. Thus we are looking for solutions $u(\omega) \in l_{-\sigma}^{2}, \sigma>3 / 2$ of the equation $T(\omega) u(\omega)=f(\omega)$. Accordingly, we decompose the space $l_{-\sigma}^{2}$ as the sum of orthogonal subspaces as $l_{-\sigma}^{2}=V^{\perp}+$ $V^{\|}$, where the orthogonality refers to the l^{2} inner product $\langle\cdot, \cdot\rangle$, and $V^{\|}$is the one-dimensional subspace spanned by V. Therefore we can write

$$
\begin{equation*}
u(\omega)=u^{\perp}(\omega)+c(\omega) v, \quad v:=V /\|V\|, \tag{5.6}
\end{equation*}
$$

with suitable $u^{\perp}(\omega) \in V^{\perp}$ and $c(\omega) \in \mathbb{C}$; here $\|V\|=\|V\|_{l^{2}}$. By (5.5) we have $V^{\perp} \subset \operatorname{ker} T_{s}(\omega)$. Thus $T_{s}(\omega) u^{\perp}(\omega)=0$, and consequently $T(\omega) u(\omega)=f(\omega)$ is equivalent to

$$
\begin{equation*}
T_{r}(\omega) u^{\perp}(\omega)+c(\omega) T(\omega) v=f(\omega) \tag{5.7}
\end{equation*}
$$

Lemma 5.1. Let $\sigma>3 / 2$. Then for a generic potential $V \in \mathcal{S}$ the operator $T_{r}(\omega): l_{-\sigma}^{2} \rightarrow l_{-\sigma}^{2}$ is invertible, provided that $|\omega|$ is sufficiently small.
Proof. First we show that for a generic potential $V \in \mathcal{S}$ the operator $T_{r}(0)$: $l_{-\sigma}^{2} \rightarrow l_{-\sigma}^{2}$ is invertible. Since

$$
T_{r}(0)=\operatorname{Op}\left[\delta(x-y)-\frac{1}{2}|x-y| V(y)\right],
$$

it suffices to prove that the operator

$$
\mathrm{Op}\left[\left(1+x^{2}\right)^{-\sigma / 2}\left(\delta(x-y)-\frac{1}{2}|x-y| V(y)\right)\left(1+y^{2}\right)^{\sigma / 2}\right]
$$

is an invertible operator in l^{2}. And this holds generically. Indeed, for a given potential $V \in \mathcal{S}$ we introduce

$$
\begin{aligned}
\mathcal{A}(\alpha) & =\mathrm{Op}\left[\left(1+x^{2}\right)^{-\sigma / 2}\left(\delta(x-y)-\frac{\alpha}{2}|x-y| V(y)\right)\left(1+y^{2}\right)^{\sigma / 2}\right] \\
& =1+\alpha \mathcal{K}, \quad \alpha \in \mathbb{C}
\end{aligned}
$$

Due to $\sigma>3 / 2$, the function

$$
K(x, y)=-\frac{1}{2}\left(1+x^{2}\right)^{-\sigma / 2}|x-y| V(y)\left(1+y^{2}\right)^{\sigma / 2} \in l^{2}(\mathbb{Z} \times \mathbb{Z})
$$

Hence $K(x, y)$ is a Hilbert-Schmidt kernel, and accordingly the operator $\mathcal{K}=$ $\operatorname{Op}(K(x, y)): l^{2} \rightarrow l^{2}$ is compact. Further, $\mathcal{A}(\alpha)$ is analytic in $\alpha \in \mathbb{C}$ and $\mathcal{A}(0)$ is invertible. It follows that $\mathcal{A}(\alpha)$ is invertible for all $\alpha \in \mathbb{C}$ outside a discrete set; see [2]. Thus we could replace the original potential V by αV with α arbitrarily close to 1 , if necessary, to have $T_{r}(0)$ invertible. Since $T_{r}(\omega)-T_{r}(0) \rightarrow 0$ as $\omega \rightarrow 0$, also $T_{r}(\omega)$ is invertible for sufficiently small $|\omega|$.

Put

$$
w(\omega)=\left(T_{r}^{-1}(\omega)\right)^{*} v
$$

where $T_{r}^{-1}(\omega)$ exists by Lemma 5.1. Since $v \in l_{\sigma}^{2}$ for any $\sigma \in \mathbb{R}$, we also get

$$
w(\omega) \in \bigcap_{\sigma>3 / 2} l_{\sigma}^{2}
$$

Furthermore, for $v^{\perp} \in V^{\perp}$ one obtains

$$
\left\langle w(\omega), T_{r}(z) v^{\perp}\right\rangle=\left\langle\left(T_{r}^{-1}(\omega)\right)^{*} v, T_{r}(\omega) v^{\perp}\right\rangle=\left\langle v, v^{\perp}\right\rangle=0
$$

so that

$$
w(\omega) \perp T_{r}(\omega) V^{\perp}
$$

Now, taking the inner product of (5.7) with $w(\omega)$ we find

$$
\begin{equation*}
c(\omega)=\frac{\langle f(\omega), w(\omega)\rangle}{\langle T(\omega) v, w(\omega)\rangle} \tag{5.8}
\end{equation*}
$$

provided that

$$
\langle T(\omega) v, w(\omega)\rangle \neq 0
$$

Lemma 5.2. For a generic potential $V \in \mathcal{S}$ with $\sum_{x \in \mathbb{Z}} V(x) \neq 0$, the relation $\langle T(\omega) v, w(\omega)\rangle \neq 0$ holds for sufficiently small $|\omega| \neq 0$.
Proof. Denote

$$
T_{r}(0, \alpha)=\operatorname{Op}\left[\delta(x-y)-\frac{\alpha}{2}|x-y| V(y)\right], \quad \alpha \in \mathbb{C} .
$$

Then $T_{r}(0,1)=T_{r}(0), T_{r}(0,0)=\mathrm{Op}[\delta(x-y)]$, and $\left\langle T_{r}(0,0)^{-1} 1, V\right\rangle=$ $\langle 1, V\rangle \neq 0$. Hence, the meromorphic function $\alpha \mapsto\left\langle T_{r}(0, \alpha)^{-1} 1, V\right\rangle$ does not vanish identically, and thus we have $\left\langle T_{r}(0, \alpha)^{-1} 1, V\right\rangle \neq 0$ for all $\alpha \in \mathbb{C}$ outside a discrete set. Therefore we could replace the original potential V by αV with α arbitrarily close to 1 , if necessary, to ensure that

$$
\begin{equation*}
\left\langle T_{r}^{-1}(0) 1, V\right\rangle \neq 0 \tag{5.9}
\end{equation*}
$$

Then for a generic potential $V \in \mathcal{S}$ with $\langle 1, V\rangle=\sum_{x \in \mathbb{Z}} V(x) \neq 0$, we have

$$
\begin{align*}
\langle T(\omega) v, w(\omega)\rangle & =\left\langle T_{r}(\omega) v, w(\omega)\right\rangle+\left\langle T_{s}(\omega) v, w(\omega)\right\rangle \\
& =\left\langle T_{r}(\omega) v,\left(T_{r}^{-1}(\omega)\right)^{*} v\right\rangle+\frac{i}{2} \omega^{-1 / 2}\langle V, v\rangle\langle 1, w(\omega)\rangle \\
& =1+\frac{i}{2} \omega^{-1 / 2}\|V\|\left\langle T_{r}^{-1}(\omega) 1, v\right\rangle \tag{5.10}\\
& =\frac{i}{2} \omega^{-1 / 2}\left\langle T_{r}^{-1}(0) 1, V\right\rangle+o\left(\omega^{-1 / 2}\right) \neq 0
\end{align*}
$$

for sufficiently small $|\omega| \neq 0$.
By Lemma 5.1, (5.7) yields

$$
u^{\perp}(\omega)=T_{r}^{-1}(\omega)(f(\omega)-c(\omega) T(\omega) v)
$$

Thus (5.6) implies that

$$
u(\omega)=T_{r}^{-1}(\omega)(f(\omega)-c(\omega) T(\omega) v)+c(\omega) v
$$

Hence we can summarize the foregoing arguments as follows:
Theorem 5.1. Let $\sigma>3 / 2$. Then for a generic potential $V \in \mathcal{S}$ with $\sum_{x \in \mathbb{Z}} V(x) \neq 0$, the resolvent $R(\omega)=(H-\omega)^{-1}$ can be expressed as

$$
\begin{equation*}
R(\omega) \psi=T_{r}^{-1}(\omega)(f(\omega)-c(\omega) T(\omega) v)+c(\omega) v \tag{5.11}
\end{equation*}
$$

where $T_{r}(\omega)$ is from (5.3) and invertible by Lemma 5.1, $f(\omega)=R_{0}(\omega) \psi$, $c(\omega)$ is given by (5.8), and $T(\omega)=1+R_{0}(\omega) V$.

6 Puiseux expansion

Theorem 6.1. Let $\sigma>7 / 2$. Then for a generic potential $V \in \mathcal{S}$ with $\sum_{x \in \mathbb{Z}} V(x) \neq 0$, the resolvent $R(\omega)$ has the expansion

$$
\begin{equation*}
R(\omega)=R^{0}+\mathcal{O}\left(|\omega|^{1 / 2}\right), \quad \omega \rightarrow 0 \tag{6.1}
\end{equation*}
$$

where the asymptotics hold in the norm of $B(\sigma,-\sigma)$. See (6.6) below for the explicit form of R^{0}.

Proof. Step i). Fix $\sigma>7 / 2$. Equations (3.3) and (5.3) imply that for small $|\omega|$,

$$
T_{r}(\omega)=T_{0}+\omega^{1 / 2} T_{1}+\mathcal{O}(|\omega|)
$$

in $B(-\sigma,-\sigma)$, where

$$
\begin{aligned}
& T_{0}=T_{r}(0)=\mathrm{Op}\left[\delta(x-y)-\frac{1}{2}|x-y| V(y)\right] \\
& T_{1}=\operatorname{Op}\left[\sum_{k=0}^{2} c_{k 1}|x-y|^{k} V(y)\right]=\frac{i}{4} \operatorname{Op}\left[\left(\frac{1}{4}-|x-y|^{2}\right) V(y)\right]
\end{aligned}
$$

Note that again the compact support of V is used here. Next we write down the Neumann series for $T_{r}^{-1}(\omega)$ about the invertible $T_{0}=T_{r}(0)$ to obtain

$$
\begin{equation*}
T_{r}^{-1}(\omega)=S_{0}+\omega^{1 / 2} S_{1}+\mathcal{O}(|\omega|), \quad \omega \rightarrow 0 \tag{6.2}
\end{equation*}
$$

in $B(-\sigma,-\sigma)$, where

$$
S_{0}=T_{0}^{-1}=T_{r}(0)^{-1}, \quad S_{1}=-T_{0}^{-1} T_{1} T_{0}^{-1} .
$$

Step ii). Now let us calculate $c(\omega)$. From (6.2) we deduce

$$
\left(T_{r}^{-1}(\omega)\right)^{*}=S_{0}^{*}+\omega^{1 / 2} S_{1}^{*}+\mathcal{O}(|\omega|)
$$

in $B(\sigma, \sigma)$ for $\sigma>7 / 2$. Thus

$$
\begin{equation*}
w(\omega)=\left(T_{r}^{-1}(\omega)\right)^{*} v=w_{0}+\omega^{1 / 2} w_{1}+\mathcal{O}(|\omega|) \tag{6.3}
\end{equation*}
$$

in l_{σ}^{2} for $\sigma>7 / 2$, where

$$
w_{0}=S_{0}^{*} v, \quad w_{1}=\mathcal{S}_{1}^{*} v
$$

By (3.3),

$$
\begin{equation*}
R_{0}(\omega)=\frac{i}{2} \omega^{-1 / 2} \mathrm{Op}(1)+R_{0}^{0}+\omega^{1 / 2} R_{0}^{1}+\mathcal{O}(|\omega|) \tag{6.4}
\end{equation*}
$$

in $\mathcal{B}(\sigma,-\sigma)$ for $\sigma>7 / 2$. Hence the numerator of (5.8) admits the asymptotic expansion

$$
\begin{aligned}
\langle f(\omega), w(\omega)\rangle= & \left\langle R_{0}(\omega) \psi, w(\omega)\right\rangle \\
= & \left\langle\frac{i}{2} \omega^{-1 / 2} \operatorname{Op}(1) \psi+R_{0}^{0} \psi+\omega^{1 / 2} R_{0}^{1} \psi+\mathcal{O}(|\omega|),\right. \\
& \left.w_{0}+\omega^{1 / 2} w_{1}+\mathcal{O}(|\omega|)\right\rangle \\
= & \frac{i}{2} \omega^{-1 / 2}\langle 1, \psi\rangle\left\langle 1, w_{0}\right\rangle+\frac{i}{2}\langle 1, \psi\rangle\left\langle 1, w_{1}\right\rangle+\left\langle R_{0}^{0} \psi, w_{0}\right\rangle \\
& +\mathcal{O}\left(|\omega|^{1 / 2}\right) .
\end{aligned}
$$

Next we have to expand the denominator of (5.8). By (5.10) and (6.3),

$$
\begin{aligned}
\langle T(\omega) v, w(\omega)\rangle & =1+\frac{i}{2} \omega^{-1 / 2}\|V\|\left\langle 1,\left(T_{r}^{-1}(\omega)\right)^{*} v\right\rangle \\
& =1+\frac{i}{2} \omega^{-1 / 2}\|V\|\left\langle 1, w_{0}+\omega^{1 / 2} w_{1}+\mathcal{O}(|\omega|)\right\rangle \\
& =\frac{i}{2} \omega^{-1 / 2}\|V\|\left\langle 1, w_{0}\right\rangle+1+\frac{i}{2}\|V\|\left\langle 1, w_{1}\right\rangle+\mathcal{O}\left(|\omega|^{1 / 2}\right)
\end{aligned}
$$

We already noticed that for a generic potential

$$
\left\langle 1, w_{0}\right\rangle=\left\langle 1, S_{0}^{*} v\right\rangle=\left\langle 1,\left(T_{r}^{-1}(0)\right)^{*} v\right\rangle=\left\langle T_{r}^{-1}(0) 1, v\right\rangle \neq 0,
$$

recall (5.9). Hence (5.8) implies

$$
\begin{align*}
c(\omega) & =\frac{\langle f(\omega), w(\omega)\rangle}{\langle T(\omega) v, w(\omega)\rangle} \\
& =\frac{\frac{i}{2} \omega^{-1 / 2}\langle 1, \psi\rangle\left\langle 1, w_{0}\right\rangle+\frac{i}{2}\langle 1, \psi\rangle\left\langle 1, w_{1}\right\rangle+\left\langle R_{0}^{0} \psi, w_{0}\right\rangle+\mathcal{O}\left(|\omega|^{1 / 2}\right)}{\frac{i}{2} \omega^{-1 / 2}\|V\|\left\langle 1, w_{0}\right\rangle+1+\frac{i}{2}\|V\|\left\langle 1, w_{1}\right\rangle+\mathcal{O}\left(|\omega|^{1 / 2}\right)} \\
& =c_{0}+\omega^{1 / 2} c_{1}+\mathcal{O}(|\omega|), \tag{6.5}
\end{align*}
$$

where $c_{0}=\|V\|^{-1}\langle 1, \psi\rangle$ and $c_{1} \in \mathbb{C}$ is appropriate.
Step iii). Substituting (5.2), (5.4), (6.2), (6.4), and (6.5) into (5.11), and noting the key relation

$$
\frac{i}{2} \omega^{-1 / 2} \mathrm{Op}(1) \psi-c_{0} \mathrm{Op}\left[\frac{i}{2} \omega^{-1 / 2} V(y)\right] v=\frac{i}{2} \omega^{-1 / 2}\left(\langle 1, \psi\rangle-c_{0}\langle V, v\rangle\right)=0
$$

we obtain the following asymptotic expansion for $R(\omega) \psi$.

$$
\begin{aligned}
R(\omega) \psi= & T_{r}^{-1}(\omega)\left(R_{0}(\omega) \psi-c(\omega)\left[T_{r}(\omega)+T_{s}(\omega)\right] v\right)+c(\omega) v \\
= & T_{r}^{-1}(\omega)\left(\frac{i}{2} \omega^{-1 / 2} \operatorname{Op}(1) \psi+R_{0}^{0} \psi+\mathcal{O}\left(|\omega|^{1 / 2}\right)\right. \\
& \left.\quad-\left(c_{0}+\omega^{1 / 2} c_{1}+\mathcal{O}(|\omega|)\right) \operatorname{Op}\left[\frac{i}{2} \omega^{-1 / 2} V(y)\right] v\right) \\
= & T_{r}^{-1}(\omega)\left(R_{0}^{0} \psi+\mathcal{O}\left(|\omega|^{1 / 2}\right)-\frac{i}{2}\left(c_{1}+\mathcal{O}\left(|\omega|^{1 / 2}\right)\right)\|V\|\right) \\
= & \left(S_{0}+\mathcal{O}\left(|\omega|^{1 / 2}\right)\right)\left(R_{0}^{0} \psi-\frac{i}{2} c_{1}\|V\|+\mathcal{O}\left(|\omega|^{1 / 2}\right)\right) \\
= & S_{0}\left(R_{0}^{0} \psi-\frac{i}{2} c_{1}\|V\|\right)+\mathcal{O}\left(|\omega|^{1 / 2}\right) .
\end{aligned}
$$

This expansion does not contain singular terms in $\omega^{-1 / 2}$, since they have cancelled. Therefore defining $R^{0} \psi=S_{0}\left(R_{0}^{0} \psi-\frac{i}{2} c_{1}\|V\|\right)$, the proof of Theorem 6.1 is complete; the explicit form of the operator R^{0} can be obtained by calculating $c_{1}=c_{1}(\psi) \in \mathbb{C}$ from (6.5). More precisely, it is found that

$$
c_{1}=\frac{\|V\|\left\langle R_{0}^{0} \psi, w_{0}\right\rangle-\langle 1, \psi\rangle}{\frac{i}{2}\|V\|^{2}\left\langle 1, w_{0}\right\rangle},
$$

so that

$$
\begin{equation*}
R^{0} \psi=\left(S_{0} R_{0}^{0} \psi-\frac{\left\langle S_{0} R_{0}^{0} \psi, V\right\rangle}{\left\langle S_{0}(1), V\right\rangle} S_{0}(1)\right)+\frac{\langle\psi, 1\rangle}{\left\langle S_{0}(1), V\right\rangle} S_{0}(1) \tag{6.6}
\end{equation*}
$$

is obtained. Here the first operator makes the projection of $S_{0} R_{0}^{0} \psi$ onto the space V^{\perp} along the vector $S_{0}(1)$ and the second operator is of range 1 .

Corollary 6.1. Let $\sigma>7 / 2$. Then for a generic potential $V \in \mathcal{S}$ with $\sum_{x \in \mathbb{Z}} V(x) \neq 0$, the resolvent expansion of $R(\omega)$ from (6.1) may be differentiated in ω three times, and for $r=1,2,3$,

$$
\begin{equation*}
(d / d \omega)^{r} R(\omega)=\mathcal{O}\left(|\omega|^{1 / 2-r}\right), \quad \omega \rightarrow 0 \tag{6.7}
\end{equation*}
$$

in $B(\sigma,-\sigma)$.
Proof. Note that

$$
R(\omega)=\left(1+R_{0}(\omega) V\right)^{-1} R_{0}(\omega),
$$

and $R_{0}(\omega)$ has a differentiable asymptotic series by Lemma 3.2. Hence it suffices to argue that the asymptotic series for $\left(1+R_{0}(\omega) V\right)^{-1}$ is differentiable. For the latter, it may be shown that

$$
(d / d \omega)\left(1+R_{0} V\right)^{-1}=-\left(1+R_{0} V\right)^{-1} R_{0}^{\prime} V\left(1+R_{0} V\right)^{-1}
$$

and after some lengthy but straightforward calculation also (6.7) is found.
Remark 6.1. A similar expansion of $R(\omega)$ is valid as $\omega \rightarrow 4$.

7 Long-time asymptotics

Theorem 7.1. Let $\sigma>7 / 2$. Then for a generic potential $V \in \mathcal{S}$ with $\sum_{x \in \mathbb{Z}} V(x) \neq 0$, the asymptotics (1.5) hold, i.e.,

$$
\left\|e^{-i t H}-\sum_{j=1}^{n} e^{-i t \omega_{j}} P_{j}\right\|_{B(\sigma,-\sigma)}=\mathcal{O}\left(t^{-3 / 2}\right), \quad t \rightarrow \infty
$$

Here P_{j} denote the projections on the eigenspaces corresponding to the eigenvalues $\omega_{j} \in \mathbb{R} \backslash[0,4], j=1, \ldots, n$.

Proof. The estimate for $e^{-i t H}$ is based on the formula

$$
\begin{equation*}
e^{-i t H}=-\frac{1}{2 \pi i} \oint_{|\omega|=C} e^{-i t \omega} R(\omega) d \omega, C>\max \left\{4 ;\left|\omega_{j}\right|, j=1, \ldots, n\right\} . \tag{7.1}
\end{equation*}
$$

Encircling the spectrum $[0,4] \cup\left\{\omega_{j}: j=1, \ldots, n\right\}$ of H by smaller and smaller pathes, it follows from

$$
P_{j}=-\frac{1}{2 \pi i} \oint_{\left|\omega-\omega_{j}\right|=\varepsilon} R(\omega) d \omega
$$

for $\varepsilon>0$ sufficiently small and Remark 4.1 that

$$
\begin{aligned}
e^{-i t H}-\sum_{j=1}^{n} e^{-i t \omega_{j}} P_{j} & =\frac{1}{2 \pi i} \int_{[0,4]} e^{-i t \omega}(R(\omega+i 0)-R(\omega-i 0)) d \omega \\
& =\frac{1}{\pi} \int_{[0,4]} e^{-i t \omega} \operatorname{Im} R(\omega+i 0) d \omega=\int_{[0,4]} e^{-i t \omega} P(\omega) d \omega
\end{aligned}
$$

where $P(\omega)=\frac{1}{\pi} \operatorname{Im} R(\omega+i 0)$. The asymptotic expansion for $P(\omega)$ at the singular points $\mu=0$ and $\mu=4$ can be deduced from (6.1). Thus, restricting to $\omega \in \mathbb{R}$, we have

$$
\begin{equation*}
P(\mu+\omega)=\mathcal{O}\left(|\omega|^{1 / 2}\right), \omega \rightarrow 0 \tag{7.2}
\end{equation*}
$$

To prove the desired decay for large t, it is convenient to represent the function $P(\omega)$ for $\omega \in[0,4]$ as

$$
\begin{equation*}
P(\omega)=\phi_{1}(\omega) P(\omega)+\phi_{2}(\omega) P(\omega) \tag{7.3}
\end{equation*}
$$

where $\phi_{j}(\omega) \in C_{0}^{\infty}(\mathbb{R})$ for $j=1,2, \phi_{1}(\omega)+\phi_{2}(\omega)=1$ for $\omega \in[0,4], \operatorname{supp} \phi_{1} \subset$ $(-1,3)$, and $\operatorname{supp} \phi_{2} \subset(1,5)$. Due to (7.2) and Corollary 6.1, we can apply Lemma 7.1 below with $F=\phi_{1} P, a=3, \mathbf{B}=B(\sigma,-\sigma)$ where $\sigma>7 / 2$, and $\theta=1 / 2$ to get

$$
\int_{[0,4]} e^{-i t \omega} \phi_{1}(\omega) P(\omega) d \omega=\mathcal{O}\left(t^{-3 / 2}\right), \quad t \rightarrow \infty,
$$

in $B(\sigma,-\sigma)$. Since the same argument can be used for $F=\phi_{2} P,(7.3)$ shows that the proof is complete.

The following result is a special case of [6, Lemma 10.2].
Lemma 7.1. Assume \mathcal{B} is a Banach space, $a>0$, and $F \in C(0, a ; \mathbf{B})$ satisfies $F(0)=F(a)=0, F^{\prime} \in L^{1}(0, a ; \mathbf{B})$, as well as $F^{\prime \prime}(\omega)=\mathcal{O}\left(\omega^{\theta-2}\right)$ as $\omega \searrow 0$ for some $\theta \in(0,1)$. Then

$$
\int_{0}^{a} e^{-i t \omega} F(\omega) d \omega=\mathcal{O}\left(t^{-1-\theta}\right), \quad t \rightarrow \infty
$$

8 The Klein-Gordon equation

Now we extend the results of Sections 5-7 to the case of the Klein-Gordon equation (1.6)-(1.7). The operator \mathbf{H} is not selfadjoint in $l^{2} \oplus l^{2}$. First we prove the existence and uniqueness of the global solution $\boldsymbol{\Psi}:=e^{-i t \mathbf{H}} \boldsymbol{\Psi}_{0}$.

Lemma 8.1. For any initial data $\mathbf{\Psi}_{0}(x) \in l^{2} \oplus l^{2}$ there exists a unique solution $\boldsymbol{\Psi}(x, t) \in C\left(\mathbb{R}, l^{2} \oplus l^{2}\right)$ of (1.7).

Proof. The existence of a local solution for sufficiently small $|t|$ is shown by the contraction mapping method. That this local solution can be extended
to a global solution follows from the energy a priori estimate. In fact, multiplying (1.6) by $\dot{\psi}(x, t)$ and taking the sum over $x \in \mathbb{Z}$, we have

$$
\frac{d}{d t}\left(\|\dot{\psi}(t)\|_{l^{2}}^{2}+\|\nabla \psi(t)\|_{l^{2}}^{2}+m^{2}\|\psi(t)\|_{l^{2}}^{2}\right)+2 \sum_{x \in \mathbb{Z}} V(x) \psi(x, t) \dot{\psi}(x, t)=0
$$

where $(\nabla \psi)(x)=\psi(x+1)-\psi(x)$ for $x \in \mathbb{Z}$. Put $\alpha=-\min _{x \in \mathbb{Z}} V(x) \geq 0$. Since $\|\nabla \psi\|_{l^{2}} \leq 2\|\psi\|_{l^{2}}$, we get

$$
\|\dot{\psi}(t)\|_{l^{2}}^{2}+\|\nabla \psi(t)\|_{l^{2}}^{2}+m^{2}\|\psi(t)\|_{l^{2}}^{2} \leq\left(4+m^{2}\right)\left\|\Psi_{0}\right\|_{l^{2} \oplus l^{2}}^{2}+\alpha \int_{0}^{t}\|\Psi(s)\|_{l^{2} \oplus l^{2}}^{2} d s
$$

and therefore

$$
\|\boldsymbol{\Psi}(t)\|_{l^{2} \oplus l^{2}}^{2} \leq C\left\|\boldsymbol{\Psi}_{0}\right\|_{l^{2} \oplus l^{2}}^{2}+\alpha_{1} \int_{0}^{t}\|\Psi(s)\|_{l^{2} \oplus l^{2}}^{2} d s
$$

for suitable constants $C>0$ and $\alpha_{1}>0$. The Gronwall inequality implies that

$$
\|\boldsymbol{\Psi}(t)\|_{l^{2} \oplus l^{2}}^{2} \leq C e^{\alpha_{1} t}\left\|\boldsymbol{\Psi}_{0}\right\|_{l^{2} \oplus l^{2}}^{2}, \quad t>0
$$

which gives the desired bound.
Now we can apply the Fourier-Laplace transform

$$
\tilde{\Psi}(x, \omega)=\int_{0}^{\infty} e^{i \omega t} \boldsymbol{\Psi}(x, t) d t, \quad \operatorname{Im} \omega>\alpha_{1}>0
$$

and get the stationary equation

$$
(\mathbf{H}-\omega) \tilde{\mathbf{\Psi}}(\omega)=-i \mathbf{\Psi}_{0}, \quad \operatorname{Im} \omega>\alpha_{1} .
$$

Let us first consider the resolvent $\mathbf{R}(\omega)=(\mathbf{H}-\omega)^{-1}$ of the operator \mathbf{H}.
Lemma 8.2. If $\omega^{2}-m^{2} \in \mathbb{C} \backslash[0,4]$, then the resolvent $\mathbf{R}(\omega)$ can be expressed in terms of the resolvent $R(\omega)$ from (1.3) as

$$
\mathbf{R}(\omega)=\left(\begin{array}{cc}
\omega R\left(\omega^{2}-m^{2}\right) & i R\left(\omega^{2}-m^{2}\right) \tag{8.1}\\
-i\left(1+\omega^{2} R\left(\omega^{2}-m^{2}\right)\right) & \omega R\left(\omega^{2}-m^{2}\right)
\end{array}\right)
$$

Proof. The expression for the resolvent $\mathbf{R}_{0}(\omega)=\left(\mathbf{H}_{0}-\omega\right)^{-1}$ of the free equation with $V=0$ in the case where $\omega^{2}-m^{2} \in \mathbb{C} \backslash[0,4]$ can be obtained by inverse Fourier transform $F_{\theta \rightarrow x-y}^{-1}$ of the matrix

$$
\frac{1}{\phi(\theta)-\left(\omega^{2}-m^{2}\right)}\left(\begin{array}{cc}
\omega & i \\
-i\left(\phi(\theta)+m^{2}\right) & \omega
\end{array}\right) .
$$

Using that by (2.1)

$$
F_{\theta \rightarrow x-y}^{-1}\left(\frac{1}{\phi(\theta)-\left(\omega^{2}-m^{2}\right)}\right)=R_{0}\left(\omega^{2}-m^{2}, x, y\right)
$$

we get

$$
\mathbf{R}_{0}(\omega)=\left(\begin{array}{cc}
\omega R_{0}\left(\omega^{2}-m^{2}\right) & i R_{0}\left(\omega^{2}-m^{2}\right) \\
-i\left(1+\omega^{2} R_{0}\left(\omega^{2}-m^{2}\right)\right) & \omega R_{0}\left(\omega^{2}-m^{2}\right)
\end{array}\right) .
$$

Put

$$
\mathbf{V}=\left(\begin{array}{cc}
0 & 0 \\
V & 0
\end{array}\right)
$$

Then the formula

$$
\mathbf{R}(\omega)=\left(\mathbf{I}-i \mathbf{R}_{0}(\omega) \mathbf{V}\right)^{-1} \mathbf{R}_{0}(\omega)
$$

for the full resolvent yields (8.1).
The representation (8.1) implies the following properties of the operator \mathbf{H}.

1) By Lemma 4.1 we have that

$$
\operatorname{Spec}_{\mathrm{ess}} \mathbf{H}=\left[-\sqrt{m^{2}+4},-m\right] \cup\left[m, \sqrt{m^{2}+4}\right] .
$$

The discrete spectrum of \mathbf{H} is $\tilde{\omega}_{j}^{ \pm}= \pm \sqrt{m^{2}+\omega_{j}}$, where ω_{j} are the eigenvalues of the operator H. Note that either $\tilde{\omega}_{j}^{ \pm} \in \mathbb{R}$ or $\tilde{\omega}_{j}^{ \pm} \in i \mathbb{R}$.
2) Let $\sigma>1 / 2$. By Lemma 4.2, the following limits exist as $\varepsilon \rightarrow 0+$.

$$
\mathbf{R}(\omega \pm i \varepsilon) \quad \xrightarrow{\mathbf{B}(\sigma,-\sigma)} \mathbf{R}(\omega \pm i 0),
$$

and moreover

$$
\mathbf{R}(\omega-i 0, x, y)=\overline{\mathbf{R}(\omega+i 0, x, y)}
$$

Both relations hold for $\omega \in\left(-\sqrt{m^{2}+4},-m\right) \cup\left(m, \sqrt{m^{2}+4}\right)$.
3) Let $\sigma>7 / 2$. By Theorem 6.1, we have for a generic potential $V \in \mathcal{S}$ with $\sum_{x \in \mathbb{Z}} V(x) \neq 0$ the following asymptotic expansion of the resolvent \mathbf{R} in $\mathbf{B}(\sigma,-\sigma)$:

$$
\mathbf{R}(\mu+\omega)=\mathbf{R}_{0}^{\mu}+\mathcal{O}\left(|\omega|^{1 / 2}\right), \quad \omega \rightarrow 0
$$

where $\mu= \pm m$ or $\mu= \pm \sqrt{m^{2}+4}$.
4) Let $\sigma>7 / 2$. By Theorem 7.1, for a generic potential $V \in \mathcal{S}$ with $\sum_{x \in \mathbb{Z}} V(x) \neq 0$, the following asymptotics hold:

$$
\left\|e^{-i t \mathbf{H}}-\sum_{ \pm} \sum_{j=1}^{n} e^{-i t \tilde{\omega}_{j}^{ \pm}} \mathbf{P}_{j}^{ \pm}\right\|_{\mathbf{B}(\sigma,-\sigma)}=\mathcal{O}\left(t^{-3 / 2}\right), \quad t \rightarrow \infty .
$$

Here $\mathbf{P}_{j}^{ \pm}$are the projections onto the eigenspaces corresponding to the eigenvalues $\tilde{\omega}_{j}^{ \pm}, j=1, \ldots, n$.

ACKNOWLEDGMENTS The authors thank very much B. Vainberg for fruitful discussions. A.I.K. was supported partly by Faculty of Mathematics of Vienna University, Max-Planck Institute for Mathematics in the Sciences (Leipzig) and Wolfgang Pauli Institute. E.A.K. was supported partly by research grant of RFBR-NNIO (no.01-01-04002) and the FWF project "Asymptotics and Attractors of Hyperbolic Equations" (FWF P-16105-N05).

A Appendix

Let the number of the points in the support of the potential V equal 1 or 2 . We will show that for such a potential the operator $H=-\Delta+V$ always has a real eigenvalue outside the interval $[0,4]$.
Example I. Let $V(x)=V_{1} \delta\left(x-x_{1}\right)$. We seek the solution of the equation

$$
\begin{equation*}
(-\Delta-\omega+V) \psi=0 \tag{A.1}
\end{equation*}
$$

in the form

$$
\psi=(-\Delta-\omega)^{-1} h .
$$

Then (A.1) becomes

$$
\begin{equation*}
h(x)+V(x)\left((-\Delta-\omega)^{-1} h\right)(x)=0 . \tag{A.2}
\end{equation*}
$$

Substituting the explicit formula (2.2) for the resolvent in (A.2) we obtain

$$
\begin{equation*}
h(x)+V_{1} \delta\left(x-x_{1}\right)\left[-i \sum_{y \in \mathbb{Z}} \frac{e^{-i \theta(\omega)|x-y|}}{2 \sin \theta(\omega)} h(y)\right]=0 . \tag{A.3}
\end{equation*}
$$

Thus $h(x)=0$ for $x \neq x_{1}$, and (A.3) simplifies to

$$
\begin{equation*}
h\left(x_{1}\right)\left(1-\frac{i V_{1}}{2 \sin \theta(\omega)}\right)=0 \tag{A.4}
\end{equation*}
$$

Hence one has to solve the following equation for the eigenvalue ω of the operator H.

$$
\begin{equation*}
2 \sin \theta(\omega)=i V_{1} \tag{A.5}
\end{equation*}
$$

First we consider the case where $V_{1}<0$ and seek the solution to (A.5) in the form $\theta(\omega)=i s$ for $s \in \mathbb{R}$. Then (A.5) implies $s=\operatorname{arcsinh}\left(V_{1} / 2\right)<0$. Therefore $\theta(\omega)=i s \in \Gamma_{c}$, and consequently $\omega \in(-\infty, 0)$ is a real eigenvalue of the operator H. Similarly, if $V_{1}>0$, then we get a real eigenvalue $\omega \in$ $(4, \infty)$. It is easy to check that the corresponding eigenfunctions belong to l^{2}.
Example II. Let $V(x)=V_{1} \delta\left(x-x_{1}\right)+V_{2} \delta\left(x-x_{2}\right)$. Similarly to (A.4), we now get the system

$$
\left\{\begin{array}{l}
h\left(x_{1}\right)\left(\frac{i V_{1}}{2 \sin \theta(\omega)}-1\right)+h\left(x_{2}\right) \frac{i V_{1}}{2 \sin \theta(\omega)} e^{-i \theta(\omega)\left|x_{2}-x_{1}\right|}=0 \\
h\left(x_{1}\right) \frac{i V_{2}}{2 \sin \theta(\omega)} e^{-i \theta(\omega)\left|x_{2}-x_{1}\right|}+h\left(x_{2}\right)\left(\frac{i V_{2}}{2 \sin \theta(\omega)}-1\right)=0
\end{array}\right.
$$

The determinant of this system equals

$$
D(\omega)=\left(i V_{1}-2 \sin \theta(\omega)\right)\left(i V_{2}-2 \sin \theta(\omega)\right)+V_{1} V_{2} e^{-2 i \theta(\omega)\left|x_{2}-x_{1}\right|}
$$

We want to determine a real ω which is a solution to the equation $D(\omega)=0$. Denoting $z=e^{-i \theta(\omega)}$, this reads as

$$
\begin{equation*}
\left(V_{1}+\frac{1}{z}-z\right)\left(V_{2}+\frac{1}{z}-z\right)=V_{1} V_{2} z^{2\left|x_{2}-x_{1}\right|} . \tag{A.6}
\end{equation*}
$$

Put $N=\left|x_{2}-x_{1}\right| \geq 1, a=1 / V_{1}$, and $b=1 / V_{2}$. Then (A.6) becomes

$$
\begin{equation*}
\left(a z^{2}-z-a\right)\left(b z^{2}-z-b\right)=z^{2 N+2} \tag{A.7}
\end{equation*}
$$

Denote by $L(z)$ and $R(z)$ the left hand side and the right hand side of (A.7), respectively. It is easy to check that the graphs $y=L(z)$ and $y=R(z)$ intersect each other at the points $z= \pm 1$. Moreover, $R(0)=0$ and $R(z)>0$ for $z \neq 0$.

First we consider the case where $a, b>0$. Then the polynomial $L(z)$ has two roots in the interval $(-1,0)$, and $L(0)=a b>0$. Therefore these graphs also have an intersection at a point $z=z_{0}$, with $-1<z_{0}<0$. It is straightforward to prove that this point corresponds to a value $\omega \in(4, \infty)$.

The case where $a, b<0$ is handled similarly, and in this case we get a solution $\omega \in(-\infty, 0)$ of the equation $D(\omega)=0$.

Finally, if a and b have opposite signs, then $L(0)<0$. Calculating the first derivatives of $L(z)$ and $R(z)$ at $z= \pm 1$, we obtain

$$
\begin{aligned}
& L^{\prime}(-1)=-2 a-2 b-2, \quad L^{\prime}(1)=-2 a-2 b+2, \\
& R^{\prime}(-1)=-2 N-2, \quad R^{\prime}(1)=2 N+2
\end{aligned}
$$

If $N>a+b$, then $R^{\prime}(-1)<L^{\prime}(-1)$ and $R(z)<L(z)$ for $z>-1$ and $z+1$ small enough. On the other hand, $L(0)<R(0)$. Thus the graphs of $L(z)$ and $R(z)$ have an intersection in $(-1,0)$. Similarly, if $N>-a-b$, then these graphs have an intersection in $(0,1)$. Therefore we have at least one root of (A.7) in $(-1,1) \backslash\{0\}$.

References

[1] Agmon S.: Spectral properties of Schrödinger operator and scattering theory, Ann. Scuola Norm. Sup. Pisa, Ser. IV 2, 151-218 (1975)
[2] Bleher P.M.: On operators depending meromorphically on a parameter, Moscow Univ. Math. Bull. 24, 21-26 (1972)
[3] Eskina M.S.: The scattering problem for partial-difference equations, in Mathematical Physics, Naukova Dumka, Kiev (in Russian), 248-273 (1967)
[4] Jensen A.: Spectral properties of Schrödinger operators and time-decay of the wave function. Results in $L^{2}\left(\mathbb{R}^{m}\right), m \geq 5$, Duke Math. J. 47, 57-80 (1980)
[5] Jensen A.: Spectral properties of Schrödinger operators and time-decay of the wave function. Results in $L^{2}\left(\mathbb{R}^{4}\right)$, J. Math. Anal. Appl 101, 491513 (1984)
[6] Jensen A. \& Kato T.: Spectral properties of Schrödinger operators and time-decay of the wave functions, Duke Math. J. 46, 583-611 (1979)
[7] Lax P.\& Phillips R.: Scattering Theory. Academic Press, New York (1989)
[8] Murata M.: Asymptotic expansions in time for solutions of Schrödingertype equations, J. Funct. Anal. 49, 10-56 (1982)
[9] Schlag W.: Dispersive estimates for Schrödinger operators: A survey, preprint math.AP/0501037
[10] Shaban W.\& Vainberg B.: Radiation conditions for the difference Schrödinger operators, J. Appl. Anal. 80, no. 3-4, 525-556 (2001)
[11] Vainberg B.: Behaviour for large time of solutions of the Klein-Gordon equation, Trans. Moscow Math. Soc. 30, 139-158 (1974)
[12] Vainberg B.: On the short wave asymptotic behaviour of solutions of stationary problems and the asymptotic behaviour as $t \rightarrow \infty$ of solutions of non-stationary problems, Russ. Math. Surveys 30, 1-58 (1975)
[13] Vainberg B.: Asymptotic Methods in Equations of Mathematical Physics. Gordon and Breach, New York (1989)

[^0]: ${ }^{1}$ Faculty of Mathematics Vienna University, A-1090 Vienna, Austria
 ${ }^{2}$ Wolfgang Pauli Institute Vienna University, A-1090 Vienna, Austria
 ${ }^{3}$ Universität Duisburg-Essen, Fachbereich Mathematik, D-45117 Essen, Germany

