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Abstract

We consider an ensemble of classical particles modelled by means of a continuity equation
for a distribution function which is coupled back to the self-induced fields. For such infinite
dimensional systems simpler effective equations are derived in the limit c → ∞. A main
emphasis is on higher order approximations, in particular on the first post-Newtonian order
where radiation starts to play a role.

1 Introduction

The most precise existing theory of gravitation, the theory of general relativity, predicts that
certain astrophysical systems, such as colliding black holes or neutron stars, will give rise to
gravitational radiation. There is a major international effort under way to detect these gravitational
waves [Br04]. In order to relate the general theory to predictions of what the detectors will see
it is necessary to use approximation methods since the exact theory is too complicated. The
mathematical status of these approximations remains unclear and only very partial results exist.
Therefore it is useful to start with model problems. One option is the relativistic Vlasov-Maxwell
system which plays an important role in plasma physics. Although the field part of this system
is electromagnetic and spacetime is flat, such a model is already fairly difficult. It is often used
to gain a better understanding of the mathematical structures involved in more realistic gravity
models. A further option for a simplified model is the scalar theory of gravitation, as described
by the Vlasov-Nordström theory [C03]. It has already been considered as a model problem for
numerical relativity in [ShT93].

Among the approximation methods used to study gravitational radiation those which are most
accessible mathematically are the post-Newtonian approximations. Some information on these has
been obtained in [R94, R92] but further rigorous progress seems difficult at this point. For that
reason it seems to be useful to investigate (from the viewpoint of approximation methods) the
two systems presented above, i.e., Vlasov matter coupled to the Maxwell fields and Vlasov matter
coupled to a scalar gravitational field governed by the Nordström equation. We shall explain the
post-Newtonian expansion of the Vlasov-Maxwell system in some detail in Section 2 and sketch
our results concerning the Vlasov-Nordström system in Section 3.
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Remark: Our contribution is one part of the research project jointly with G. Panati, H. Spohn, and
S. Teufel within the Schwerpunkt. The second part will be covered in the separate contribution
[PaSpT06].

2 The Vlasov-Maxwell system

The Vlasov-Maxwell system from kinetic theory models the evolution of a plasma or gas composed
of many collisionless particles which move under the influence of their self-generated electromag-
netic field. For the sake of simplicity we assume that there are only two different species of particles
with mass normalized to unity and charge normalized to plus unity and minus unity, respectively.
The particle distributions on phase space are modelled through the nonnegative distribution func-
tions f+ and f−, f± = f±(t, x, p), depending on time t ∈ R, position x ∈ R3, and momentum
p ∈ R3. It is assumed that collisions between single particles are sufficiently rare such that they
can be neglected. Therefore all forces between the particles are mediated by the electromagnetic
fields. The dynamics are governed by

∂tf
± + p̂ · ∇xf

± ± (E + c−1p̂×B) · ∇pf
± = 0,

c∇× E = −∂tB, c∇×B = ∂tE + 4πj

∇ · E = 4πρ, ∇ · B = 0,

ρ :=

∫
(f+ − f−) dp, j :=

∫
p̂ (f+ − f−) dp





(RVMc)

Here
p̂ = (1 + c−2p2)−1/2p ∈ R3 (2.1)

is the relativistic velocity associated to p. The Lorentz force E + c−1p̂×B realizes the coupling of
the Maxwell fields E = E(t, x) ∈ R3 and B = B(t, x) ∈ R3 to the Vlasov equation, and conversely
the density functions f± enter the field equations via the scalar charge density ρ = ρ(t, x) and
the current density j = j(t, x) ∈ R3, which act as source terms for the Maxwell equations. The
parameter c denotes the speed of light for given units of time and space of the physical system. In
order to state the Cauchy problem for (RVMc) initial data for the densities and for the fields have
to be prescribed,

f±(0, x, p) = f ◦,±(x, p), E(0, x) = E◦(x), B(0, x) = B◦(x). (2.2)

Henceforth we treat the speed of light c as a parameter and study the behavior of the system as
c → ∞. It will be explained below that after a suitable rescaling the fields are slowly varying in
their space and time variables. Thus the limit c → ∞ corresponds to an adiabatic limit and to
slowly moving particles. Our general goal is to establish conditions under which the solutions of
(RVMc) converge to a solution of an effective system. For the Vlasov-Maxwell system the first
result in this direction was obtained in [S86], where it has been shown that as c →∞ the solutions
of (RVMc) approach a solution of the Vlasov-Poisson system at the rate O(c−1); see [AU86, D86]
for similar results and [Le04] for the case of two spatial dimensions. The respective Newtonian
limits of other related systems are derived in [R94, CLe04].

It was one aim of this project to replace the Vlasov-Poisson system by other effective equations
to achieve higher order convergence and more precise approximations. In [BK05] this led to an
effective system whose solutions stay as close as O(c−3) to a solution of the full Vlasov-Maxwell
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system. In the context of individual particles, this post-Newtonian (PN) order of approximation
is usually called the Darwin order; see [KSp00, Sp04] and the references therein. We also mention
that weak convergence properties of other kinds of Darwin approximations for the Vlasov-Maxwell
system have been studied in [DRa92, BeFLaSo03].

In the next order, and in analogy to the case of individual particles [KSp01], radiation effects
play a role for the first time. Therefore the well-known problems related to the existence of
unphysical solutions, usually called “run-away solutions”, are expected to turn up [J99]. For
individual particles these problems can be resolved rigorously by restricting the dynamics to a
suitable center-like manifold in the phase space; see [KSp01, Sp04]. Since the phase space of the
Vlasov-Maxwell system is infinite dimensional (as densities are considered), it is clear that several
new mathematical difficulties have to be surrounded in this step. In [B06b] we determined effective
equations for the Vlasov-Maxwell system on the center manifold, which led to a slightly dissipative
Vlasov-like effective equation, free of “run-away” solutions, and we proved that solutions of these
equations stay as close as O(c−4) to a solution of the full Vlasov-Maxwell system.

Compared to systems of coupled individual particles, for the Vlasov-Maxwell system one im-
mediately is faced with the fact that so far only the existence of local solutions is known in general.
These solutions are global under additional conditions, for instance if a suitable a priori bound on
the velocities is available; see [GSt86]. This means that from the onset we will have to restrict
ourselves to solutions of (RVMc) which are only defined on some time interval [0, T ] that may be
very small. On the other hand, in [S86] it has been shown that such a time interval can be found
which is uniform in c ≥ 1, so it seems reasonable to accept this limit.

In Section 2.1 we first carry out a formal expansion of (RVMc) in c−1 as c → ∞. It turns
out that up to the Darwin order this approximation yields the correct effective system. However,
for the next order this naive procedure does not yield the optimal result. To get a clue on how
an improved approximation may look like we derive the leading order dipole radiation term in
Section 2.2, and thereafter we establish an improved system (called the radiation approximation)
which gives a better approximation to the full Vlasov-Maxwell system. More details on this are
elaborated in Section 2.3. Finally a comparison of the continuous models to the individual particle
models is done in Section 2.4.

2.1 The naive post-Newtonian expansion

We adopt the definition of a post-Newtonian approximation from [KR01b]; see also [R92] for
the Einstein case. Thus the matter and the fields are described by a one-parameter family
(f±(c), E(c), B(c)) of solutions to (RVMc), depending on the parameter c ∈ [c0,∞[. This means
that (f±(c), E(c), B(c)) describes a family of solutions of physical systems which are represented in
parameter-dependent units, where the numerical value of the speed of light is given by c. A more
conventional physical description of the post-Newtonian expansion would say that in a fixed system
of units the occurring velocities are small compared to the speed of light. Taking this viewpoint
means that we consider (RVMc) at a fixed c (say c = 1) by rescaling the prescribed nonnegative
initial densities f ◦,±, for which we suppose that f ◦,± ∈ C∞(R3×R3) have compact support. To be
more precise, denote v̄ =

∫ ∫
p̂f ◦,±(x, p) dx dp, where p̂ is taken for c = ε−1/2; cf. (2.1). Then v̄ is

viewed as an average velocity of the system. Then we introduce f ◦,±,ε(x, p) = ε3/2f ◦,±(εx, ε−1/2p)
and consider f ◦,±,ε for c = 1. It follows that

v̄ε =

∫ ∫
p̂f ◦,±,ε(x, p) dx dp =

√
ε

∫ ∫
p̂f ◦(x, p) dx dp =

√
ε v̄,
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i.e., the systems with initial distribution functions f ◦,±,ε have small velocities compared to the sys-
tems associated to f ◦,±. Under this scaling the masses remain unchanged, as

∫ ∫
f ◦,±,ε(x, p) dx dp =∫ ∫

f ◦,±(x, p) dx dp. Next observe that (f±, E, B) is a solution of (RVMc) with c = ε−1/2 if and
only if

f±,ε(t, x, p) = ε3/2f±(ε3/2t, εx, ε−1/2p),

Eε(t, x) = ε2E(ε3/2t, εx), (2.3)

Bε(t, x) = ε2B(ε3/2t, εx),

is a solution of (RVMc) with c = 1. By definition of the rescaled fields these fields are slowly
varying in their space and time variables. Thus the limit c →∞ corresponds to an adiabatic limit.
Henceforth we will return to the original formulation and consider the system as c →∞, treating
the speed of light c as a parameter. However, due to the rescaling outlined above all theorems can
also be formulated in a parameter independent fashion. In that case the value of c is fixed, say
c = 1, and the initial data have to be modified according to (2.3); see [BK05] for details.

We start with a formal expansion of all quantities occurring in (RVMc) in powers of c−1,

f± = f±0 + c−1f±1 + c−2f±2 + c−3f±3 + . . . ,

E = E0 + c−1E1 + c−2E2 + c−3E3 + . . . ,

B = B0 + c−1B1 + c−2B2 + c−3B3 + . . . , (2.4)

ρ = ρ0 + c−1ρ1 + c−2ρ2 + c−3ρ3 + . . . ,

j = j0 + c−1j1 + c−2j2 + c−3j3 + . . . .

In addition, also the initial densities are assumed to allow an expansion as f ◦,± = f ◦,±0 +c−1f ◦,±1 +... .
Finally p̂ = p−(c−2/2)p2p+ . . . by (2.1), where p2 = |p|2. These expansions can be substituted into
(RVMc). Comparing coefficients at every order gives a hierarchy of equations for the coefficients.
The equations at order k will be addressed as the k/2 PN equations, and

f±,k/2PN =
k∑

j=0

c−jf±j , Ek/2 PN =
k∑

j=0

c−jEj, Bk/2PN =
k∑

j=0

c−jBj,

is the k/2 PN approximation. This notation is used due to the fact that in the context of general
relativity post-Newtonian approximations are usually counted in orders of c−2.

At order zero the well known Vlasov-Poisson system of plasma physics is obtained,

∂tf
±
0 + p · ∇xf

±
0 ± E0 · ∇pf

±
0 = 0,

E0(t, x) = −
∫
|z|−2z̄ ρ0(t, x + z) dz,

ρ0 =

∫
(f+

0 − f−0 ) dp,

f±0 (0, x, p) = f ◦,±0 (x, p),





(VPplasma)

where z̄ = |z|−1z. Note that the degrees of freedom of the electromagnetic fields up to this order
are lost, reflecting that the limit c → ∞ is singular and the hyperbolic field equations become
elliptic. As mentioned above, this 0 PN approximation is made rigorous in [S86].
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Concerning a general k we assume that the lower order coefficients have already been computed.
Then the fields at order k have to solve

∇× Ek = −∂tBk−1, ∇ · Ek = 4πρk,
∇×Bk = ∂tEk−1 + 4πjk−1, ∇ · Bk = 0.

The Vlasov equation to that order is

∂tf
±
k + p · ∇xf

±
k ± E0 · ∇pf

±
k = ∓Ek · ∇pf

±
0 + R±

k ,

where the R±
k can be calculated from the known quantities f±j , ∇xf

±
j , ∇pf

±
j , Ej, and Bj for

j = 0, . . . , k − 1. A special feature of this hierarchy is as follows. If we assume for the initial data
that f ◦,±k = 0 for all odd k, then using the explicit form of Rk it can be shown that we can set

f±2l+1 = 0, E2l+1 = 0, B2l = 0 (2.5)

consistently, for l = 0, 1, 2, . . .. This simplification will be employed throughout. To solve the
equations for (fk, Ek, Bk), we observe that once Ek is known, then f±k can be calculated using
characteristics. Note that for all orders k the characteristic flow is determined by the vector field
(p,±E0). On the other hand, if the f±k are known, then ρk and jk are fixed. Using the vector
identity −∇×∇×+∇∇· = ∆, we can rewrite the field equations as

E2k = 4π∆−1(∇ρ2k + ∂tj2k−2) + ∆−1(∂2
t E2k−2),

B2k+1 = ∆−1(∂2
t B2k−1)− 4π∆−1(∇× j2k), (2.6)

where quantities carrying a negative index are understood to be zero. Assuming that all densities
are compactly supported we can solve these field equations. Of course without boundary condi-
tions the solutions are not unique, and at least for higher orders they will not vanish at infinity.
Nevertheless, if we take those fields, then the coupled equations can be solved by a fixed-point
iteration for Ek. Thus on a formal level the (naive) PN approximation scheme is well defined.

According to this scheme, B1 is given by

B1(t, x) =

∫
|z|−2z̄ × j0(t, x + z) dz, (2.7)

where j0 =
∫

p (f+
0 − f−0 ) dp. The couple (f±2 , E2) is the solution to

∂tf
±
2 + p · ∇xf

±
2 ± E0 · ∇pf

±
2

= 1
2
p2 p · ∇xf

±
0 ∓ (E2 + p×B1) · ∇pf

±
0 ,

E2(t, x) =
1

2

∫
z̄ ∂2

t ρ0(t, x + z) dz −
∫
|z|−1∂tj0(t, x + z) dz

−
∫
|z|−2z̄ ρ2(t, x + z) dz,

ρ2 =

∫
(f+

2 − f−2 ) dp,

f2(0, x, p) = f ◦,±2 (x, p).





(LVPplasma)

Thus the 1 PN approximation (Darwin approximation) corresponding to k = 2 is

f±,1PN = f±0 + c−2f±2 , E1 PN = E0 + c−2E2, B1PN = c−1B1. (2.8)
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This Darwin system is Hamiltonian in the following sense. If the conserved energy

E =

∫ ∫ √
1 + c−2p2/2 (f+ + f−) dx dp +

1

8π

∫
(E2 + B2) dx

of (RVMc) is expanded according to (2.4), then the Darwin energy ED = ED, kin +ED, pot is obtained.
Explicitly its kinetic energy and potential energy parts are given by

ED, kin =

∫ ∫
[(p2/2− c−2p4/8)(f+

0 + f−0 ) + c−2p2/2(f+
2 + f−2 )] dx dp,

ED, pot =
1

8π

∫
[E2

0 + 2c−2E0 · E2 + c−2B2
1 ] dx.

It can be checked that ED is conserved along solutions of the 1 PN approximation. The approx-
imation properties of the Darwin system w.r. to solutions of the full Vlasov-Maxwell system are
investigated in [BK05]. In this paper it is shown that if we adapt the initial data (2.2) to suit the
initial data of the 1 PN approximation, then the solutions are tracked down with an error of order
c−3. Hence the naive post-Newtonian expansion is valid up to this order.

For the next level (k = 3 or 1.5 PN), B3 = ∆−1(∂2
t B1) − 4π∆−1(∇ × j2) and also B1 =

−4π∆−1(∇× j0) by (2.6). Thus B3 = −4π∆−2(∂2
t∇× j0)− 4π∆−1(∇× j2) allows for the solution

B3(t, x) =
1

2

∫
|z| ∂2

t∇× j0(t, x + z) dz +

∫
|z|−1∇× j2(t, x + z) dz, (2.9)

where

j2 =

∫
[p (f+

2 − f−2 )− (p2/2)p (f+
0 − f−0 )] dp.

It follows that f±,1.5PN = f±0 +c−2f±2 +c−3f±3 = f±,1PN, E1.5PN = E0+c−2E2+c−3E3 = E1PN, and
B1.5PN = c−1B1 + c−3B3 = B1PN + c−3B3, due to (2.5) and (2.8). Therefore the energy ED from
above does not have to be changed in comparison to the 1 PN order. Hence at the 1.5 PN order
(corresponding to c−3) we would obtain a Hamiltonian system with no effects due to radiative
friction visible. This suggests that the naive post-Newtonian approximation has to be improved
in order to resolve such effects which are indeed present in the system. In order to get a clue on
how such a refinement should look like it is useful to study the energy which is radiated to future
null infinity by the full Vlasov-Maxwell system.

2.2 Dipole Radiation

The starting point for the following calculation is the local energy conservation ∂te + ∇ · P = 0
for classical solutions of the Vlasov-Maxwell system. The energy density e and the momentum
density P are given by

e(t, x) = c2

∫ √
1 + c−2p2 (f+ + f−)(t, x, p) dp +

1

8π

(|E(t, x)|2 + |B(t, x)|2),

P(t, x) = c2

∫
p(f+ + f−)(t, x, p) dp +

c

4π
E(t, x)×B(t, x).

Defining the local energy in the ball of radius r > 0 as Er(t) =
∫
|x|≤r

e(t, x) dx, this conservation

law and the divergence theorem imply that d
dt
Er(t) = − ∫

|x|=r
x̄ · P(t, x) dσ(x), where x̄ = |x|−1x
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denotes the outer unit normal. Our assumptions on the support of the distribution functions are
such that the contribution of

∫
p (f+ + f−) dp to P vanishes for |x| = r large. Hence we arrive at

d

dt
Er(t) =

c

4π

∫

|x|=r

x̄ · (B × E)(t, x) dσ(x).

Therefore the energy flux radiated to null infinity at time t is obtained as

lim
r→∞

c

4π

∫

|x|=r

x̄ · (B × E)(t + c−1r, x) dσ(x),

where t+c−1r is the advanced time. In [BKReR06, Thm. 1.4] it is shown that for suitable solutions
of the Vlasov-Maxwell system which are isolated from incoming radiation in the limit c →∞ the
total amount of radiated energy is given by

2

3c3
|D̈(t)|2, (2.10)

where D is the dipole moment of the Newtonian limit (VPplasma), defined as D(t) =
∫

xρ0(t, x) dx;
see [BKReR06, Thm. 1.4] for the exact statement and Section 2.3.2 below for the retarded system
(retRVMc) which models “no incoming radiation”. This result yields a mathematical formulation
and a rigorous proof of the Larmor formula in the case of Vlasov matter. Returning to the
approximations, we should therefore introduce into the effective equation a radiation reaction
force causing this loss of energy. As already suggested in [KR01a, KR01b] we thus modify the
Vlasov equation of the Newtonian distribution by incorporating a small correction into the force
term as

∂tf
±
0 + p · ∇xf

±
0 ±

(
E0 +

2

3c3

...
D

)
· ∇pf

±
0 = 0. (2.11)

The additional term is the generalization of the radiation reaction force used in particle models;
see [J99, (16.8)]. We also note that for this system the quantity

ES(t) =
1

2

∫ ∫
p2(f+

0 + f−0 )(t, x, p) dx dp +
1

8π

∫
|E0(t, x)|2 dx− 2

3c3
Ḋ(t) · D̈(t) (2.12)

is decreasing. More precisely one obtains d
dt
ES(t) = − 2

3c3
|D̈(t)|2, cf. (2.10). The subscript S refers

to Schott who considered similar quantities for particle models; see [Sp04]. Although ES has no
definite sign, its decrease can be attributed to the effect of radiation damping. If instead of ES the
usual positive energy EVP = 1

2

∫ ∫
p2(f+

0 + f−0 ) dx dp + 1
8π

∫ |E0|2 dx of the Vlasov-Poisson system

is considered, then along solutions of (2.11) the relation d
dt
EVP = 2

3c3
(D̈ · ...D − |D̈|2) is obtained

which has no straightforward interpretation.
Thus we consider (2.11) to be a promising candidate of an effective equation for the relativistic

Vlasov-Maxwell system. However, one immediately runs into the problem that initial data have
to be supplied for D(0), Ḋ(0), and D̈(0), as third derivatives of D occur in the equations. Since
only D(0) and Ḋ(0) are determined by f ◦,±0 and since there is no obvious way to extract the
missing information from the approximation scheme, additional degrees of freedom seem to be
generated. This phenomenon is also known from the theory of accelerated single charges and leads
to a multitude of unphysical (so-called run-away) solutions. In [KSp01] it has been observed that
in the particle model this problem has the structure of a geometric singular perturbation problem,
and the “physical” dynamics are obtained on a center-like manifold of the full dynamics.
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In order to adopt this language to the model under consideration, we assume that we are
supplied with a (local in time) classical solution (f±0 , E0) of (2.11) and assume that the support of
f±0 (t, ·, ·) remains compact for all t in the interval of existence of the solution. We define the bare
mass by M(t) =

∫ ∫
(f+

0 +f−0 )(t, x, p) dx dp. Then (2.11) yields mass conservation ∂tM = 0 as well
as charge conservation for both species ∂tρ

±
0 +∇ · j±0 = 0, where j±0 =

∫
pf±0 dp and ρ±0 =

∫
f±0 dp.

From D =
∫

xρ0 dx and (2.11) we then find that Ḋ =
∫ ∫

p (f+
0 −f−0 ) dx dp and D̈ = D[2]+ 2

3c3
M

...
D,

where

D[2](t) =

∫ ∫
E0(t, x)(f+

0 + f−0 )(t, x, p) dx dp. (2.13)

Defining y = D̈ and η = 2
3c3

M , this can be rewritten as y = D[2] + η
...
D. Putting

F±(f±0 , y) = −p · ∇xf
±
0 ∓ (E0 + M−1(y −D[2])) · ∇pf

±
0 ,

G(f±0 , y) = y −D[2],

it follows that (2.11) can be recast as the singular perturbation problem

˙f±0 = F±(f±0 , y)
ηẏ = G(f±0 , y)

}
(SGPPη)

In contrast to [KSp01] we are dealing with a phase space of infinite dimension. Thus the proof of
the existence of an invariant manifold is hard. We shall return to that question in a forthcoming
paper. For the moment we shall take the existence of a smooth invariant manifold for granted
and assume that it is given as a smooth graph hη = hη(f

◦
0 ), where hη is defined on (a subset of)

C∞
0 (R3×R3)×C∞

0 (R3×R3) and takes values in R3. For the moment f ◦0 denotes (f ◦,+0 , f ◦,−0 ), and
similarly f0 = (f+

0 , f−0 ) and F = (F+, F−). The manifold Mη = {(f ◦0 , hη(f
◦
0 ))} is invariant under

the flow of (SGPPη) if the solution of (SGPPη) subject to the initial conditions (f0(0), y(0)) =
(f ◦0 , hη(f

◦
0 )) satisfies

y(t) = hη(f0(t, ·, ·)). (2.14)

We want to determine a system of Vlasov-Poisson type which is a good approximation of the
dynamics on the manifold. For this reason we assume that we can expand hη in η about 0 as
hη = h0 + ηh1 + O(η2). Setting η = 0 in the second relation of (SGPPη), 0 = G(f0, h0(f0)) =
h0(f0)−D[2] is obtained, so that h0 = D[2]; note that D[2] depends on f0. Thus

ηẏ = G(f0, h0(f0) + ηh1(f0) +O(η2)) = h0(f0) + ηh1(f0) +O(η2)−D[2] = ηh1(f0) +O(η2).

On the other hand, differentiating (2.14) yields

ηẏ = η 〈h′η(f0), ḟ0〉 = η 〈h′0(f0), ḟ0〉+O(η2),

and consequently h1(f0) = 〈h′0(f0), F (f0, h0(f0))〉 by (SGPPη). Explicitly,

〈h′0(f0), F (f0, h0(f0))〉 = h′0(f0) ·
∫ ∫ (

− p · ∇x(f
+
0 − f−0 )− E0 · ∇p(f

+
0 + f−0 )

)
(·, x, p) dx dp.

From (2.14) and the above it follows that y = hη(f0) = h0(f0) + ηh1(f0) + O(η2) = D[2] +

η 〈D[2]′(f0), F (f0, D
[2](f0))〉+O(η2). After a straightforward computation we obtain

〈D[2]′(f0), F (f0, D
[2](f0))〉 = D[3], (2.15)
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where

D[3](t) = 2

∫ (
H+(t, x)j−0 (t, x)−H−(t, x)j+

0 (t, x)
)

dx, (2.16)

defining

H±(t, x) :=

∮
|z|−3(−3z̄ ⊗ z̄ + id)ρ±0 (t, x + z) dz ∈ R3×3. (2.17)

Note that H(z) = −3(z̄⊗ z̄)+ id is bounded on R3 \{0}, homogeneous of degree zero, and satisfies∫
|z|=1

H(z) dσ(z) = 0. Formally, D[3] is close to
...
D, since

...
D = d

dt
(D[2]+ 2

3c3
M

...
D) = d

dt
D[2]+O(c−3) =

D[3] +O(c−3) by (2.15).
We introduce the “reduced radiating Vlasov-Poisson system” as

∂tf
±
0 + p · ∇xf

±
0 ±

(
E0 +

2

3c3
D[3]

)
· ∇pf

±
0 = 0,

E0(t, x) = −
∫
|z|−2z̄ ρ0(t, x + z) dz,

ρ0 =

∫
(f+

0 − f−0 ) dp,

f±0 (0, x, p) = f ◦,±0 (x, p),





(rrVPc)

where D[3] is defined by (2.16) and (2.17). The next proposition addresses the existence and
uniqueness of local classical solutions of (rrVPc). Furthermore, it provides some useful estimates.
For the initial data we assume

f ◦,±0 ∈ C∞
0 (R3 × R3), f ◦,±0 ≥ 0,

f ◦,±0 (x, p) = 0 for |x| ≥ r0 or |p| ≥ r0, ‖f ◦,±0 ‖W 4,∞ ≤ S0, (2.18)

with some r0, S0 > 0 fixed.

Proposition 2.1 If f ◦,±0 satisfies the above hypotheses, then there exists 0 < T̃ ≤ ∞ such that the
following holds for c ≥ 1.

(a) There is a unique classical solution (f±0 , E0) of (rrVPc) existing on a time interval [0, Tc[
with T̃ ≤ Tc ≤ ∞. In addition, d

dt
D[2] = D[3], where D[2] is defined by (2.13).

(b) For every T < T̃ there is a constant M1(T ) > 0 such that for all 0 ≤ t ≤ T ,

f±0 (t, x, p) = 0 if |x| ≥ M1(T ) or |p| ≥ M1(T ).

(c) Even f±0 ∈ C∞ holds, and for every T < T̃ there is constant M2(T ) > 0 such that for all
0 ≤ t ≤ T ,

|∂αf±0 (t, x, p)|+ |∂β
t E0(t, x)|+ |∂γ

t D[3](t)| ≤ M2(T )

for every x ∈ R3, p ∈ R3, |α| ≤ 4, β ≤ 2, and γ ≤ 1.

See [B06a] for the proof. Note that the constants T̃ , M1(T ), and M2(T ) do only depend on the
“basic” constants r0 and S0. In particular T̃ , M1(T ), and M2(T ) are independent of c. Since the
second moment

∫ ∫
p2(f+

0 + f−0 ) dx dp cannot be bounded a priori by using energy conservation, it
seems difficult to prove global existence of classical solutions to (rrVPc). Recall that both methods
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yielding global existence of Vlasov-Poisson type systems essentially relied on such an a bound; see
[P92, S91, LPe91].

By means of (rrVPc) the approximations are improved by replacing at order zero the solution
to (VPplasma) by the solution to (rrVPc). Thus let (f0, E0) be the solution of (rrVPc); note that this
solutions depends on c, as opposed to the solution of (VPplasma). Next define B1, (f±2 , E2), and B3

according to (2.7), (LVPplasma), and (2.9), respectively. We remark that solutions to (LVPplasma)
do exist on [0, Tc[ (where Tc is from Proposition 2.1) and enjoy the usual properties, provided that
both f ◦,±0 and f ◦,±2 satisfy the assumptions (2.18); see [B06a].

In the following section we are going to explain that

f±,R = f±0 + c−2f±2 ,

ER = E0 + c−2E2 + (2/3)c−3D[3], (2.19)

BR = c−1B1 + c−3B3,

yields a higher order pointwise approximation of (RVMc) than the Vlasov-Poisson or the Darwin
system considered in [BK05]. We call (2.19) the radiation approximation. In the terminology of
post-Newtonian approximations it is the 1.5 PN approximation.

Using the Vlasov equation and integration by parts the following formulas are found.

Proposition 2.2 The fields ER and BR can be written as

ER(t, x) = −
∫
|z|−2z̄(ρ0 + c−2ρ2)(t, x + z) dz

+
1

2
c−2

∫ ∫
|z|−2

{
3(z̄ · p)2z̄ − p2z̄

}
(f+

0 − f−0 )(t, x + z, p) dz dp

−c−2

∫ ∫
|z|−1

{
z̄ ⊗ z̄ + 1

}

(
E0(t, x + z) + (2/3)c−3D[3](t)

)
(f+

0 + f−0 )(t, x + z, p) dz dp

+
2

3
c−3D[3](t), (2.20a)

and

BR(t, x) = c−1

∫ ∫
|z|−2(z̄ ∧ p)(f+,R − f−,R)(t, x + z, p) dz dp (2.20b)

−3

2
c−3

∫ ∫
|z|−2(z̄ · p)2(z̄ ∧ p)(f+

0 − f−0 )(t, x + z, p) dz dp

+
1

2
c−3

∫ ∫
|z|−1

{
(z̄ ∧ p)⊗ z̄ + (z̄ · p)z̄ ∧ (· · · )

}

(
E0(t, x + z) + (2/3)c−3D[3](t)

)
(f+

0 + f−0 )(t, x + z, p) dz dp

−c−3

∫
z̄ ∧ (

H+(t, x + z)j−0 (t, x + z)−H−(t, x + z)j+
0 (t, x + z)

)
dz.

At the end of this section we want to mention that there is another variant of a damped Vlasov
Poisson type system, considered in [KR01a, KR01b]. While for that system a global solution theory
is at hand, the authors did not compare approximations based on their solutions to solutions of
the full system.
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2.3 1.5 PN comparison dynamics

For the 1.5 PN comparison dynamics, as outlined in Section 2.2, the initial data (f ◦,±0 , f ◦,±2 ) are
given. The field quantities are to be computed from the resulting densities (f±0 , f±2 ) by means of
(2.20a), (2.20b), f±,R = f±0 + c−2f±2 , and (2.17). In comparison to that, for the Cauchy problem of
(RVMc) the initial fields E◦ and B◦ also have to be specified; see (2.2). Thus it is the question for
which choice of initial data (2.19) yields a good comparison dynamics and for which not. Certainly
it is possible to choose initial data for the fields such that the densities of the two dynamics evolve
in a completely different way.

In Section 2.3.1 we therefore fix the initial fields for the Vlasov-Maxwell dynamics from the
comparison dynamics; see formula (IC) below. From a mathematical viewpoint this procedure
comes with the additional advantage that results on the existence and uniqueness of local-in-time
solutions for both the full dynamics and the comparison dynamics have been established; see
[GSt86, S86, B06a]. This way it is possible in Theorem 2.4 to obtain a pointwise approximation
up to the order O(c−4). It should be mentioned that in [S86, D86, BK05] the fields are adapted in
the same way up to the relevant orders.

There are two drawbacks of this method. In essence post-Newtonian expansion is an expansion
of the relativistic velocity p̂ and the retarded time t− c−1|x−y|. It is clear that assuming localized
sources the expansion of the retarded time is only a good approximation in the near zone of the
source where |x− y| ¿ c. This is reflected in the fact that the estimates for the fields in Theorem
2.4 and Theorem 2.6 are only local in the space variable x. Thus also the adapted initial fields are
only reliable in the near zone, as is underlined by the fact that they have infinite energy. From
a more physical point of view it is moreover questionable to use the Cauchy problem at all. For
post-Newtonian expansions the main interest lies in localized systems which are isolated from the
rest of the world and which have already evolved for a long time with small velocities. Therefore
the Cauchy problem might not be the right formulation since it is not clear how to incorporate
these properties into the initial fields.

In physics textbooks isolated systems are characterized by the absence of incoming radiation,
i.e., there is no energy coming into the system from past null infinity; see [C04]. Here past null
infinity is that region of spacetime which is reached along backward light cones. In case that the
sources are given, fields which are free of incoming radiation are usually calculated by means of
retarded potentials. In Section 2.3.2 we consider a family of solutions of (RVMc), parametrized by
c, passing through f ◦,± at time t = 0; in fact the initial data may also depend on c according to
(IC), but this dependence is suppressed in our notation. Then in contrast to the Cauchy problem
for (RVMc) the electromagnetic fields are just computed by means of the retarded potentials; see
(retRVMc). The underlying physical picture is that in the absence of incoming radiation every
solution of (RVMc) will approach a solution of (retRVMc), i.e., solutions of (retRVMc) form a kind
of initial layer. Since it is our goal to model slow systems we assume that the momenta are bounded
uniformly in c ≥ 1 and time t ∈ R. It is beyond the scope of the present survey paper to investigate
the existence of solutions with mathematical rigor. Instead we simply introduce Assumption 2.5
below which summarizes all the properties needed. Note however that in [C04] the existence of
such global solutions is proved for small f ◦,± and also uniqueness is discussed.

2.3.1 Vlasov-Maxwell dynamics with adapted initial data

To achieve the improved approximation accuracy we match the initial data of (RVMc) by the data
for the radiation system. For prescribed initial densities f ◦,±0 and f ◦,±2 we determine (f±0 , E0),
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B1, (f±2 , E2), and B3 according to what has been explained above. Then we consider the Cauchy
problem for (RVMc), where the initial data are taken as

f±(0, x, p) = f ◦,±(x, p) = f ◦,±0 (x, p) + c−2f ◦,±2 (x, p) + c−4f ◦,±c, free(x, p),

E(0, x) = E◦(x) = E0(0, x) + c−2E2(0, x) + (2/3)c−3D[3](0) + c−4E◦
c, free(x),

B(0, x) = B◦(x) = c−1B1(0, x) + c−3B3(0, x) + c−4B◦
c, free(x).





(IC)

In contrast to the contributions at orders 0 to 3, which are fixed by the values of the approximations,
(f ◦,±c, free, E

◦
c, free, B

◦
c, free) can be chosen freely. They are only subjected to the constraints ∇·E◦

c, free =

4π
∫

(f ◦,+c, free − f ◦,−c, free) dp and ∇ · B◦
c, free = 0. Note that the constraint equations at the lower orders

are satisfied by fiat. Furthermore, we shall assume that

f ◦,±c, free ∈ C∞(R3 × R3), E◦
c, free, B

◦
c, free ∈ C∞

0 (R3),

f ◦,±c, free = 0 if |x| ≥ r0 or |p| ≥ r0, (2.21)

‖f ◦,±c, free‖L∞
≤ S0, ‖E◦

c, free‖W 1,∞ + ‖B◦
c, free‖W 1,∞ ≤ S0,

holds uniformly in c, with some r0, S0 > 0 fixed. Before we formulate the approximation result, let
us recall that solutions of (RVMc) with initial data (IC) exist at least on some time interval [0, T̂ [
which is independent of c ≥ 1; see [S86, Thm. 1].

Proposition 2.3 Assume that f ◦,±0 and f ◦,±2 satisfy (2.18). If f ◦,±, E◦, and B◦ are defined
according to (IC), then there exists 0 < T̂ ≤ ∞ (independent of c) such that for all c ≥ 1 there is
a unique smooth solution (f±, E,B) of (RVMc) with initial data (IC) on the time interval [0, T̂ [.
In addition, for every T < T̂ there are constants M3(T ),M4(T ) > 0 such that for all 0 ≤ t ≤ T ,

f±(t, x, p) = 0 if |x| ≥ M3(T ) or |p| ≥ M3(T ),

|f±(t, x, p)|+ |E(t, x)|+ |B(t, x)| ≤ M4(T ),

for every x, p ∈ R3 and c ≥ 1.

Actually in [S86, Thm. 1] E◦ and B◦ do not depend on c, but an inspection of the proof shows
that the assertions remain valid for initial fields as defined by (IC).

The first main approximation result at 1.5 PN is as follows; see [B06b].

Theorem 2.4 Assume that f ◦,±0 and f ◦,±2 satisfy (2.18). Then calculate (f±0 , E0), B1, (f±2 , E2),
and B3 by means of (rrVPc), (2.7), (LVPplasma), and (2.9), respectively. Thereafter choose the
initial data (f ◦,±, E◦, B◦) for (RVMc) according to (IC) and (2.21). Let (f, E, B) denote the
solution of (RVMc) with initial data (IC) and let (f±,R, ER, BR) be defined by (2.19). Then for
every T < min{T̃ , T̂} and r > 0 there are constants M(T ) > 0 and M(T, r) > 0 such that for all
0 ≤ t ≤ T ,

|f±(t, x, p)− f±,R(t, x, p)| ≤ M(T )c−4 (x ∈ R3),

|E(t, x)− ER(t, x)| ≤ M(T, r)c−4 (|x| ≤ r),

|B(t, x)−BR(t, x)| ≤ M(T, r)c−4 (|x| ≤ r),

for every p ∈ R3 and c ≥ 1.
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The constants M(T ) and M(T, r) are independent of c ≥ 1, but they do depend on the basic
constants r0 and S0. Note that if (RVMc) is compared to the Vlasov-Poisson system (VPplasma)
only, one obtains the Newtonian approximation

|f±(t, x, p)− f±0 (t, x, p)|+ |E(t, x)− E0(t, x)|+ |B(t, x)| ≤ M(T )c−1,

see [S86, Thm. 2B]. If it is compared to the Darwin system the estimates

|f±(t, x, p)− f±,1PN(t, x, p)|+ |B(t, x)−B1PN(t, x)| ≤ M(T )c−3,

|E(t, x)− E1PN(t, x)| ≤ M(T, r)c−3,

are found; see [BK05, Thm. 1.1] and recall (2.8). At first glance it could seem it is a strong
limitation to Theorem 2.4 that the time interval [0, T ] ⊂ [0, min{T̃ , T̂}[ might be very small, as T̃
and T̂ might be very small. Regarding this point we remind the rescaling from Section 2.1 which
allows to reformulate the result in an ε-dependent fashion on the time interval [0, ε−3/2T ] as ε → 0,
i.e., for long times.

2.3.2 The retarded Vlasov-Maxwell dynamics

Following [C04] we introduce the retarded relativistic Vlasov-Maxwell system as

∂tf
± + p̂ · ∇xf

± ± (E + c−1p̂×B) · ∇pf
± = 0,

E(t, x) = −
∫

dy

|x− y|
(∇ρ + c−2∂tj

)
(t− c−1|x− y|, y),

B(t, x) = c−1

∫
dy

|x− y|∇ × j(t− c−1|x− y|, y),

ρ =

∫
(f+ − f−) dp, j =

∫
p̂ (f+ − f−) dp.





(retRVMc)

If we assume that (f±, E, B) is a smooth solution of (retRVMc), then ρ and j satisfy the continuity
equation ∂tρ + ∇ · j = 0. Therefore the retarded fields are a solution of the Maxwell equations,
i.e., (f, E, B) also solves (RVMc). Note that it is necessary to know the densities for all times
]−∞, t] in order to compute the fields at time t. Hence there is no sense to the notation of a local
solution of this system. As in the case of the Cauchy problem every solution of (retRVMc) satisfies
f±(t, x, p) = f±(0, X±(0; t, x, p), P±(0; t, x, p)), where s 7→ (X±(s; t, x, p), P±(s; t, x, p)) solves the
characteristic system

Ẋ = P̂ , Ṗ = ±(E + c−1P̂ ×B), (2.23)

with initial data X±(t; t, x, p) = x and P±(t; t, x, p) = p. Thus 0 ≤ f±(t, x, p) ≤ ‖f±(0, ·, ·)‖∞
holds.

As before let f ◦,±0 , f ◦,±2 , and f ◦,±c, free satisfy (2.18) with some r0, S0 > 0. Put

f ◦,± = f ◦,±0 + c−2f ◦,±2 + c−4f ◦,±c, free.

We make the following

Assumption 2.5 (a) For every c ≥ 1 there is a global solution f± ∈ C4(R × R3 × R3) of
(retRVMc) passing through f ◦,± at time t = 0, i.e., f±(0, x, p) = f ◦,±(x, p) for x, p ∈ R3.
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(b) There is a constant P1 > 0 such that f±(t, x, p) = 0 for |p| ≥ P1 and c ≥ 1. In particular,
f±(t, x, p) = 0 for |x| ≥ r0 + P1|t| by (2.23).

(c) For every T > 0, R > 0, and P > 0 there is a constant M5(T, R, P ) > 0 such that

|∂α+1
t f±(t, x, p)|+ |∂α

t ∇xf
±(t, x, p)| ≤ M5(T, R, P )

for |t| ≤ T , |x| ≤ R, |p| ≤ P , and |α| ≤ 3, uniformly in c ≥ 1.

Our second main approximation result at 1.5 PN is taken from [B06b].

Theorem 2.6 Assume that (f±, E, B) is a family of solutions of (retRVMc) satisfying Assumption
2.5 with constants P1 and M5(T, R, P ). Take T̃ > 0 from Proposition 2.1. Then for every T < T̃
and r > 0 there are constants M(T ) > 0 and M(T, r) > 0 such that for all 0 ≤ t ≤ T ,

|f±(t, x, p)− f±,R(t, x, p)| ≤ M(T )c−4 (x ∈ R3),

|E(t, x)− ER(t, x)| ≤ M(T, r)c−4 (|x| ≤ r),

|B(t, x)−BR(t, x)| ≤ M(T, r)c−4 (|x| ≤ r),

for every p ∈ R3 and c ≥ 2P1. The constants M(T ) and M(T, r) do only depend on r0, S0, P1,
and M5(·, ·, ·). In particular they are independent of c ≥ 2P1.

2.4 Comparison to the particle model

We shall compare our results for the continuous density Vlasov models to the corresponding results
for individual particle models. Usually the latter are denoted the Abraham-Lorentz system; see
[KSp00, KSp01, Sp04]. Both systems are quite similar for the Hamiltonian approximations up
to 1 PN. In addition, dissipative corrections at 1.5 PN make it necessary to have a closer look
at the underlying phase space. The true comparison dynamics lives on a center-like manifold in
an extended phase space. In addition, the dynamics on this manifold can be approximated by a
modified Vlasov-Poisson system coupled to a second order equation, as in (SGPPη). In [KR01b,
Sect. 3] it is argued that the force term of the 1.5 PN approximation used in that paper can be
obtained formally in the limit “number of particles →∞” from the individual particle models. In
comparison to [KSp00, KSp01] the main difference to the present paper lies in the treatment of the
initial data. For the individual particle model the initial data for the fields are supposed to be of
“charged soliton” type. One can think of these fields as generated by charges forced to move freely
for −∞ < t ≤ 0 with their initial velocities. For the approximation this leads to an initial time
slip t0 which the charges need to “forget” their initial data. The initial data for the approximation
are then fixed by matching the data of the full system at time t0. Therefore the initial data for the
approximation are given only implicitly, since first one has to compute a solution of the full system
over [0, t0]. Regarding the Cauchy problem for the Vlasov-Maxwell system, the matching is done
the other way round. For a given initial density one computes the fields of the approximations
and imposes their values at t = 0 as initial data for the fields of the full system. Hence these
initial data are given more explicitly. In fact it is possible to calculate them by fixing only f ◦,±0

and f ◦,±2 ; see (2.20a) and (2.20b). Also Theorem 2.4 and Theorem 2.6 seem to be stronger than
the results obtained for the particle model, as the passage from 1 PN to 1.5 PN did improve the
approximation only in certain directions [KSp01, (3.21), (3.32)]. It seems reasonable to expect that
a matching of the initial data at t = 0 as described above could also improve the earlier results on
the Abraham-Lorentz system.
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3 The Vlasov-Nordström system

Recently there has been some interest in a simplified but still relativistic model of gravitation in
which Vlasov matter is coupled to a scalar theory of gravitation; the latter essentially goes back
to Nordström [N13]. The metric tensor used in General Relativity is replaced by a scalar function
and the Einstein equations are replaced by a wave equation. In [CRe03] the following system has
been considered.

S(f)−
(
S(ϕ)p + γc2∇x ϕ

)
· ∇p f = 4S(ϕ)f,

µ =

∫
γf dp,

−∂2
t ϕ + c2∆x ϕ = 4πµ.





(VNc)

Once again f = f(t, x, p) denotes the density to find a particle at time t at position x with
momentum p, where t ∈ R, x ∈ R3, and p ∈ R3. The scalar gravitational potential ϕ = ϕ(t, x) is
generated by the particles via the source µ, and c denotes the speed of light. In addition,

p2 = |p|2, γ = (1 + c−2p2)−1/2, p̂ = γp, and S = ∂t + p̂ · ∇x.

The initial data are

f(0, x, p) = f ◦(x, p), ϕ(0, x) = ϕ0(x), ∂tϕ(0, x) = ϕ1(x).

For a physical interpretation and a derivation of this system see [CLe04]. In this formulation (VNc)
exhibits many similarities to the relativistic Vlasov-Maxwell system. Thus it is not surprising that
many techniques developed for the Vlasov-Maxwell system also apply to the Vlasov-Nordström
system. However, regarding basic questions like existence and uniqueness of solutions (VNc) is by
far better understood than (RVMc). Global existence of classical solutions for unrestricted data is
proved in [C06], also see [Le05] for the 2D case.

Again we are concerned with the non-relativistic limit c → ∞ of (VNc). Under certain cir-
cumstances it has been made rigorous in [R94] that the (gravitational) Vlasov-Poisson system is
the non-relativistic limit of the full Einstein-Vlasov system. In [CLe04] it has been shown that as
c →∞ also solutions of (VNc) converge to a solution of a Vlasov-Poisson system with an error of
the order O(c−1). These facts support the belief that (VNc) may serve well as a model problem
for Einstein-Vlasov.

To derive the higher order (post-Newtonian) approximations we follow the naive approach from
Section 2.1 and first expand all relevant quantities in powers of c−1,

f = f0 + c−1f1 + c−2f2 + . . . ,

µ = µ0 + c−1µ1 + c−2µ2 + . . . ,

ϕ = ϕ0 + c−1ϕ1 + c−2ϕ2 + . . . .

Comparing coefficients yields the equations −∆xϕ0 = 0 and −∆xϕ1 = 0. Thus we set ϕ0 = ϕ1 = 0.
As mentioned above, at order zero the gravitational Vlasov-Poisson system

∂tf0 + p · ∇xf0 −∇x ϕ2 · ∇pf0 = 0, µ0 =

∫
f0 dp,

ϕ2(t, x) = −
∫
|z|−1µ0(t, x + z) dz, f0(0, x, p) = f ◦(x, p),





(VPgrav)
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is obtained; see [CLe04] for a proof including the necessary error estimates. At the first order the
linearized Vlasov-Poisson system

∂tf1 + p · ∇xf1 −∇xϕ3 · ∇p f0 −∇x ϕ2 · ∇p f1 = 0,

µ1 =

∫
f1 dp, ∆xϕ3 = 4πµ1 + ∂2

t ϕ1,





appears. Hence if we suppose that f1(0, x, p) = 0, then we can set f1 = 0 and ϕ3 = 0, which also
yields µ1 = 0. For the second order one derives an inhomogeneous Vlasov equation coupled to a
Poisson equation,

∂tf2 + p · ∇xf2 −∇x ϕ2 · ∇pf2 −∇xϕ4 · ∇p f0

= 4f0S̃(ϕ2) + (p2/2) p · ∇xf0 +
(
S̃(ϕ2)p− (p2/2)∇xϕ2

)
· ∇pf0,

µ2 =

∫
(f2 − (p2/2)f0) dp, ∆xϕ4 = 4πµ2 + ∂2

t ϕ2,





(LVPgrav)

where S̃ = ∂t + p · ∇x. For (LVPgrav) we choose homogeneous initial data f2(0, x, p) = 0.
We now follows the route of adapted initial data as in Section 2.3.1. Similarly to Section 2.3.2

it would also be possible to approximate solutions to the retarded Vlasov-Nordström system, the
latter being defined analogously to (retRVMc). For the retarded Vlasov-Nordström system the
leading order radiation contribution can be determined explicitly. It is due to monopole radiation
and does not vanish for spherically symmetric solutions [BKReR06, ShT93].

For the adapted initial data let f ◦ be given. Then we calculate (f0, ϕ2) and (f2, ϕ4) according
to (VPgrav) and (LVPgrav). Now we consider (VNc) with initial data

f(0, x, p) = f ◦(x, p),

ϕ0(x) = ϕ(0, x) = c−2ϕ2(0, x) + c−4ϕ4(0, x) + c−6ϕ0
free(x), (3.24)

ϕ1(x) = ∂tϕ(0, x) = c−2∂tϕ2(0, x) + c−4∂tϕ4(0, x) + c−6ϕ1
free(x),

where ϕ0
free, ϕ1

free ∈ C∞
0 (R3). The following approximation theorem from [B05] shows that the

Darwin approximation
fD = f0 + c−2f2, ϕD = c−2ϕ2 + c−4ϕ4, (3.25)

yields a higher order pointwise approximation of the Vlasov-Nordström (VNc). Before we formulate
this result let us recall that solutions of (VNc) with initial data (3.24) do exist at least on some
time interval [0, T ] which is independent of c ≥ 1; see [CLe04, Thm. 3].

Theorem 3.1 Assume that f ◦ ∈ C∞(R3 ×R3) is nonnegative and compactly supported. From f ◦

calculate (f0, ϕ2) and (f2, ϕ4). Thereafter introduce the initial data for (VNc) by (3.24). Let (f, ϕ)
denote the solution of (VNc) with initial data (3.24) and let (fD, ϕD) be defined by (3.25). Then
there is a constant M(T ) > 0, and for every r > 0 one can select M(T, r) > 0, such that for all
0 ≤ t ≤ T ,

|f(t, x, p)− fD(t, x, p)| ≤ M(T )c−4 (x ∈ R3),

|ϕ(t, x)− ϕD(t, x)| ≤ M(T, r)c−4 (|x| ≤ r),

|∂tϕ(t, x)− ∂tϕ
D(t, x)| ≤ M(T )c−4 (x ∈ R3),

|∇xϕ(t, x)−∇xϕ
D(t, x)| ≤ M(T, r)c−6 (|x| ≤ r),

for every p ∈ R3 and c ≥ 1. The constants M(T ) and M(T, r) are independent of c ≥ 1.

Acknowlegdment. This work has been supported by the DFG Priority Program 1095 “Analysis,
Modeling and Simulation of Multiscale Problems” under the grant KU 1022/3.

16



References

[AU86] K. Asano and S. Ukai. On the Vlasov-Poisson limit of the Vlasov-Maxwell equa-
tion. In T. Nishida, M. Mimura M., and H. Fujii, editors, Patterns and Waves,
Stud. Math. Appl. Volume 18, pages 369-383, Amsterdam, 1986, North-Holland.

[B05] S. Bauer. Post-Newtonian approximation of the Vlasov-Nordström system.
Comm. Partial Differential Equations, 30:957-985, 2005.

[B06a] S. Bauer. The reduced Vlasov-Poisson system with radiation damping. In prepara-
tion, 2006.

[B06b] S. Bauer. Post-Newtonian dynamics at order 1.5 in the Vlasov-Maxwell system.
Preprint arXiv math-ph/0602031, 2006.

[BK05] S. Bauer and M. Kunze. The Darwin approximation of the relativistic Vlasov-
Maxwell system. Ann. Henri Poincaré, 6:283-308, 2005.
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