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Abstract

For the Abraham-Lorentz model of a spinning charge a new approach is used to prove that all
solutions converge to the set of stationary solutions in the limit t → ±∞. This new method
allows one to get rid of the additional assumptions that have been imposed before (e.g., the
Wiener condition).

1 Introduction and main results

In the words of [10, p. 213], ‘the state of the classical electron theory reminds one of a house
under construction that was abandoned by its workmen upon receiving news of an approaching
plague’. A particularly interesting and left open problem related to classical electron models is
the question whether or not radiationless motion is possible, i.e., whether or not a particle could
move in such a way such that it continuously catches up its own radiation. This issue has been
discussed controversially in a large number of publications, one of the pioneering works being [4].
The article [10] is a good summary of related physics papers up to 1982 (making it also clear that
in many cases unjustified linearization methods have been applied). The recent book [11] reviews
newer references also.

Several mathematically rigorous results of global asymptotic stability type (i.e., absence of
radiationless motion) were obtained in the last decade [11]. Denoting a solution schematically by
Y (t), these theorems typically assert that

Y (t) → S as t → ±∞ (1.1)

in some kind of local energy norm (see below) and for all initial data Y (0) = Y0 satisfying mild
regularity or decay hypotheses. Depending on the choice of the particular model, S either denotes
the set of all stationary states or a manifold of soliton-type solutions; therefore this problem
is closely linked to the questions and results discussed in [12]. However, the rigorous results
on radiationless motion so far have been requiring at least one of the two following additional
conditions:
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(i) A smallness condition on the nonlinearity which is usually formulated as a smallness condition
on the charge-to-mass ratio e/m. This is helpful, since schematically the equation of motion
is mq̈ = eF (q, q̇) and e/m small allows for a contraction type argument.

(ii) The Wiener condition.

To explain the Wiener condition it is useful to remark that a basic quantitative estimate for this
kind of problems is obtained by keeping track of the amount of local energy that is radiated off to
infinity. Very roughly speaking, this estimate implies that

lim
t→∞

(q̈ ∗ g)(t) = 0, (1.2)

where g is an explicitly known scalar function that is related to the charge distribution. If it is
assumed that its Fourier transform ĝ has no zeroes, then Wiener’s tauberian theorem asserts that
(1.2) implies the acceleration relaxation limt→∞ q̈(t) = 0 also, which is the key step for proving
(1.1). Accordingly, the requirement that ĝ(τ) 6= 0 for all τ ∈ R (or the corresponding assertion for
the charge distribution) was termed the Wiener condition.

It is the purpose of the present paper to investigate the case where neither (i) nor (ii) is assumed.
Therefore we consider the simplest classical particle-field model for which the Wiener condition is
violated. It consists of a spinning charged particle at rest at the origin in R3 coupled to its self-
generated Maxwell field. As it will be seen below, if for instance the charge distribution is taken
to be a uniformly charged sphere or a uniformly charged ball, then the associated function ĝ will
have countably many zeroes. Nevertheless we will be able to prove that, under mild assumptions
on the initial data, all solutions are attracted to the set of stationary solutions in a suitable sense.
This holds without any further assumption for the charged sphere. For the charged ball (and also
in the general case, if a natural nonresonance condition on the zeroes of ĝ is included) this global
asymptotic stability result remains true provided that countably many masses are excluded. That
is, if we consider the particle’s mass to be a parameter of the system, then outside a countable set
of ‘exceptional masses’ all solutions of the system converge to the set of stationary solutions. In
particular, this latter property is generic. The appearance of such exceptional or resonant masses
was already observed in [4] on a linearized level; see Remark 1.5(b) below for more information.

The novelty of the approach taken in this paper consists of considering the equation for the
dynamical quantity (here: the angular velocity) as a dynamical system and to study its limit
points. Due to the estimate obtained from the energy dissipation it turns out that all possible
limit points are almost periodic functions. Since such functions can be well approximated by means
of trigonometric polynomials useful conclusions can be drawn about those limit points which are
solutions of the associated limiting equation. It is conceivable that the method of proof will lead
to improved results for other classical particle-field models as well.

According to the Abraham-Lorentz model for a rotating charge with positive bare inertia [11,
p. 125], the governing field equations for the system described above are the Maxwell-Lorentz
equations

∂tE(t, x) = rotB(t, x)− 4π(ω(t) ∧ x)fe(x), ∂tB(t, x) = −rotE(t, x), (1.3)

divE(t, x) = 4πfe(x), divB(t, x) = 0, (1.4)

for t ∈ R and x ∈ R3, where fe is the charge distribution. The angular velocity ω(t) ∈ R3 is to be
determined from

Ib ω̇(t) =

∫

R3

x ∧
[
E(t, x) + (ω(t) ∧ x) ∧B(t, x)

]
fe(x) dx, (1.5)
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where

Ib =
2

3
mb

∫

R3

|x|2fe(x) dx (1.6)

is the bare moment of inertia associated to the bare mass mb; all other constants are set equal
to unity. The right-hand side of (1.5) is called the torque vector. For simplicity the distributions
that model the charge distribution and the mass distributions, respectively, are chosen to be
proportional, but this does not really matter. They are both given by fe which we assume to
be a radially symmetric measure or function of compact support. More precisely, the required
properties of fe are as follows.

fe(x) = fe(|x|) is radial, fe(x) = 0 for |x| > R0, and

∫

R3

|fe(x)| dx < ∞. (1.7)

At many places fe(x) will be identified with its radial version fe(r).

We will investigate the asymptotic (t → ±∞) behavior of solutions to (1.3)–(1.5) for suitable
initial data

ω(0) = ω0, E(0, x) = E0(x), B(0, x) = B0(x). (1.8)

Here ω0 ∈ R3 and for the initial fields E0, B0 we assume that

E0(−x) = −E0(x), B0(−x) = B0(x) (x ∈ R3) and div E0 = 4πfe, div B0 = 0, (1.9)

are verified. The symmetry assumptions on E0 and B0 propagate in time and they are needed to
insure that (q(t) = 0, ω(t), E(t, x), B(t, x)) gives rise to a consistent particular solution of the full
Abraham-Lorentz model of a spinning charge in motion [11, Section 10.2].

It should be noted that the Abraham-Lorentz model is the classical counterpart of the Pauli-
Fierz model of non-relativistic quantum electrodynamics, the latter being kind of a quantized
version of the former; see [11].

For the initial fields E0 and B0 we suppose that there is γ > 1/2 such that for every R > 0
large enough

|x|(|E0(x)|+ |B0(x)|) + |x|2(|∇E0(x)|+ |∇B0(x)|) ≤ C(R) |x|−γ, |x| > R, (1.10)

and
|x|(|∇∇E0(x)|+ |∇∇B0(x)|) ≤ C(R), |x| > R, (1.11)

are verified. Most likely these hypotheses imposed on the initial data could be improved, but this
is not the main aspect of this work.

For all ω ∈ R3 the system (1.3)–(1.5) admits a stationary state (ω,Eω(x), Bω(x)); see Lemma
7.3 below. As mentioned above, our main results are of global asymptotical stability type and
they concern the long-time behavior of all solutions (ω(t), E(t, x), B(t, x)) whose initial data satisfy
(1.9) and (1.10). Among other things, it will be shown that such solutions converge to the set of
stationary solutions

S = {(ω,Eω, Bω) : ω ∈ R3}
in the local energy norm,

distR

(
(ω(t), E(t), B(t)),S

)
→ 0 as t →∞ for every R > 0, (1.12)
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where

distR

(
(ω(t), E(t), B(t)),S

)
= inf

ω̄∈R3

(
|ω(t)− ω̄|+ ‖E(t)− Eω̄‖L2(BR(0)) + ‖B(t)−Bω̄‖L2(BR(0))

)

is the (local in space) distance of the solution to S. Note that due to the Hamiltonian nature of
the system a global in space convergence cannot be expected.

First we consider the uniformly charged (unit) sphere.

Theorem 1.1 Take
fe(x) = δ(|x| − 1)

and let the initial data (ω0, E0, B0) be such that (1.9) and (1.10) hold. Then the corresponding
solution (ω(t), E(t, x), B(t, x)) of (1.3)–(1.5) and (1.8) satisfies

ω̇(t) → 0 and ω̈(t) → 0 as t →∞,

and ω is asymptotically slowly varying. Furthermore, (1.12) holds.

This result will be proved in Section 5 below.

Remarks 1.2 (a) The method of proof will show that it is also possible to include models with
more general bare spin/angular velocity relation, like those considered in [3, Section 5.3]; also see
[2]. These kinds of systems are fully relativistic, whereas the Abraham-Lorentz model from above
is only semi-relativistic.

(b) We will neither obtain the pointwise convergence of ω(t) nor a decay rate for ω̇(t) or ω̈(t).

(c) A function ω is said to be asymptotically slowly varying, if |ω(t + T ) − ω(t)| → 0 as t → ∞
uniformly for T in compact subsets of R.

(d) We do not deal with the case where mb = 0. See [4] for some remarks, and also [2, Section
A.3.3] for a discussion of the singular limit mb → 0 and Ib → 0. ♦

Next we turn to general charge distributions satisfying (1.7). In this case we need to impose a
further hypothesis on fe. To introduce it, consider the function

g(t) = t

∫ ∞

|t|
rfe(r) dr, t ∈ R, (1.13)

along with its Fourier transform

ĝ(τ) =

√
2

π
i

∫ ∞

0

r3fe(r)φ1(τr) dr, τ ∈ R, (1.14)

where

φ1(s) =
s cos(s)− sin(s)

s2
, s ∈ R. (1.15)

The function ĝ is defined on R, odd, and does not vanish identically, since fe 6= δ0 is assumed.
Writing out the series for cos and sin, we see that ĝ has the analytic continuation

ĝ(z) = −2

√
2

π
i

∞∑
j=0

(j + 1)

(2j + 3)!

[ ∫ ∞

0

dr r2j+4 fe(r)
]
z2j+1, z ∈ C.

4



Thus its set of zeroes
{ĝ = 0} = {τ ∈ R : ĝ(τ) = 0} =: {µj : j ∈ Z} (1.16)

is (at most) countable and no τ ∈ {ĝ = 0} can be an accumulation point of {ĝ = 0} \ {τ}; here we
let µ0 = 0 and µ−j = −µj and note that ĝ(0) = 0 due to φ1(0) = 0.

Definition 1.3 We say that the nonresonance condition (NRC) is satisfied for fe, if for l 6= 0 the
relation µj + µk = µl has no solutions, except for the trivial ones where j = 0, k = l or j = l,
k = 0.

For instance, it will be argued in Lemma 7.5 below that (NRC) holds for the uniformly charged
(unit) ball fe = 1{|x|<1}.

Our second main result is as follows.

Theorem 1.4 Suppose that fe satisfies (1.7) and (NRC). Let the initial data (ω0, E0, B0) be such
that (1.9) and (1.10) are verified. Then there is an at most countable set Mexc ⊂]0,∞[ of excep-
tional masses such that the following holds. If mb 6∈ Mexc, then the solution (ω(t), E(t, x), B(t, x))
of (1.3)–(1.5) and (1.8) satisfies

ω̇(t) → 0 and ω̈(t) → 0 as t →∞,

and ω is asymptotically slowly varying. Furthermore, (1.12) holds.

The proof is given in Section 6.

Remarks 1.5 (a) Remarks 1.2(b), (c) also apply in this general case.

(b) The set Mexc is explicit and can be calculated from fe; see (6.1), and furthermore (7.18) for
the example of the uniformly charged ball. It is however unclear whether such exceptional masses
do really occur, i.e., whether the set S of stationary states could be non-attracting for some
mb ∈Mexc. For instance, a periodic or more complicated solution cannot a priori be excluded for
mb ∈ Mexc. If in general there were exceptional masses, this would give rise to a kind of ‘mass
spectrum’ for excited charge states in this classical model. ♦

2 Energy dissipation

From (1.13) recall that

g(t) =

∫ ∞

0

dr rfe(r)1[−r, r](t)t = t

∫ ∞

|t|
dr rfe(r), t ∈ R.

Then g is odd and (1.7) implies that

g(t) = 0 for |t| > R0, (2.1)

and in particular g ∈ L1(R).
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Lemma 2.1 For every solution to (1.3)–(1.5) and (1.8) as in Theorems 1.1 or 1.4,

ω̇ ∗ g ∈ L2(R),

where as usual (u ∗ v)(t) =
∫
R u(t− s)v(s) ds denotes the convolution of the functions u and v.

Proof : For simplicity we assume that E0 and B0 are smooth and compactly supported in a ball
of radius R1 > 0 in R3. A similar argument works if only (1.10) holds, as can be seen along the
lines of [9]. For R > 0 the local energy in BR(0) ⊂ R3 is

ER(t) =
1

2
Ib |ω(t)|2 +

1

8π

∫

|x|<R

(|E(t, x)|2 + |B(t, x)|2) dx.

From (1.3)–(1.5) it follows that

ĖR(t) =

∫

|x|>R

E · j dx +
1

4π

∫

|x|=R

x̄ · (B ∧ E) dS(x),

where j(t, x) = (ω(t) ∧ x)fe(x) and x̄ = |x|−1x is the unit normal. Thus j(t, x) = 0 for |x| > R0

implies that

ĖR(t) =
1

4π

∫

|x|=R

x̄ · (B ∧ E) dS(x) (2.2)

for R > R0. Defining ρ(x) = fe(x), the Maxwell equations (1.3), (1.4) are rewritten as wave
equations for E and B whose solutions are

E(t, x) = Edata(t, x)−
∫

|y−x|<t

1

4π|y − x| ∂tj(t− |x− y|, y) dy

−
∫

|y−x|=t

y − x

4π|y − x|2 ρ(y) dS(y)−
∫

|y−x|<t

y − x

4π|y − x|3 ρ(y) dy,

B(t, x) = Bdata(t, x) +

∫

|y−x|=t

1

4π|y − x|2 (y − x) ∧ j(0, y) dS(y)

+

∫

|y−x|<t

1

4π|y − x|3 (y − x) ∧ j(t− |x− y|, y) dy

+

∫

|y−x|<t

1

4π|y − x|2 (y − x) ∧ ∂tj(t− |x− y|, y) dy,

for t ∈ [0,∞[. Note that ρ and j could be measures in x, so the usual terms ∇ρ in the integrand of
E and rotj in the integrand of B had to be re-expressed. Concerning the data terms, for instance

Edata(t, x) =
1

4πt2

∫

|y−x|=t

(
(y − x) · ∇E0(y) + E0(y)

)
dS(y)

+
1

4πt

∫

|y−x|=t

(
rotB0(y)− 4πj(0, y)

)
dS(y)

holds. Thus if t ≥ R+max{R0, R1} and |x| = R, then Edata(t, x) = 0, and similarly Bdata(t, x) = 0.
Next we expand the inhomogeneous parts of E and B in R−1. To begin with, recall that j(t, x) =
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0 = ρ(x) for |x| > R0. Hence defining Q = BR0+1(0) ⊂ R3 we obtain

E(t, x) = −
∫

Q

1

4π|y − x| ∂tj(t− |x− y|, y) dy −
∫

Q

y − x

4π|y − x|3 ρ(y) dy,

B(t, x) =

∫

Q

1

4π|y − x|3 (y − x) ∧ j(t− |x− y|, y) dy

+

∫

Q

1

4π|y − x|2 (y − x) ∧ ∂tj(t− |x− y|, y) dy,

for t ≥ R + max{R0, R1}+ 1 = R + t0 and |x| = R, since then Bt(x)∩Q = Q and ∂Bt(x)∩Q = ∅.
It follows that

E(t, x) = Erad(t, x) + Eerr(t, x), (2.3)

B(t, x) = Brad(t, x) + Berr(t, x), (2.4)

for t ≥ R + t0, |x| = R, and R ≥ 2(R0 + 1), where

Erad(t, x) = − 1

4π|x|
∫

Q

∂tj(t− |x|+ x̄ · y, y) dy,

Brad(t, x) = − x

4π|x|2 ∧
∫

Q

∂tj(t− |x|+ x̄ · y, y) dy,

are the radiation parts and |Eerr(t, x)|+ |Berr(t, x)| ≤ CR−2. Let us for example check the formula
for E. If y ∈ Q, then |y − x| ≥ |x| − |y| ≥ |x|/2 = R/2. Hence

∣∣∣
∫

Q

y − x

4π|y − x|3 ρ(y) dy
∣∣∣ ≤ CR−2

∫

Q

|fe(y)| dy ≤ CR−2

contributes to the error term. Also
∣∣∣ 1

|y − x| −
1

|x|
∣∣∣ =

||x| − |y − x||
|x||y − x| ≤ 2R−2|y| ≤ CR−2

and ∂tj(t, x) = (ω̇(t) ∧ x)fe(x). Therefore
∣∣∣−

∫

Q

1

4π|y − x| ∂tj(t− |x− y|, y) dy +
1

4πR

∫

Q

∂tj(t− |x− y|, y) dy
∣∣∣

≤ CR−2‖ω̇‖L∞

∫

Q

|y||fe(y)| dy ≤ CR−2

by Lemma 7.2. Next, ||x| − |x− y| − x̄ · y| ≤ CR−1 implies that
∣∣∣− 1

4πR

∫

Q

∂tj(t− |x− y|, y) dy − Erad(t, x)
∣∣∣

≤ CR−2‖ω̈‖L∞

∫

Q

|y||fe(y)| dy ≤ CR−2,

once again by Lemma 7.2. Therefore (2.3) is verified, and the proof of (2.4) is similar. Now observe
that |Erad(t, x)|+ |Brad(t, x)| ≤ CR−1 and B = Brad + Berr = x̄ ∧Erad + Berr. Hence if t ≥ R + t0,
|x| = R, and R ≥ 2(R0 + 1), then

x̄ · (B ∧ E) = x̄ ·
(
[x̄ ∧ Erad + Berr] ∧ [Erad + Eerr]

)
= −x̄ ·

(
Erad ∧ (x̄ ∧ Erad)

)
+ Ferr

= −|x̄ ∧ Erad|2 + Ferr,
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where |Ferr(t, x)| ≤ CR−3. Returning to (2.2), we have shown that

∣∣∣ĖR(t) +
1

4π

∫

|x|=R

|x̄ ∧ Erad(t, x)|2 dS(x)
∣∣∣ ≤ CR−1

for all R ≥ 2(R0+1) and t ≥ R+t0. Fix T ≥ t0 = max{R0, R1}+1 and R ≥ 2(R0+1). Integration
from T1 = R + t0 to T2 = R + T yields

∫ R+T

R+t0

dt

∫

|x|=R

dS(x) |x̄ ∧ Erad(t, x)|2 ≤ C
(
ER(R + t0) + ER(R + T )

)
+ C(T − t0)R

−1.

Since 0 ≤ ER(t) ≤ E(t) = E(0) by Lemma 7.1, we may insert the definition of Erad, shift the
t-integration by R, and put x = Rσ for |σ| = 1 to find

∫ T

t0

dt

∫

|σ|=1

dS(σ)
∣∣∣σ ∧

∫

Q

∂tj(t + σ · y, y) dy
∣∣∣
2

≤ C + C(T − t0)R
−1.

Passing to the limit R →∞ first and then taking the limit T →∞, we obtain
∫ ∞

t0

dt

∫

|σ|=1

dS(σ)
∣∣∣σ ∧

∫

R3

(ω̇(t + σ · y) ∧ y)fe(y) dy
∣∣∣
2

≤ C. (2.5)

Since the system is time reversible and [−t0, t0] is a finite time interval, we may as well replace∫∞
t0

dt by
∫
R dt in (2.5). Recalling that fe is radial, explicit integration then yields

∫

R
dt

∣∣∣
∫

R
ds ω̇(t− s)

∫ ∞

0

dr rfe(r)1[−r, r](s)s
∣∣∣
2

≤ C.

This completes the proof of the lemma. 2

3 The torque equation

In this section we rewrite the right-hand side of (1.5) in a different way. If (ω(t), E(t, x), B(t, x))
is a solution of (1.3)–(1.5) and (1.8) as in Theorems 1.1 or 1.4, define

F (t, x) =

(
E(t, x)
B(t, x)

)
and Fω(x) =

(
Eω(x)
Bω(x)

)
,

and moreover introduce

Z(t, x) = F (t, x)− Fω(t)(x) =

(
E(t, x)− Eω(t)(x)
B(t, x)−Bω(t)(x)

)
. (3.1)

Using the Maxwell operatorM(E, B) = (rotB,−rotE) for the fields E, B satisfying the constraints
divE = divB = 0, it hence follows from (1.3), (1.4), and M(Fω) = (4π(ω ∧ x)fe, 0) [see Lemma
7.3] that

Ż = MZ −G,

where

G(t, x) =

(
G1(t, x)
G2(t, x)

)
=

(
0

(ω̇(t) · ∇ω)Bω(t)(x)

)
=

(
0

Bω̇(t)(x)

)
;
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note that ω 7→ Bω is linear, cf. (7.4), and the first component G1 of G is zero in view of ∇ωEω = 0.
Depending on the regularity of E0 and B0, the relation Ż = MZ − G is to be understood in the
mild solution form

Z(t, x) = [U(t)Z(0, ·)](x)−
∫ t

0

ds [U(t− s)G(s, ·)](x), (3.2)

where (U(t))t∈R denotes the group of isometries in L2(R3)
3 ⊕ L2(R3)

3
generated by the Maxwell

operator M.
In the next lemma W (t, s, x) = [U(t)G(s, ·)](x) is determined.

Lemma 3.1 Let g be defined by (1.13). Then under the above hypotheses,

W1(t, s, x) = − 2π

|x|
(
g(t− |x|) + g(t + |x|)− 1

|x|
∫ |x|

−|x|
g(t− τ) dτ

)
ω̇(s) ∧ x̄, (3.3)

W2(t, s, x) =
2π

|x|
(
g(t + |x|)− g(t− |x|) +

1

|x|2
∫ |x|

−|x|
g(t− τ)τ dτ

)
ω̇(s)

− 2π

|x|
(
g(t + |x|)− g(t− |x|) +

3

|x|2
∫ |x|

−|x|
g(t− τ)τ dτ

)
(x̄ · ω̇(s)) x̄,

where x̄ = |x|−1x.

Proof : First we follow [9] to solve Φ̇ = MΦ, Φ(0) = Φ(0), for Φ = (Φ1, Φ2) under the constraints
divΦ1 = div Φ2 = 0. For the complex field Ψ = Φ1 + iΦ2 this means that ∂tΦ = −i∇ ∧ Φ,
and thus ∂tΦ̂ = k ∧ Φ̂ =: m(k)Φ̂ for the matrix m(k) representing k∧. Therefore we obtain
Ψ̂(t) = exp(tm(k))Ψ̂(0). Since m(k)2 = k⊗k−|k|2Id and m(k)3 = −|k|2m(k), etc., the exponential
can be evaluated explicitly to be

exp(tm(k)) = cos(|k|t) Id + |k|−2(1− cos(|k|t))(k ⊗ k) + |k|−1 sin(|k|t) m(k).

As Ψ(0) = Φ
(0)
1 + i Φ

(0)
2 has divΨ(0) = 0, we get

Ψ̂(t) = exp(tm(k))Ψ̂(0) = cos(|k|t) Ψ̂(0) + |k|−1 sin(|k|t) k ∧ Ψ̂(0),

and the corresponding relations

Φ̂1(t) = cos(|k|t) Φ̂
(0)
1 + i|k|−1 sin(|k|t) k ∧ Φ̂

(0)
2 , (3.4)

Φ̂2(t) = cos(|k|t) Φ̂
(0)
2 − i|k|−1 sin(|k|t) k ∧ Φ̂

(0)
1 , (3.5)

for the components Φ1 and Φ2. Application to Φ(0)(x) = G(s, x) = (0, G2(s, x)) for fixed s yields

Ŵ1(t, s, k) = |k|−1 sin(|k|t) (rot G2(s, ·))∧(k),

Ŵ2(t, s, k) = cos(|k|t) Ĝ2(s, k).

Next we recall that rot G2(s, x) = rotBω̇(s)(s, x) = 4π(ω̇(s) ∧ x)fe(x) by Lemma 7.3. Let φ1 be
defined by (1.15). Since fe is radial, the Fourier transform is evaluated as

(rot G2(s, ·))∧(k) = 4
√

2πi (ω̇(s) ∧ k̄)

∫ ∞

0

dr r3fe(r) φ1(r|k|) (3.6)
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for k̄ = |k|−1k. By taking the inverse Fourier transform, this yields

W1(t, s, x) = 8(ω̇(s) ∧ x̄)

∫ ∞

0

dτ τ sin(τt)φ1(τ |x|)
∫ ∞

0

dr r3fe(r)φ1(τr)

= 4(ω̇(s) ∧ x̄)

∫

R
dτ τ sin(τt)φ1(τ |x|)

∫ ∞

0

dr r3fe(r)φ1(τr).

Now observe that g from (1.13) has

ĝ(τ) =

√
2

π
i

∫ ∞

0

dr r3fe(r)φ1(τr),

cf. (1.14). Furthermore, φ0(s) = sin(s)
s

satisfies φ′0(s) = φ1(s) and ĥ|x|(τ) = φ0(τ |x|) for

h|x|(s) =

√
π

2

1

|x| 1[−|x|, |x|](s), s ∈ R.

It follows that

W1(t, s, x) = 4(ω̇(s) ∧ x̄) Im

∫

R
dτ τ eiτt φ1(τ |x|)

( ∫ ∞

0

dr r3fe(r)φ1(τr)
)

= − 2
√

2π (ω̇(s) ∧ x̄)
d

d|x| Im
(
i

∫

R
dτ eiτt ĥ|x|(τ) ĝ(τ)

)

= − 2
√

2π (ω̇(s) ∧ x̄)
d

d|x| (h|x| ∗ g)(t)

= − 2π(ω̇(s) ∧ x̄)
( 1

|x| [g(t− |x|) + g(t + |x|)]− 1

|x|2
∫ |x|

−|x|
g(t− τ) dτ

)
,

proving (3.3). Concerning the second component W2, the argument is similar. First, rotBω̇ =
4π(ω̇ ∧ x)fe and divBω̇ = 0 implies that

Ĝ2(s, k) = B̂ω̇(s)(s, k) =
4πi

|k|2 k ∧ ((ω̇(s) ∧ x)fe)
∧(k)

= −4
√

2π
1

|k|3 k ∧ (ω̇(s) ∧ k)

∫ ∞

0

dr r3fe(r)φ1(r|k|),

in accordance with (3.6). The inverse Fourier transform of

Ŵ2(t, s, k) = cos(|k|t) Ĝ2(s, k) = −4
√

2π
cos(|k|t)
|k|3 k ∧ (ω̇(s) ∧ k)

∫ ∞

0

dr r3fe(r)φ1(r|k|)

is calculated to be

W2(t, s, x) = −4

[ ∫

R
dτ τ cos(τt)

(
φ0(τ |x|) +

1

τ |x| φ1(τ |x|)
) ∫ ∞

0

dr r3fe(r)φ1(τr)

]
ω̇(s)

+ 4

[ ∫

R
dτ τ cos(τt)

(
φ0(τ |x|) +

3

τ |x| φ1(τ |x|)
) ∫ ∞

0

dr r3fe(r)φ1(τr)

]
(x̄ · ω̇(s)) x̄.
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In addition,

∫

R
dτ τ cos(τt)φ0(τ |x|)

∫ ∞

0

dr r3fe(r)φ1(τr) = −
√

π

2
Re

( d

dt

∫

R
dτ eiτtĥ|x|(τ) ĝ(τ)

)

= −
√

π

2

d

dt
(h|x| ∗ g)(t)

= − π

2|x| [g(t + |x|)− g(t− |x|)],

and in view of
−i|x|−1(h|x|(s)s)

∧(τ) = φ1(τ |x|)
also

1

|x|
∫

R
dτ cos(τt)φ1(τ |x|)

∫ ∞

0

dr r3fe(r)φ1(τr) = −
√

π

2

1

|x|2 Re
( ∫

R
dτ eiτt(h|x|(s)s)

∧(τ) ĝ(τ)
)

= −
√

π

2

1

|x|2 ((h|x|(s)s) ∗ g)(t)

= − π

2|x|3
∫ |x|

−|x|
g(t− τ)τ dτ.

Using these relations above shows that W2 is as claimed. 2

Corollary 3.2 For |x| ≤ R,

|W1(t, s, x)|+ |W2(t, s, x)| ≤ C

|x| 1{|t|≤R+R0} |ω̇(s)|.

In particular, if t ≥ R + R0, then

∥∥∥
∫ t

0

W1(t− s, s, ·) ds
∥∥∥

L2(BR(0))
+

∥∥∥
∫ t

0

W2(t− s, s, ·) ds
∥∥∥

L2(BR(0))

≤ C(R) max {|ω̇(τ)| : τ ∈ [t− (R + R0), t]}.
Proof : This is a direct consequence of Lemma 3.1 and the support properties (2.1) of g. 2

Now we turn to rewriting (1.5). By (7.8), (7.9), (3.1), and (3.2),

Ib ω̇(t) =

∫

R3

x ∧
[
E(t, x) + (ω(t) ∧ x) ∧B(t, x)

]
fe(x) dx

=

∫

R3

x ∧
[
Z1(t, x) + (ω(t) ∧ x) ∧ Z2(t, x)

]
fe(x) dx

=

∫

R3

x ∧
[
[U(t)Z(0, ·)]1(x) + (ω(t) ∧ x) ∧ [U(t)Z(0, ·)]2(x)

]
fe(x) dx

−
∫ t

0

ds

∫

R3

dx fe(x) x ∧
[
W1(t− s, s, x) + (ω(t) ∧ x) ∧W2(t− s, s, x)

]

= Thom(t) + Tinh(t) (3.7)

for t ∈ R. The next estimate concerns Thom(t).
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Lemma 3.3 Under the above hypotheses (1.10) and (1.11) there is a constant C > 0 such that

|Thom(t)| ≤ C (1 + |ω(t)|) t−(1+γ) and |Ṫhom(t)| ≤ C(1 + |ω(t)|+ |ω̇(t)|)
holds for t ≥ 2R0.

Proof : Taking the inverse Fourier transform it follows from (3.4) and (3.5) that

Φ1(t, x) =
1

4πt2

∫

|y−x|=t

dS(y)
[
t rot Z0,2(y) + Z0,1(y) + ((y − x) · ∇)Z0,1(y)

]
,

Φ2(t, x) =
1

4πt2

∫

|y−x|=t

dS(y)
[
− t rot Z0,1(y) + Z0,2(y) + ((y − x) · ∇)Z0,2(y)

]
,

for
Φ(t, x) = [U(t)Z(0, ·)](x) = (Φ1(t, x), Φ2(t, x)), (3.8)

where
(Φ

(0)
1 , Φ

(0)
2 ) = Φ(0) = Z(0, ·) = (E0 − Eω0 , B0 −Bω0);

see [9]. From (1.10) and (7.5) we have

|Φ(0)
j (y)|+ |y||∇Φ

(0)
j (y)| ≤ C(R) |y|−(1+γ), |y| ≥ R,

for j = 1, 2. If t ≥ 2R and |x| ≤ R, then |y−x| = t implies that |y| ≥ |y−x|−|x| ≥ t−R ≥ t/2 ≥ R.
Hence

|Φ(t, x)| ≤ C(R) t−(1+γ), t ≥ 2R, |x| ≤ R. (3.9)

Using (1.7) and this estimate for R = R0, we get |Thom(t)| ≤ C (1 + |ω(t)|) t−(1+γ) for t ≥ 2R0.
Next observe that ∂tΦ1 = rot Φ2 and ∂tΦ2 = −rot Φ1 by construction. Since

|∇Φ
(0)
j (y)|+ |y||∇∇Φ

(0)
j (y)| ≤ C(R), |y| ≥ R,

for j = 1, 2 by (1.11) and (7.6), it follows as above that

|Φ̇(t, x)| ≤ C(R), t ≥ 2R, |x| ≤ R,

which in turn yields the bound on Ṫhom(t). 2

By means of Lemma 3.1 the inhomogeneous part Tinh(t) can be expressed in a more convenient
way. Let

κ1(t) =

∫ ∞

0

r3fe(r)ϕ1(t, r) dr, (3.10)

κ2(t) =

∫ ∞

0

r4fe(r)ϕ23(t, r) dr, (3.11)

for t ∈ R, where

ϕ1(t, r) = − 2π

r

(
g(t− r) + g(t + r)− 1

r

∫ r

−r

g(t− τ) dτ
)
, (3.12)

ϕ23(t, r) = −4π

r3

∫ r

−r

g(t− τ)τ dτ = −4π

r3

∫ t+r

t−r

(t− τ)g(τ) ds, (3.13)
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for t ∈ R and r ∈ [0,∞[. Then

κ̇2(t) = −2κ1(t) for t ∈ R. (3.14)

Furthermore, ϕ1(t, r) = ϕ23(t, r) = 0 for |t| > 2R0 and r ∈ [0, R0] by (2.1). It follows that

κ1(t) = κ2(t) = 0 for |t| > 2R0. (3.15)

Also note that κ1 is odd and κ2 is even.

Lemma 3.4 Under the above hypotheses,

Tinh(t) = −8π

3

∫ t

0

ω̇(t− s)κ1(s) ds− 4π

3
ω(t) ∧

∫ t

0

ω̇(t− s)κ2(s) ds

for t ∈ R.

Proof : Using Lemma 3.1,

W1(t, s, x) = ϕ1(t, |x|) ω̇(s) ∧ x̄ and W2(t, s, x) = ϕ21(t, |x|) ω̇(s) + ϕ22(t, |x|) (x̄ · ω̇(s)) x̄,

where ϕ1 is given by (3.12) and

ϕ21(t, r) =
2π

r

(
g(t + r)− g(t− r) +

1

r2

∫ r

−r

g(t− τ)τ dτ
)
,

ϕ22(t, r) = − 2π

r

(
g(t + r)− g(t− r) +

3

r2

∫ r

−r

g(t− τ)τ dτ
)
.

Then

x ∧
[
W1(t− s, s, x) + (ω(t) ∧ x) ∧W2(t− s, s, x)

]

= ϕ1(t− s, |x|)(|x|ω̇(s)− x · ω̇(s) x̄) + x ·W2(t− s, s, x) ω(t) ∧ x

=
1

|x| ϕ1(t− s, |x|)(|x|2Id− x⊗ x) ω̇(s) + ϕ23(t− s, |x|) ω(t) ∧ ((x⊗ x) ω̇(s))

for
ϕ23(t, r) = ϕ21(t, r) + ϕ22(t, r)

as in (3.13). From the symmetry of fe it follows that

Tinh(t) = −
∫ t

0

ds

∫

R3

dx fe(x)
1

|x| ϕ1(t− s, |x|)(|x|2Id− x⊗ x) ω̇(s)

−ω(t) ∧
∫ t

0

ds

∫

R3

dx fe(x) ϕ23(t− s, |x|) (x⊗ x) ω̇(s)

= −8π

3

∫ t

0

ds ω̇(t− s)
( ∫ ∞

0

dr r3fe(r)ϕ1(s, r)
)

− 4π

3
ω(t) ∧

∫ t

0

ds ω̇(t− s)
( ∫ ∞

0

dr r4fe(r)ϕ23(s, r)
)
,

as was to be shown. 2
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4 The limiting equation

In what follows we will frequently refer to the notation and results summarized in Section 7.5
below. By Lemma 7.2 we have the bounds

‖ω‖L∞ + ‖ω̇‖L∞ + ‖ω̈‖L∞ < ∞. (4.1)

For the function Ω : R → R6 given by Ω(t) = (ω(t), ω̇(t)) this means that ‖Ω‖L∞ + ‖Ω̇‖L∞ < ∞,
and thus Ω ∈ C1

b (R) and Γ+(Ω) 6= ∅ for the limit set. Let Y = (Y1, Y2) ∈ Γ+(Ω). Then Y1 and Y2

are continuous and furthermore

ω(t + hk) → Y1(t) and ω̇(t + hk) → Y2(t) (4.2)

uniformly on every compact t-interval as k →∞ for some fixed sequence hk →∞. Since

∫ t2

t1

ω̇(s + hk) ds = ω(t2 + hk)− ω(t1 + hk), t2 > t1,

we can pass to the limit k → ∞ to conclude that Y1 is differentiable and Ẏ1 = Y2. In addition,
(4.1) implies that Y1 and Y2 are bounded. By (3.7) and Lemma 3.4,

Ib ω̇(t + hk) = Thom(t + hk)− 8π

3

∫ t+hk

0

ω̇(t + hk − s)κ1(s) ds

− 4π

3
ω(t + hk) ∧

∫ t+hk

0

ω̇(t + hk − s)κ2(s) ds

for all t ∈ R and k ∈ N. If k is sufficiently large (more precisely: t+hk ≥ 2R0), then
∫ t+hk

0
(. . .) ds =∫ 2R0

0
(. . .) ds =

∫∞
0

(. . .) ds by (3.15). Thus passing to the limit k → ∞ we obtain from (4.2) and
Lemma 3.3 the limiting equation

Ib Y2(t) = −8π

3

∫ ∞

0

Y2(t− s)κ1(s) ds− 4π

3
Y1(t) ∧

∫ ∞

0

Y2(t− s)κ2(s) ds (4.3)

for all t ∈ R. Since ω̇ is Lipschitz continuous, (2.1) implies that also ω̇ ∗ g is Lipschitz continuous.
Hence (ω̇ ∗ g)(t) → 0 as t →∞ by Lemma 2.1. For fixed t ∈ R therefore by (2.1),

(Y2 ∗ g)(t) =

∫ R0

−R0

Y2(t− s)g(s) ds ←
∫ R0

−R0

ω̇(t + hk − s)g(s) ds

= (ω̇ ∗ g)(t + hk) → 0

as k → ∞. Hence we arrive at the relation Y2 ∗ g = 0. Thus σ(Y2 ∗ g) = ∅ for the spectrum, so
that

σ(Y2) ⊂ {ĝ = 0}
by (7.23) and since g ∈ L1(R). In view of φ1(0) = 0 also ĝ(0) = 0; recall (1.15) and (1.14). Hence
Ẏ1 = Y2 in conjunction with (7.24) and (1.16) implies that

σ(Y2) ⊂ σ(Y1) ⊂ σ(Y2) ∪ {0} ⊂ {ĝ = 0} = {µj : j ∈ Z}. (4.4)

In the introduction we noted that {ĝ = 0} is at most countable, and hence so are σ(Y1) and σ(Y2).
Now observe that Y2 is Lipschitz continuous by (4.2), since |ω̇(t + hk) − ω̇(s + hk)| ≤ C|t − s| in
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view of (4.1). Thus Y1 and Y2 are bounded, uniformly continuous, and they have at most countable
spectra. As a consequence, both Y1 and Y2 are almost periodic. Next we note that as a consequence
of (3.14),

∫ ∞

0

Y2(t− s)κ2(s) ds = −2

∫ ∞

0

Y1(t− s)κ1(s) ds + κ2(0) Y1(t) for t ∈ R, (4.5)

where explicitly

κ2(0) =
16π

3

∫ ∞

0

da a4fe(a)

∫ ∞

a

dr rfe(r) (4.6)

is calculated. Returning to (4.3), (4.5) yields the limiting equation

Ib Y2(t) = −8π

3

∫ ∞

0

Y2(t− s)κ1(s) ds +
8π

3
Y1(t) ∧

∫ ∞

0

Y1(t− s)κ1(s) ds (4.7)

for t ∈ R.

5 Proof of Theorem 1.1

Here we have fe(x) = δ(|x| − 1), so that fe(r) = δ(r − 1). Then

ĝ(τ) =

√
2

π
i φ1(τ), (5.1)

κ̃1(τ) = −4
√

2π φ1(τ)
(
i +

1

τ

)
e−iτ , (5.2)

for τ ∈ R by (1.14) and Lemma 7.6. By (7.29), due to Ẏ1 = Y2, and using (7.31), we have for τ ∈ R
(Y2 ∗0 κ1)

[(τ) =
√

2π Y [
2 (τ)κ̃1(τ) =

√
2πiτ Y [

1 (τ)κ̃1(τ),

(Y1 ∗0 κ1)
[(τ) =

√
2π Y [

1 (τ)κ̃1(τ).

If τ 6∈ σ(Y1), then Y b
1 (τ) = 0 by (7.27). If τ ∈ σ(Y1), then ĝ(τ) = 0 by (4.4), whence κ̃1(τ) = 0

in view of (5.1) and (5.2). Therefore Y2 ∗0 κ1 = Y1 ∗0 κ1 = 0 by the uniqueness theorem for the
Bohr transform. Accordingly, the limiting equation (4.7) yields Y2 = 0, so that σ(Y2) = ∅ and
σ(Y1) ⊂ {0} by (4.4). The latter relation implies that Y1 equals a constant vector.

If we summarize the argument that was started in Section 4, then so far we have proved that
for Ω(t) = (ω(t), ω̇(t)) every function Y = (Y1, Y2) ∈ Γ+(Ω) satisfies Y = (C, 0) for some constant
vector C ∈ R3. From Lemma 7.7 we deduce that Ω̇(t) → 0 as t → ∞ and Ω is asymptotically
slowly varying. Hence |ω(t + T ) − ω(t)| → 0 as t → ∞ uniformly for T in compact subsets of R,
ω̇(t) → 0, and ω̈(t) → 0 as t →∞ are obtained.

Next we consider the asymptotic behavior of the fields and prove (1.12). To begin with,

distR

(
(ω(t), E(t), B(t)),S

)

≤ ‖E(t)− Eω(t)‖L2(BR(0))
+ ‖B(t)−Bω(t)‖L2(BR(0))

= ‖Z1(t)‖L2(BR(0)) + ‖Z2(t)‖L2(BR(0))

= ‖Φ1(t)‖L2(BR(0)) + ‖Φ2(t)‖L2(BR(0)) +
∥∥∥

∫ t

0

W1(t− s, s, ·) ds
∥∥∥

L2(BR(0))

+
∥∥∥

∫ t

0

W2(t− s, s, ·) ds
∥∥∥

L2(BR(0))
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by (3.1), (3.2), and (3.8). Hence (3.9) and Corollary 3.2 yield

distR

(
(ω(t), E(t), B(t)),S

)
≤ C(R)

[
t−(1+γ) + max {|ω̇(τ)| : τ ∈ [t− (R + R0), t]}

]

for t ≥ max{2R,R + R0}, which gives (1.12) in view of ω̇(t) → 0 as t → ∞. This completes the
proof of Theorem 1.1. 2

6 Proof of Theorem 1.4

Define

Mexc =
{
−
√

2π
( ∫ ∞

0

r4fe(r) dr
)−1

κ̃1(µj) : j ∈ Z
}

, (6.1)

where {µj : j ∈ Z} are the zeroes of ĝ, see (1.16), and

κ̃1(τ) = (κ11[0,∞[)
∧(τ) = −4

√
2π

∫ ∞

0

da a3fe(a)φ1(τa)

∫ ∞

a

dr r2fe(r)
(
i +

1

rτ

)
e−iτr, τ ∈ R,

for the function κ1 as introduced in (3.10). ThusMexc is countable and can be determined from the
charge density fe. Consider the system (1.3)–(1.5) for mb 6∈ Mexc. Let again Y = (Y1, Y2) ∈ Γ+(Ω)
be a limit point of Ω(t) = (ω(t), ω̇(t)). Once more it is the aim to conclude from (4.7) that Y1 is
constant and Y2 = 0. For this suppose that σ(Y2) 6= ∅ and write σ(Y2) = {λj : j ∈ N}; if σ(Y2) is
finite, then the proof is easier. By (4.4),

σ(Y2) ⊂ σ(Y1) ⊂ σ(Y2) ∪ {0} = {λj : j ∈ N0} ⊂ {ĝ = 0},
where we let λ0 = 0. We may assume that σ(Y1) = {λj : j ∈ N0}, since the proof is again easier
(and similar) in the case where σ(Y1) = {λj : j ∈ N}. Choose trigonometric polynomials

Pm(t) =
rm∑
j=0

νmj Y [
1 (λj) eiλjt and Qm(t) = i

sm∑
j=1

σmj λj Y [
1 (λj) eiλjt

such that
lim

m→∞
‖Pm − Y1‖L∞(R) = 0 and lim

m→∞
‖Qm − Y2‖L∞(R) = 0, (6.2)

where νmj ∈]0, 1] and σmj ∈]0, 1] are suitable coefficients such that limm→∞ νmj = 1 as well as
limm→∞ σmj = 1 for every j; see (7.32) below. Fix ε > 0. If m0 ∈ N is sufficiently large and
m ≥ m0, then |∆m(t)| ≤ Cε for all t ∈ R, where

∆m(t) = Ib Qm(t) +
8π

3

∫ ∞

0

Qm(t− s)κ1(s) ds− 8π

3
Pm(t) ∧

∫ ∞

0

Pm(t− s)κ1(s) ds.

This follows from (4.7) and (6.2), since in particular κ1 ∈ L1(R). Thus if m ≥ m0 and λ ∈ R, then
also |〈∆m, eiλt〉M| ≤ Cε. Noting that by (7.30)

∆m(t) = i

sm∑
j=1

σmj λj Y [
1 (λj)e

iλjt
(
Ib +

8π

3

√
2π κ̃1(λj)

)

− 8π

3

√
2π

rm∑

j, k=0

νmj νmk (Y [
1 (λj) ∧ Y [

1 (λk)) ei(λj+λk)t κ̃1(λk),
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we obtain from (7.26) that

∣∣∣ i

sm∑
j=1

σmj λj Y [
1 (λj)

(
Ib +

8π

3

√
2π κ̃1(λj)

)
δ(λj − λ)

− 8π

3

√
2π

rm∑

j, k=0

νmj νmk (Y [
1 (λj) ∧ Y [

1 (λk)) κ̃1(λk) δ(λj + λk − λ)
∣∣∣ ≤ Cε.

Then take λ = λl ∈ σ(Y2) for some fixed l ∈ N. We have λl 6= 0 by (7.27) and (7.31), since
σ(Y2) ⊂ {ĝ = 0} and {ĝ = 0} \ {0} does not have the accumulation point 0. Recalling (4.4), the
nonresonance condition (NRC) yields that the only solutions to λj + λk − λl = 0 are given by the
trivial ones j = 0, k = l and j = l, k = 0. To summarize, if l ∈ N and ε > 0 are fixed, then for all
m sufficiently large,

∣∣∣ iσml λl Y
[
1 (λl)

(
Ib +

8π

3

√
2π κ̃1(λl)

)

− 8π

3

√
2π νm0 νml (κ̃1(λl)− κ̃1(0)) [Y [

1 (0) ∧ Y [
1 (λl)]

∣∣∣ ≤ Cε.

Passing to the limits m →∞ first and then ε → 0, we obtain the relation

i λl Y
[
1 (λl)

(
Ib +

8π

3

√
2π κ̃1(λl)

)
=

8π

3

√
2π (κ̃1(λl)− κ̃1(0)) [Y [

1 (0) ∧ Y [
1 (λl)]

for all l ∈ N. Upon taking the inner product with Y [
1 (λl) ∈ R3, it follows that

i λl |Y [
1 (λl)|2

(
Ib +

8π

3

√
2π κ̃1(λl)

)
= 0.

Since λl ∈ σ(Y1) implies Y [
1 (λl) 6= 0 we get

Ib +
8π

3

√
2π κ̃1(λl) = 0.

By (1.6) this relation is equivalent to

mb = −
√

2π
( ∫ ∞

0

r4fe(r) dr
)−1

κ̃1(λl),

which however is excluded since λl ∈ {ĝ = 0} and mb 6∈ Mexc. Therefore we have shown that
σ(Y2) = ∅ and σ(Y1) = {0}. As a consequence, Y2 = 0, and Y1 equals a (non-zero) constant vector.
[Note that in the case where σ(Y1) = {λj : j ∈ N} = σ(Y2) we would have Y1 = 0.] Thus we proof
can be completed in the same way as was the proof of Theorem 1.1. 2

7 Appendix: Some technicalities

7.1 Existence of the dynamics and a priori bounds

Lemma 7.1 Suppose that ω0 ∈ R3, and E0, B0 ∈ L2(R3) are such that (1.9) holds. Then the
system (1.3)–(1.5) with initial data (1.8) has a unique (weak) solution. It conserves the energy

E(t) =
1

2
Ib |ω(t)|2 +

1

8π

∫

R3

(|E(t, x)|2 + |B(t, x)|2) dx.
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Proof : See [6, Prop. 2.2]. 2

Lemma 7.2 Under the hypotheses (1.10) and (1.11) on the initial data we have

‖ω‖L∞ + ‖ω̇‖L∞ + ‖ω̈‖L∞ < ∞.

Proof : The bound on ω is obtained from the conservation of energy. What concerns ω̇, recalling
(3.7) we have

Ib ω̇(t) = Thom(t) + Tinh(t).

If t ≥ 2R0, then
|Thom(t)| ≤ C (1 + |ω(t)|) t−(1+γ) ≤ C t−(1+γ)

by Lemma 3.3. An analogous estimate can be derived for t ≤ −2R0, and Thom is bounded for
|t| ≤ 2R0. Furthermore, Lemma 3.4 and (3.14) imply that

Tinh(t) = −8π

3

∫ t

0

ω̇(t− s)κ1(s) ds− 8π

3
ω(t) ∧

∫ t

0

ω(t− s)κ1(s) ds− 4π

3
(ω(t) ∧ ω0) κ2(t) (7.1)

for t ∈ R. Due to the compact support of κ1 and κ2 the last two terms are bounded. For the first
term, writing out the definitions we get

∫ t

0

ω̇(t− s)κ1(s) ds

= 2π

∫ ∞

0

dr r2fe(r)

∫ t

0

ds ω̇(t− s)
[
g(s− r) + g(s + r)− 1

r

∫ r

−r

g(s− τ) dτ
]
.

Consider for instance the contribution of g(s− r) for r ∈ [0, R0]. We distinguish the cases s ∈ [0, r]
and s ∈ [r, t] to integrate by parts in s using (1.13). For t > R0 it follows that

∫ t

0

ds ω̇(t− s) g(s− r) = −ω(t)g(r)− ω0 g(t− r) +

∫ r

0

ds ω(t− s)(s− r)2fe(|s− r|)

−
∫ t

r

ds ω(t− s)(s− r)2fe(|s− r|) +

∫ t

0

ds ω(t− s)

∫ ∞

|s−r|
da afe(a).

Since |s− r| ≤ R0 is required, we have s ≤ 2R0. Hence it t > 2R0, then

∫ t

0

ds ω̇(t− s) g(s− r) = −ω(t)g(r) +

∫ r

0

ds ω(t− s)(s− r)2fe(|s− r|)

−
∫ 2R0

r

ds ω(t− s)(s− r)2fe(|s− r|)

+

∫ 2R0

0

ds ω(t− s)

∫ ∞

|s−r|
da afe(a). (7.2)

This function of t > 2R0 is bounded. As the other cases and contributions can be handled similarly,
we obtain the boundedness ω̇. To bound the second derivative ω̈, we use

Ib ω̈(t) = Ṫhom(t) + Ṫinh(t).

18



According to Lemma 3.3 and the previous steps we have

|Ṫhom(t)| ≤ C(1 + |ω(t)|+ |ω̇(t)|) ≤ C.

The derivative Ṫinh is calculated from (7.1). The last two terms yield a bounded contribution,
since ‖ω‖L∞ + ‖ω̇‖L∞ < ∞ and κ̇2 = −2κ1 by (3.14). For the first term we consider for instance
the contribution of g(s− r) which led to (7.2). Differentiating the right-hand side of (7.2) yields a
bounded function of t > 2R0. Thus we may argue as before to conclude that ‖ω̈‖L∞ < ∞ also. 2

7.2 Stationary states

The stationary states (ω,Eω(x), Bω(x)) of (1.3)–(1.5) are described in the next lemma; cf. [11,
Section 10.2]. We use ϕ̂(k) = (2π)−n/2

∫
Rn e−ik·xϕ(x) dx as the Fourier transform of a function

ϕ : Rn → R.

Lemma 7.3 The stationary states (1.3)–(1.5) are

ω(t) ≡ ω,

Eω(x) = 4π
x

|x|3
∫ |x|

0

dr r2fe(r), (7.3)

Bω(x) =
8π

3

( ∫ ∞

|x|
dr rfe(r)

)
ω − 4π

3

( 1

|x|3
∫ |x|

0

dr r4fe(r)
)
[ω − 3(x̄ · ω)x̄]. (7.4)

[Observe that in fact Eω = E is independent of ω. Nevertheless this notation is used throughout
to emphasize that this E is part of the stationary state.] For every R > 0 large enough there is a
constant C(R) > 0 such that

|x|2|Eω(x)|+ |x|3|Bω(x)|+ |x|3|∇Eω(x)|+ |x|4|∇Bω(x)| ≤ C(R) (1 + |ω|) (7.5)

and
|x|(|∇∇Eω(x)|+ |∇∇Bω(x)|) ≤ C(R) (1 + |ω|) (7.6)

are verified for |x| > R.

Proof : The relations to be satisfied are

ω̇ = 0, rot Bω(x) = 4π(ω ∧ x)fe(x), div Bω(x) = 0, rot Eω(x) = 0, div Eω(x) = 4πfe(x).

From this both E and B are obtained using the observation that, in general, the solution F of
the equations rotF = G1 and divF = g2 is given by F̂ (k) = i|k|−2(k ∧ Ĝ1(k)− kĝ2(k)) in Fourier
space. Using (xfe(x))∧(k) = k̄ ĝ(|k|) it is found that

Êω(k) = −4πi

|k|2 kf̂e(k) and B̂ω(k) =
4πi

|k|3 ĝ(|k|) (|k|2ω − (k · ω)k). (7.7)

Furthermore, it can be seen that these functions Eω and Bω already give rise to a solution of (1.5).
Indeed, for a fixed ω ∈ R3

4π

∫
(x ∧ Eω)fe(x) dx =

∫
(x ∧ Eω) divEω dx = 0 (7.8)
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is verified through integration by parts and observing div(x ∧Eω) = Eω · rot x− x · rotEω = 0. In
addition,

4π

∫
x ∧

[
(ω ∧ x) ∧Bω

]
fe(x) dx =

∫
x ∧ (rotBω ∧Bω) dx = −

∫
divBω(x ∧Bω) dx = 0, (7.9)

and thus ∫
x ∧

[
Eω(x) + (ω ∧ x) ∧Bω(x)

]
fe(x) dx = 0

for every ω ∈ R3. Taking the inverse Fourier transform of (7.7) then leads to (7.3) and (7.4), which
in turn yield (7.5). 2

Note that Eω(−x) = −Eω(x) and Bω(−x) = Bω(x) by the symmetry of fe. We also remark
that (7.6) is certainly not optimal, but sufficient for our purposes.

We consider two important special cases.

Example 7.4 (a) For the uniformly charged sphere, fe(x) = δ(|x| − 1),

Eω(x) = 4π
x

|x|3 1{|x|>1}(x),

Bω(x) =
8π

3
1{|x|<1} ω − 4π

3|x|3 1{|x|>1} [ω − 3(x̄ · ω)x̄].

(b) For the uniformly charged ball, fe = 1{|x|<1},

Eω(x) =
4π

3

x

|x|3 min {1, |x|3}, (7.10)

Bω(x) =
4π

15

[(
[5− 6|x|2]1{|x|<1} − 1

|x|3 1{|x|>1}
)
ω

+ 3
(
|x|2 1{|x|<1} +

1

|x|3 1{|x|>1}
)

(x̄ · ω)x̄
]
. (7.11)

For other particular charge distributions (7.3) and (7.4) can be evaluated in a similar way. ♦

7.3 The uniformly charged ball

In this section we include some additional remarks concerning the uniformly charged ball, where
fe = 1{|x|<1}. The stationary fields are given in (7.10) and (7.11). Furthermore, a straightforward
calculation using (7.19) below then shows that

g(t) = 1{|t|≤1}(t)
t

2
(1− t2),

ĝ(τ) =

√
2

π

i

τ 4

[
(τ 2 − 3) sin(τ) + 3τ cos(τ)

]
,

κ̃1(τ) = −4
√

2π
1

τ 7

[√π

2
(τ 2 − 3)τ 4

( i

2
cos(τ) + sin(τ)

)
ĝ(τ) + 3

√
π

2
τ 5

(
cos(τ)− i

2
sin(τ)

)
ĝ(τ)

+
iπ

4
τ 8ĝ(τ)2 +

1

10
τ 3(τ 2 − 30)

]
, (7.12)
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for t, τ ∈ R.
Concerning the nonresonance condition, we have the following result.

Lemma 7.5 The nonresonance condition (NRC) from Definition 1.3 is satisfied for the uniformly
charged ball.

Proof : We have {ĝ = 0} = {τ ∈ R : (τ 2 − 3) sin(τ) + 3τ cos(τ) = 0}; note that always ĝ(0) = 0.
If τ 6= 0 is a solution to ĝ(τ) = 0, then τ 6= kπ for all k ∈ Z, so that cot(τ) = 1/τ − τ/3. First we
claim that if τ is a solution and τ ≥ 6, then |τ − lπ| ≤ π/4 for some l ∈ N. For, if |τ − lπ| > π/4
for all l ∈ N, we would have | sin(τ)| ≥ 1/

√
2 and accordingly

11

6
≤

∣∣∣1
τ
− τ

3

∣∣∣ = | cot(τ)| =
∣∣∣cos(τ)

sin(τ)

∣∣∣ ≤
√

2,

which is a contradiction. Next we refine the preceding estimate and prove that if τ ≥ 15 is a
solution and τ ∈](k − 1)π, kπ[ for some k ∈ N, then

|τ − kπ| ≤ 10k−1 (7.13)

is verified. To check this claim, suppose that |τ − kπ| > 10k−1 holds. By the first step there is
l ∈ N such that τ ∈](l− 1/4)π, lπ[∪]lπ, (l +1/4)π[. However, if τ ∈]lπ, (l +1/4)π[, then cot(τ) > 0
but 1/τ − τ/3 < 0, which is impossible. Thus l = k and |τ − kπ| ≤ π/4 by the first step. Next
we Taylor expand sin about kπ to obtain | sin(τ)− σ(τ − kπ)| ≤ (τ − kπ)2/2, where σ ∈ {−1, 1}.
Thus we get

| sin(τ)| ≥ |τ − kπ| − (τ − kπ)2/2 ≥ (1− π/8)|τ − kπ| ≥ |τ − kπ|/2 ≥ 5k−1.

Hence τ ∈](k − 1)π, kπ[, and accordingly k > 15/π, yields the contradiction

2

5
k ≤ (k − 1)π

6
≤ (k − 1)π

3
− 1

(k − 1)π
≤

∣∣∣1
τ
− τ

3

∣∣∣ = | cot(τ)| =
∣∣∣cos(τ)

sin(τ)

∣∣∣ ≤ 1

5
k.

As a further step we show that if τ ≥ 15 is a solution and τ ∈](k − 1)π, kπ[ for some k ∈ N, then

∣∣∣τ − kπ +
3

kπ

∣∣∣ ≤ C1k
−3 (7.14)

holds, where C1 = 4027. For, we already know that |τ − kπ| ≤ π/4. If |ζ − kπ| ≤ π/4, then
| cos(ζ)| ≥ 1/

√
2. By Taylor expansion of tan about kπ, tan(τ) = τ − kπ + (1/3)(τ − kπ)3(1 +

2 sin2 ζ)/ cos4 ζ for some ζ satisfying |ζ − kπ| ≤ π/4. From the second step it follows that

| tan(τ)− τ + kπ| ≤ 4000 k−3. (7.15)

Furthermore,

∣∣∣ 3τ

3− τ 2
+

3

kπ

∣∣∣ =
3

kπ

∣∣∣τ(kπ − τ) + 3

3− τ 2

∣∣∣ ≤ 6

kπ

(10τ/k + 3)

τ 2
≤ 24

kπ

(10π + 3)

k2π2
≤ 27 k−3. (7.16)

Since cot(τ) = 1/τ − τ/3 means that tan(τ) = 3τ/(3 − τ 2), (7.14) is a consequence of (7.15) and
(7.16).
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Now we can prove that µj +µk = µl cannot have a nontrivial solution. Case (i): µj, µk ≥ 4C1π
2.

Select J,K, L ∈ N such that µj ∈](J − 1)π, Jπ[, µk ∈](K− 1)π, Kπ[, and µl ∈](L− 1)π, Lπ[. Then
by (7.14), ∣∣∣(J + K − L)π − 3

π

( 1

J
+

1

K
− 1

L

)∣∣∣ ≤ C1(J
−3 + K−3 + L−3).

Since in particular µj, µk, µl ≥ 500, we get J,K, L > 500/π, and accordingly

|(J + K − L)π| ≤ 3

π

3π

500
+ 3C1

π3

5003
< π.

As a consequence, L = J + K, and hence

JK + K2 + J2

JK(J + K)
=

∣∣∣ 1

J
+

1

K
− 1

J + K

∣∣∣ ≤ π

3
C1(J

−3 + K−3 + (J + K)−3).

If we assume w.l.o.g. that K ≥ J , then we obtain

1

2J
≤ π C1J

−3,

which however contradicts the fact that J > 500/π. Case (ii): µj, µk ∈]0, 4C1π
2[. For this case an

inspection of the finitely many possibilities (e.g. by sufficiently precise numerical approximation
as was done by the author) shows that the relation µj + µk = µl does not admit a nontrivial
solution. Case (iii): µj ∈]0, 4C1π

2[ and µk ≥ 4C1π
2. Fix J,K,L ∈ N as in (i). If µj + µk = µl,

then also µl ≥ 4C1π
2. Since τ = 0 is the only zero of (τ 2 − 3) sin(τ) + 3τ cos(τ) in [−5, 5], in

particular cot(µj) = 1/µj − µj/3 < 0, which yields µj ∈](J − 1/2)π, Jπ[. Thus by (7.13) and due
to K, L > 500/π,

|(J + K − L)π| ≤ |µj + Kπ − Lπ|+ π

2
≤ |µj + Kπ − Lπ|+ π

2

≤ 10(K−1 + L−1) +
π

2
≤ 20

π

500
+

π

2
< π.

It follows that L = J + K. Thus by (7.14) for error terms Rl and Rk such that |Rl| ≤ C1L
−3 and

|Rk| ≤ C1K
−3,

µj = µl − µk = Lπ − 3

Lπ
−Kπ +

3

Kπ
+ Rl + Rk = Jπ +

3

π

( 1

K
− 1

L

)
+ Rl + Rk. (7.17)

Since K > 4C1π we get

Lπ = Jπ + Kπ < µj +
π

2
+ Kπ < 4C1π

2 +
π

2
+ Kπ < 3Kπ,

and therefore due to L ≥ K + 1,

|Rl|+ |Rk| ≤ C1(L
−3 + K−3) ≤ 2C1K

−3 ≤ 6C1L
−1K−2 ≤ 6C1π

4C1π
L−1K−1

≤ 3

2π

( 1

K
− 1

L

)
.

From (7.17) we obtain the contradiction

µj = Jπ +
3

π

( 1

K
− 1

L

)
+ Rl + Rk ≥ Jπ +

3

2π

( 1

K
− 1

L

)
> Jπ.
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Case (iv): µj ∈] − 4C1π
2, 0[ and µk ≥ 4C1π

2. Since µ−j = −µj, we have µk = µl + µ−j and
µ−j ∈]0, 4C1π

2[. If µl ∈]0, 4C1π
2[, then we are back to case (ii), whereas if µl ≥ 4C1π

2, then case
(iii) applies. The remaining cases can be handled using (i)-(iv) and the symmetry µ−j = −µj. 2

Next we consider the set Mexc of exceptional masses from (6.1) for the uniformly charged ball.
Recall from (1.16) that {ĝ = 0} = {µj : j ∈ Z}. If ĝ(µj) = 0, then

κ̃1(µj) = −2

5

√
2π

(µ2
j − 30

µ4
j

)

by (7.12). Therefore

Mexc =
{

4π
(µ2

j − 30

µ4
j

)
: j ∈ Z

}
(7.18)

is obtained.

7.4 κ1 and κ2

The kernels κ1 and κ2 are defined in (3.10) and (3.11). Here we outline the calculation of

κ̃j(τ) =
1√
2π

∫ ∞

0

e−iτsκj(s) ds

for j = 1, 2 and τ ∈ R.

Lemma 7.6 Explicitly,

κ̃1(τ) = −4
√

2π

∫ ∞

0

da a3fe(a)φ1(τa)

∫ ∞

a

dr r2fe(r)
(
i +

1

rτ

)
e−iτr, (7.19)

κ̃2(τ) =
2i

τ
κ̃1(τ)− 8i

3τ

√
2π

∫ ∞

0

da a4fe(a)

∫ ∞

a

dr rfe(r), (7.20)

where φ1 is given by (1.15).

Proof : To begin with

κ̃1(τ) =
1√
2π

∫ ∞

0

e−iτsκ1(s) ds =
1√
2π

∫ ∞

0

dr r3fe(r)

∫ ∞

0

ds e−iτsϕ1(s, r)

= −
√

2π

∫ ∞

0

dr r2fe(r)

∫ ∞

0

ds e−iτs
(
g(s− r) + g(s + r)− 1

r

∫ r

−r

g(s− σ) dσ
)

= −
√

2π

∫ ∞

0

dr r2fe(r)

∫ ∞

0

da afe(a)

∫ ∞

0

ds e−iτs
(
1[−a, a](s− r)(s− r)

+1[−a, a](s + r)(s + r)− 1

r

∫ r

−r

dσ 1[−a, a](s− σ)(s− σ)
)
,

recall (3.12) and (1.13). Now

T1 =

∫ ∞

0

ds e−iτs 1[−a, a](s− r)(s− r)

= 1{r<a}

∫ r+a

0

ds e−iτs(s− r) + 1{r≥a}

∫ r+a

r−a

ds e−iτs(s− r)

= 1{r<a}
1

τ 2

(
e−iτ(r+a)(1 + iaτ) + irτ − 1

)
+ 1{r≥a} 2ia2e−iτrφ1(τa) (7.21)
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and

T2 =

∫ ∞

0

ds e−iτs 1[−a, a](s + r)(s + r) = 1{r<a}

∫ a−r

0

ds e−iτs(s + r)

= 1{r<a}
1

τ 2

(
e−iτ(a−r)(1 + iaτ)− irτ − 1

)
. (7.22)

Hence

T1 + T2 = 1{r<a}
2

τ 2

(
(1 + iaτ)e−iτa cos(τr)− 1

)
+ 1{r≥a} 2ia2e−iτrφ1(τa).

Furthermore, this also yields

T3 = −1

r

∫ ∞

0

ds e−iτs

∫ r

−r

dσ 1[−a, a](s− σ)(s− σ)

= −1

r

∫ r

0

dσ

∫ ∞

0

ds e−iτs
(
1[−a, a](s− σ)(s− σ) + 1[−a, a](s + σ)(s + σ)

)

= −1

r

∫ r

0

dσ
(
1{σ<a}

2

τ 2

(
(1 + iaτ)e−iτa cos(τσ)− 1

)
+ 1{σ≥a} 2ia2e−iτσφ1(τa)

)

= −1{r<a}
2

τ 2

(
(1 + iaτ)e−iτa φ0(τr)− 1

)

−1{r≥a}
2a

rτ 2

[
(1 + iaτ)e−iτa φ0(τa)− 1− τ(e−iτr − e−iτa) φ1(τa)

]
,

and thus after some simplification

T1 + T2 + T3 = 1{r<a}
2r

τ
(1 + iaτ)e−iτaφ1(τr) + 1{r≥a}

2a2

rτ
(1 + irτ)e−iτrφ1(τa).

Therefore

κ̃1(τ) = −
√

2π

∫ ∞

0

dr r2fe(r)

∫ ∞

0

da afe(a) (T1 + T2 + T3)

= − 2
√

2π

τ

∫ ∞

0

dr r2fe(r)
[(1

r
+ iτ

)
e−iτr

∫ r

0

da a3fe(a)φ1(τa)

+rφ1(τr)

∫ ∞

r

da afe(a) (1 + iaτ)e−iτa
]

yields (7.19), since
∫∞
0

dr
∫ r

0
da =

∫∞
0

da
∫∞

a
dr in the first integral, and r and a can be interchanged

in the second integral. Finally, the relation (7.20) is a consequence of (7.19) and (3.14), if we use
(4.6). 2

7.5 Limit points, spectra, and almost periodic functions

In this section we review the definition and some properties of limit points, spectra of functions,
and almost periodic functions. All these results and more information can be found in e.g. [1, 5, 7].
Generally speaking, it seems that the class of almost periodic functions (or distributions) will play
an important role for the understanding of global asymptotic properties [8, 12].

The space of bounded and uniformly continuous vector-valued functions u : R→ Rn is denoted
by BUC(R;Rn) or simply by BUC(R), whereas BC(R) stands for the bounded and continuous
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functions. In particular, C1
b (R) ⊂ BUC(R). If u : R → Rn is a function, then (τhu)(t) = u(t + h)

is its translate by h ∈ R. The ω-limit set of u ∈ BUC(R) is

Γ+(u) =
{

v : ∃hk →∞ such that τhk
u → v uniformly on every compact interval in R

}
.

Then Γ+(u) 6= ∅.

Lemma 7.7 Suppose that u, u̇ ∈ BUC(R). Then the following assertions are equivalent.

(a) Γ+(u) contains only constant functions.

(b) u is (uniformly) asymptotically slowly varying, i.e., |u(t+T )−u(t)| → 0 as t →∞ uniformly
for T in compact subsets of R.

(c) u̇(t) → 0 as t →∞.

The (norm) spectrum σ(u) of u ∈ BC(R) is defined as

σ(u) =
{

τ ∈ R : ϕ̂(τ) = 0 holds for all ϕ ∈ L1(R) such that ϕ ∗ u = 0
}

.

Then σ(u) = ∅ iff u = 0 and σ(u) = {0} iff u equals a non-zero constant. If u ∈ BC(R) and
g ∈ L1(R), then

σ(u) ⊂ σ(u ∗ g) ∪ {τ ∈ R : ĝ(τ) = 0}. (7.23)

If u ∈ BC(R) ∩ C1(R) and u̇ ∈ BC(R), then

σ(u̇) ⊂ σ(u) ⊂ σ(u̇) ∪ {0}. (7.24)

Now we turn to almost periodic functions.

Definition 7.8 Let u : R → Rn be a function. If ε > 0, then h ∈ R is said to be an ε-almost
period of u, if supt∈R |u(t − h) − u(t)| < ε. The function u is almost periodic, if it is continuous
and for every ε > 0 there is T > 0 such that each interval [t0, t0 + T ] in R contains an ε-almost
period of u.

The space of almost periodic functions will be denoted by AP(R). Then AP(R) ⊂ BUC(R) holds.
Conversely, if u ∈ BUC(R) and σ(u) is at most countable, then u ∈ AP(R). If u ∈ AP(R), then
the mean value

M(u) = lim
T→∞

1

2T

∫ T

−T

u(t) dt

does exist. It even holds that

sup
s∈R

∣∣∣ 1

2T

∫ T+s

−T+s

u(t) dt−M(u)
∣∣∣ → 0, T →∞.

Since ∣∣∣ 1

T

∫ T

0

u(t) dt−M(u)
∣∣∣ =

∣∣∣ 1

2(T/2)

∫ T/2+T/2

−T/2+T/2

u(t) dt−M(u)
∣∣∣ ≤ sup

s∈R
| . . . | → 0

as t →∞, also

M(u) = lim
T→∞

1

T

∫ T

0

u(t) dt (7.25)
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is satisfied. If τ ∈ R, then e−iτtu ∈ AP(R), and hence the Bohr transform

u[(τ) = M(e−iτtu), τ ∈ R,

is well-defined. The uniqueness theorem asserts that is u, v ∈ AP(R) and u[ = v[, then u = v
holds. An inner product on AP(R) can be defined by

〈u, v〉M = M(uv̄),

and
〈eiλt, eiµt〉M = δ(λ− µ). (7.26)

The relation of the spectrum to the Bohr transform is

σ(u) = {τ : u[(τ) 6= 0}, (7.27)

and σ(u) is at most countable. If u ∈ AP(R) and g ∈ L1([0,∞[), then u ∗0 g ∈ AP(R) for

(u ∗0 g)(t) =

∫ ∞

0

u(t− s)g(s) ds, t ∈ R. (7.28)

Furthermore,
(u ∗0 g)[(τ) =

√
2π u[(τ)g̃(τ), τ ∈ R, (7.29)

where

g̃(τ) =
1√
2π

∫ ∞

0

e−iτtg(t) dt, τ ∈ R. (7.30)

To check (7.29), note that by (7.25)

(u ∗0 g)[(τ) = M(e−iτt (u ∗0 g)) = lim
T→∞

1

T

∫ T

0

dt e−iτt

∫ ∞

0

ds u(t− s)g(s)

= lim
T→∞

1

T

∫ ∞

0

ds e−iτs g(s)

∫ T−s

−s

dt e−iτt u(t) =
√

2π g̃(τ)u[(τ),

since g ∈ L1([0,∞[), u is bounded, and 1
T

∫ T−s

−s
dt e−iτtu(t) → M(e−iτtu) = ub(τ) as T → ∞

pointwise for s ∈ [0,∞[. Thus (7.29) is verified. Next, if u ∈ C1(R) is such that u, u̇ ∈ AP(R),
then

u̇[(τ) = iτu[(τ), τ ∈ R. (7.31)

This follows from integration by parts and the boundedness of u. An almost periodic function u
can be uniformly approximated by trigonometric polynomials. For this, write σ(u) = {λj : j ∈ N}.
Then

lim
m→∞

‖Qm − u‖L∞(R) = 0

for the functions

Qm(t) =
rm∑
j=1

νmju
[(λj) eiλjt,

where νmj ∈]0, 1] are suitable coefficients. If j is fixed, then

lim
m→∞

νmj = 1. (7.32)
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For, (7.26) yields

〈Qm, eiλjt〉M =
rm∑

k=1

νmku
[(λk) 〈eiλkt, eiλjt〉M =

rm∑

k=1

νmku
[(λk) δ(λk − λj) = νmju

[(λj).

Thus
u[(λj) = M(e−iλjtu) = 〈u, eiλjt〉M = lim

m→∞
〈Qm, eiλjt〉M = u[(λj) lim

m→∞
νmj

leads to (7.32).
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