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Abstract

We consider the spherically symmetric, asymptotically flat Einstein-
Vlasov system. We find explicit conditions on the initial data, with
ADM mass M, such that the resulting spacetime has the following
properties: there is a family of radially outgoing null geodesics where
the area radius r along each geodesic is bounded by 2M, the timelike
lines r = c ∈ [0, 2M ] are incomplete, and for r > 2M the metric con-
verges asymptotically to the Schwarzschild metric with mass M . The
initial data that we construct guarantee the formation of a black hole in
the evolution. We give examples of such initial data with the additional
property that the solutions exist for all r ≥ 0 and all Schwarzschild
time, i.e., we obtain global existence in Schwarzschild coordinates in
situations where the initial data are not small. Some of our results are
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also established for the Einstein equations coupled to a general matter
model characterized by conditions on the matter quantities.

1 Introduction

The spherically symmetric, asymptotically flat Einstein-Vlasov system de-
scribes in the context of General Relativity the time evolution of a large en-
semble of particles which interact only through the gravitational field which
they create collectively. Such a self-gravitating, collisionless gas is used in
astrophysics to model galaxies or globular clusters [6]. To be specific, we
consider a spacetime manifold S with Lorentz metric

ds2 = −e2µ(t,r)dt2 + e2λ(t,r)dr2 + r2(dθ2 + sin2 θ dϕ2)

in Schwarzschild coordinates. Here t ∈ R is the time coordinate, r ∈ [0,∞[
is the area radius, i.e., 4πr2 is the area of the orbit of the symmetry group
SO(3) labeled by r, and the angles θ ∈ [0, π] and ϕ ∈ [0, 2π] parameterize
these orbits. Asymptotic flatness means that the metric quantities λ and µ
satisfy the boundary conditions

lim
r→∞λ(t, r) = lim

r→∞µ(t, r) = 0. (1.1)

For a metric of this form the 00, 11, and 01 components of the Einstein
equations read

e−2λ(2rλr − 1) + 1 = 8πr2ρ, (1.2)

e−2λ(2rµr + 1)− 1 = 8πr2p, (1.3)

λt = −4πreµ+λj, (1.4)

where the subscripts r and t indicate the partial derivative with respect
to r or t, respectively, and the right hand sides are related to the energy-
momentum tensor Tαβ via

ρ = e−2µT00, p = e−2λT11, j = −e−(λ+µ)T01. (1.5)

All the particles in the ensemble are assumed to have the same rest mass,
normalized to unity, and to move forward in time. Hence, their number
density f is a non-negative function supported on the mass shell PS =
{gαβpαpβ = −1, p0 > 0}, a submanifold of the tangent bundle TS of the
spacetime manifold S; pα are the canonical momenta corresponding to the
coordinates on S. In order to exploit the symmetry it is useful to introduce
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non-canonical variables on momentum space in which the Vlasov equation
for f = f(t, r, w, L) takes the form

∂tf + eµ−λ w

E
∂rf −

(
λtw + eµ−λµrE − eµ−λ L

r3E

)
∂wf = 0. (1.6)

Here E = E(r, w, L) :=
√

1 + w2 + L/r2 = eµp0, and w ∈] − ∞,∞[ and
L ∈ [0,∞[ can be thought of as the radial component of the momentum and
the square of the angular momentum respectively. The latter is conserved
along characteristics of the Vlasov equation. The quantities ρ, p, and j read

ρ(t, r) =
π

r2

∫ ∞

−∞

∫ ∞

0
Ef(t, r, w, L) dLdw, (1.7)

p(t, r) =
π

r2

∫ ∞

−∞

∫ ∞

0

w2

E
f(t, r, w, L) dLdw, (1.8)

j(t, r) =
π

r2

∫ ∞

−∞

∫ ∞

0
w f(t, r, w, L) dLdw. (1.9)

For a detailed derivation of the system (1.2)–(1.9) we refer to [18]. As initial
data we prescribe a distribution function

◦
f =

◦
f(r, w, L) ≥ 0 which is C1,

compactly supported in ]0,∞[×]−∞,∞[×]0,∞[, and such that

4π

∫ r

0
η2 ◦ρ(η) dη = 4π2

∫ r

0

∫ ∞

−∞

∫ ∞

0
E

◦
f(η, w, L) dLdw dη <

r

2
. (1.10)

Such initial data we call regular. The origin r = 0 is excluded from the
support for technical reasons, but this can be avoided by using Cartesian
coordinates. Regular initial data launch a unique local solution for which
all the derivatives which appear in the system exist classically [18, 19]. The
solution of (1.2) is given by

e−2λ(t,r) = 1− 2m(t, r)
r

where m(t, r) := 4π
∫ r

0
η2ρ(t, η) dη, (1.11)

so (1.10) is necessary in order that this relation makes sense at least initially;
geometrically speaking (1.10) says that the initial data do not contain a
trapped surface. Since

◦
f has compact support and this property is inherited

by f(t), the integrals in (1.7)–(1.9) exist, and they are given in terms of
f alone, which is the main reason for using the non-canonical variables
w and L. As stated, the system is overdetermined, but for a solution of
the subsystem (1.2), (1.3), (1.6), (1.7), (1.8) all other components of the
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field equations hold as well [18, 19]. Besides the 01 component (1.4) also
the 22 and 33 components are nontrivial, but they are not needed for our
analysis. The remaining components vanish identically due to the symmetry
assumption. By (1.4), (1.11), and the compact support of j(t), the quantity
M = m(t,∞) is conserved, and is the ADM mass of the solution.

Our aim is to find explicit conditions on the initial data such that the
corresponding solutions have the following property: There is an outgoing
radial null geodesic γ+ originating from r = r0 > 0, i.e.,

dγ+

ds
(s) = e(µ−λ)(s,γ+(s)), γ+(0) = r0, (1.12)

such that the solution exists on the outer region

D := {(t, r) ∈ [0,∞[2| r ≥ γ+(t)}, (1.13)

and γ+ has the property that

lim
s→∞ γ+(s) < ∞. (1.14)

This indicates that the matter distribution undergoes a gravitational col-
lapse, and a black hole forms. In fact we obtain a more detailed picture
which supports this interpretation: There exists an extremal, radially out-
going null geodesic γ∗ in the outer domain D such that lims→∞ γ∗(s) = 2M ,
and as t →∞ the metric converges for r > 2M to the Schwarzschild metric
representing a black hole of mass M ; recall that M is the ADM mass of
the solution. The established behavior of the solutions is stable in the sense
that, except for “boundary cases”, properly restricted small perturbations
of the corresponding initial data lead to solutions with the same properties.

For the Einstein equations coupled to a general matter model, i.e., if
the field equations (1.2)–(1.4) are supplemented by an evolution equation
for the matter replacing the Vlasov equation and by the definitions of the
corresponding components of the energy-momentum tensor, some of our
results remain true, provided the matter model satisfies specific assump-
tions. In order to give a broader impact to our analysis we include this
general-matter case, but we emphasize that only the Vlasov matter model
is presently known to satisfy all the required assumptions. As a corollary to
our main result we obtain initial data for the Einstein-Vlasov system which
lead to the formation of black holes and for which the solutions exist for
all Schwarzschild time and all r ≥ 0. To the best of our knowledge this is
the first global existence result in Schwarzschild coordinates for initial data
which lead to gravitational collapse and the formation of black holes and
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which in particular are not small. Small data are known to result in dispers-
ing solutions and singularity-free, geodesically complete spacetimes [19].

We now put our results into the larger context of General Relativity.
One of the many striking predictions of this theory is that under appropri-
ate conditions astrophysical objects like stars or galaxies undergo a gravi-
tational collapse resulting in a spacetime singularity. This was first proven
by Oppenheimer and Snyder [15] who constructed a semi-explicit example
of a homogeneous spherically symmetric ball of dust, i.e., of a pressure-less
fluid, which collapses under its self-consistent, general relativistic gravita-
tional interaction. During the collapse the scalar curvature blows up at the
centre of symmetry, and the geometry of spacetime breaks down there, i.e.,
a spacetime singularity forms. In the 1960s Penrose [16] proved that the for-
mation of spacetime singularities from regular initial data is not restricted
to spherically symmetric, especially constructed or isolated examples but
is a genuine, stable feature of spacetimes. However, this result gives little
information about the geometric structure of a spacetime containing such
a singularity. In particular, it is not known in general if every spacetime
singularity arising from the gravitational collapse of regular data is covered
by an event horizon. The (weak) cosmic censorship conjecture asserts that
generically this is the case, and the validity of this conjecture is one of the
major open problems in classical mathematical relativity; see [23] for more
information. To deal with this conjecture in full generality is out of reach
of the present level of mathematics, but under the assumption of spherical
symmetry progress has been made in recent years. One important insight is
that the answer is sensitive to which model is chosen to describe the matter.
Christodoulou [7] showed that for dust, i.e., the matter model used by Op-
penheimer and Snyder, cosmic censorship is violated. On the other hand,
in a series of papers Christodoulou investigated a massless scalar field as
matter model and showed in 1999 that weak and strong cosmic censorship
hold true for this matter model; see [11] and the references therein.

One aspect of our result is that there is a set of initial data which leads
to gravitational collapse such that weak cosmic censorship holds. This point
should be related to an earlier result by Rendall [22], who showed that there
exist initial data for the spherically symmetric Einstein-Vlasov system such
that a trapped surface forms in the evolution. The occurrence of a trapped
surface signals the formation of an event horizon. Indeed, Dafermos [12]
proved that weak cosmic censorship holds if a spherically symmetric space-
time contains a trapped surface and the matter model satisfies certain hy-
potheses which were then verified for Vlasov matter in [13]. By combining
these results it follows that initial data exist which lead to gravitational
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collapse and for which weak cosmic censorship holds. However, the proof in
[22] rests on a continuity argument, and it is not possible to decide whether
or not a given initial data set will give rise to a black hole. This is in con-
trast to the explicit conditions on the initial data together with the detailed
asymptotic structure that we obtain in the present paper. In this regard it
is natural to relate our results to those of Christodoulou on the spherically
symmetric Einstein-scalar field system [8, 9, 10]. In [8] it is shown that if the
final Bondi mass M is different from zero, the region exterior to the sphere
r = 2M tends to the Schwarzschild metric with mass M . Theorem 2.4 be-
low shows that solutions of the spherically Einstein-Vlasov system, under
certain conditions on the initial data, also converge to the Schwarzschild
metric asymptotically. Furthermore, in [9] explicit conditions on the initial
data are specified which guarantee the formation of trapped surfaces. This
paper played a crucial role in Christodoulou’s proof of the weak and strong
cosmic censorship conjectures for the Einstein-scalar field system, cf. [10, 11].
The conditions on the initial data in [9] allow the ratio of the Hawking mass
and the area radius to cover the full range, i.e., 2m/r ∈]0, 1[, whereas our
conditions require 2m/r to be close to one. However, we believe that to
understand gravitational collapse in the case of Vlasov matter the essential
situation is when 2m/r is large. We thus hope that our results will lead to
progress in the general understanding of gravitational collapse and the weak
cosmic censorship conjecture in the case of Vlasov matter.

The paper proceeds as follows. In the next section we state our main re-
sults for the Einstein-Vlasov system, where we specify classes of spherically
symmetric initial data which lead to solutions showing the above behavior.
In Section 3 we formulate one of our results, Theorem 2.2, for the general
Einstein-matter system and on the level of the macroscopic matter quantities
single out precisely the conditions needed for our arguments to go through.
After stating some general auxiliary results in Section 4 we prove, in Sec-
tion 5, Theorem 3.1 which is the general-matter version of Theorem 2.2.
The latter result is then established in Section 6 by showing that Vlasov
matter satisfies the required general conditions on the matter for a suitable
class of initial data. Theorem 2.1 is established in Section 7 together with
Corollary 2.3 on global existence in Schwarzschild coordinates. In Section 8
we prove the convergence of our solutions to a Schwarzschild black hole of
the corresponding ADM mass in the case of Vlasov matter.

To conclude the introduction we refer to [1] and the references there for
more background on the Einstein-Vlasov system, and we mention [5] where
in particular the present results are related to a formulation of weak cosmic
censorship proposed in [11].
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2 Main results for Vlasov matter

To state our main results let 0 < r0 < r1 be given, put M = r1/2 (this is
going to be the ADM mass of the solution), and fix 0 < Mout < M such
that

2(M −Mout)
r0

<
8
9
. (2.1)

The value 8/9 is chosen for definiteness only. Two different theorems will
be stated below, corresponding to the following two situations.

(i) Let R1 > r1 be such that

R1 − r1 <
r1 − r0

6
, (2.2)

or

(ii) let R1 > r1 be such that
√

R1 − r1

R1
< min

{
1
6
,

r2
0

12κR1M
,
r1 − r0

8κR1

}
, (2.3)

where the (explicit) constant κ > 0 will be specified in Theorems 2.2
and 3.1 below.

Finally, we define

R0 :=
1
2
(r1 + R1).

Denote by ◦
ρ the energy density induced by the initial distribution function◦

f. We require that all the matter in the outer region [r0,∞[ is initially
located in the strip [R0, R1], with Mout being the corresponding fraction of
the ADM mass M , i.e.,

∫ ∞

r0

4πr2 ◦ρ(r)dr =
∫ R1

R0

4πr2 ◦ρ(r)dr = Mout. (2.4)

Furthermore, the remaining fraction M − Mout should be initially located
within the ball of area radius r0, i.e.,

∫ r0

0
4πr2 ◦ρ(r)dr = M −Mout. (2.5)

We are now in the position to formulate our main results for Vlasov matter.
Corresponding to Case (i) above, we prove
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Theorem 2.1 Let r0, r1, M , and Mout be given as above, and let R1 satisfy
(2.2). Then there exists a set I1 of regular initial data for the spherically
symmetric Einstein-Vlasov system such that if

◦
f ∈ I1, then (2.4) and (2.5)

hold, the corresponding solution exists on D, and

lim
s→∞ γ+(s) < ∞, lim

s→∞

∫ ∞

γ+(s)
4πr2ρ(s, r) dr > 0,

where γ+ satisfies (1.12).

By abuse of notation we denote by D both the outer region in spacetime
defined by (1.13) and the part of the mass shell with (t, r) ∈ D.

The next theorem addresses Case (ii) above, assuming the stronger condi-
tion (2.3). This allows for a more straightforward proof, and the constraints
on the momentum variables of the initial distribution function

◦
f which are

used to specify the set I1 will be slightly relaxed. Hence, the initial data set
I1 does not contain I2 in Theorem 2.2 below, but it is larger in the sense
that data in I2 are quite close to containing a trapped surface, which is not
necessarily the case for data in I1. The precise form of I1 and I2 will be
specified in the proofs.

Theorem 2.2 Let r0, r1,M , and Mout be given as above and let R1 satisfy
(2.3) with κ = 6. Then there exists a set I2 of regular initial data for the
spherically symmetric Einstein-Vlasov system such that if

◦
f ∈ I2, then (2.4)

and (2.5) hold, the corresponding solution exists on D, and

lim
s→∞ γ+(s) < ∞, lim

s→∞

∫ ∞

γ+(s)
4πr2ρ(s, r) dr > 0,

where γ+ satisfies (1.12).

The Einstein-Vlasov system has a wide variety of static, spherically sym-
metric solutions with finite ADM mass and finite radius, i.e., compact sup-
port of the matter, cf. [20] and the references therein. Particularly interest-
ing examples of initial data for which our results apply are obtained if the
matter for r ≤ r0 is represented by such a static solution.

Corollary 2.3 Let fs be a static solution of the spherically symmetric
Einstein-Vlasov system with finite ADM mass Ms > 0 and finite radius
rs > 0. Define r0 = rs, let r1 > r0 be arbitrary, M = r1/2, and
Mout = M − Ms > 0. Then the initial data sets I1 and I2 both contain
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data
◦
f which coincide with the given static solution for 0 ≤ r ≤ r0. The

corresponding solution f of the Einstein-Vlasov system exists for all r ≥ 0
and t ≥ 0, and it coincides with the static solution fs for all r ≤ γ+(t) and
t ≥ 0.

We prove this result at the end of Section 7. It represents a global existence
result for the Einstein-Vlasov system in Schwarzschild time for initial data
that are not small.

In the next section we formulate a version of Theorem 2.2 for quite gen-
eral matter models. One reason for this is that the main mechanism behind
our method becomes very transparent by posing sufficient conditions on the
macroscopic matter terms rather than conditions on the initial distribution
function

◦
f as we did in the theorems above. In the proofs it will turn out

that for the classes of initial data that we specify we can establish the fol-
lowing additional result which shows that the solution evolves towards a
Schwarzschild black hole of mass M .

Theorem 2.4 In the situation of Theorem 2.1 or Theorem 2.2 the following
holds:

(a) There exist constants α, β > 0 depending only on the initial data
set I1 or I2 respectively such that if t ≥ 0 and r ≥ 2M + αe−βt,
then f(t, r, ·, ·) = 0, i.e., we have vacuum, and the metric equals the
Schwarzschild metric

ds2 = −
(

1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2(dθ2 + sin2 θdϕ2),

representing a black hole of mass M .

(b) For all t ≥ 0 and γ+(t) ≤ r ≤ 2M + αe−βt we have limt→∞ µ(t, r) =
−∞ for all r ≤ 2M . Furthermore, for c ∈ [0, 2M ] the timelike lines
r = c are incomplete and their proper lengths are uniformly bounded
by a constant depending on α, β, and M .

(c) Let

r∗ := sup{r ≥ r0 | the radially outgoing null geodesic γ with
γ(0) = r satisfies lim

s→∞ γ(s) < ∞},

and let γ∗ be the radially outgoing null geodesic with γ∗(0) = r∗. Then
lims→∞ γ∗(s) = 2M , and every radially outgoing null geodesic γ with
γ(0) > r∗ is future complete with lims→∞ γ(s) = ∞.
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3 The result for general matter models

In this section we specify the general assumptions on a matter model suffi-
cient for our method to be applied. In order to keep the discussion consistent
with the Vlasov part of our arguments we use the notation introduced in
(1.5). Firstly, we assume that the following two conditions are satisfied.

• The dominant energy condition holds. (DEC)

• The radial pressure p is non-negative. (NNP)

The dominant energy condition (DEC) plays a central role in general rel-
ativity and is the main criterion that a matter model should satisfy to be
considered realistic. We refer to [14] for its definition. The non-negative
pressure condition (NNP) is restrictive in the sense that it rules out, for
example, a Maxwell field as matter model. However, for most astrophysical
models it is a standard assumption, with e.g. fluid models satisfying this
condition. For the purpose of this paper we only need to focus on two con-
sequences of these two criteria, cf. [14] and [17]. (DEC) implies, together
with (NNP), that

0 ≤ p ≤ ρ and |j| ≤ ρ. (3.1)

Furthermore, by (DEC) any geodesic (s,R(s)) of a material particle or a
light ray satisfies ∣∣∣∣

dR(s)
ds

∣∣∣∣ ≤ e(µ−λ)(s,R(s)). (3.2)

The meaning of the latter condition is that locally the speed of energy flow
is less than or equal to the speed of light.

Let λ, µ, ρ, p, j correspond to a solution of the general spherically sym-
metric Einstein-matter system in Schwarzschild coordinates, i.e., (1.1)–(1.4)
supplied with suitable evolution equations for the matter and an energy-
momentum tensor being an appropriate function of the matter and the
metric. In order to investigate the global structure of the solutions it is
necessary that they exist globally in an appropriate sense. In the situation
at hand they need to be defined on the outer region D from (1.13). In the
spherically symmetric case the main obstruction for obtaining global solu-
tions arises from the difficulties related to the centre of symmetry r = 0. For
example, for a massless scalar field or a collisionless gas as matter model it
has been shown that solutions remain regular away from r = 0 for general
initial data, cf. [11, 2, 21]. On the other hand, for dust a singularity of shell
crossing type can also occur at some r > 0. Although in that case there are
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no true geometric spacetime singularities, such behavior has to be ruled out
in order not to interfere with the analysis of the solution on D. This can be
achieved by proper assumptions on the initial data, cf. [7]. In view of (3.2)
a possible break down of solutions at r = 0 will have no influence on the
outer domain D. Hence we formulate a third condition, concerning global
existence of solutions in the outer domain:

• For solutions launched by data from the set I, γ+ defined by (1.12)
exists on [0,∞[, and λ, µ, ρ, p, j ∈ C1(D). (GLO)

The three conditions above are of a quite general nature. The fourth and
final condition however, is tightly connected to our method of proof.

• There exists a constant c1 > 0 such that ρ ≤ −c1j in D. (GCC)

The acronym (GCC) stands for “gravitational collapse condition”. We em-
phasize that for Vlasov matter there are by our main results initial data
sets such that (GCC) holds. As a first consequence of (GCC) and (3.1),
note that j ≤ 0 in D, i.e., the matter is ingoing for all times. In this re-
spect our present results complement [4], where purely outgoing matter was
considered.

Let us now assume that our matter model satisfies (DEC) and (NNP),
and that there exists an initial data set I such that (GLO) and (GCC) hold
as well. Then we have the following result, which should be viewed as a
version of Theorem 2.2 for general matter.

Theorem 3.1 Let r0, r1, M , and Mout be given as above and let R1 satisfy
(2.3) with κ = 2c1. Assume that there exists an initial data set I3 ⊂ I such
that (2.4) and (2.5) hold for all initial data in I3. Then for any solution
launched by initial data in I3,

lim
s→∞ γ+(s) < ∞, lim

s→∞

∫ ∞

γ+(s)
4πr2ρ(s, r) dr > 0,

where γ+ satisfies (1.12).

The detailed information on the gravitational collapse which for Vlasov mat-
ter is provided in Theorem 2.4 is not available in the present situation.

4 Preliminaries

In this section we collect some general facts concerning the spherically sym-
metric Einstein-matter equations under the assumptions (DEC) and (NNP)
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that have been specified in the previous section. A quantity which plays an
important role is the quasi-local mass m(t, r). We assume M > 0 and define

m(t, r) := M −
∫ ∞

r
4πη2ρ(t, η) dη. (4.1)

Then limr→∞m(t, r) = M , 0 ≤ m ≤ M , and mr = 4πr2ρ. Defining λ by
e−2λ = 1 − 2m/r, (1.2) and the boundary condition in (1.1) are satisfied.
We require that

◦
m(r) <

r

2
, r ∈]0,∞[, (4.2)

a condition that again will be included in the notion of regular initial data.
By (1.2) and (1.3),

λr =
(
4πrρ− m

r2

)
e2λ, µr =

(m

r2
+ 4πrp

)
e2λ. (4.3)

In view of (1.1), µ = µ̂ + µ̌, where we define

µ̂(t, r) := −
∫ ∞

r

m(t, η)
η2

e2λ(t, η) dη, (4.4)

µ̌(t, r) := −
∫ ∞

r
4πη p(t, η) e2λ(t, η) dη. (4.5)

Lemma 4.1 The following assertions hold.

(a) 2µ̂ ≤ µ− λ ≤ µ̂ ≤ µ̂ + λ and µ + λ ≤ µ̂ + λ.

(b) (µ− λ)(t, r) = 2µ̂(t, r) +
∫∞
r 4πη (ρ− p)(t, η) e2λ(t, η) dη.

(c) µ̂t(t, r) =
∫∞
r 4πj(t, η) e(µ+λ)(t, η)e2λ(t, η) dη. In particular, if j ≤ 0,

then also µ̂t ≤ 0.

Proof : The claims follow straightforwardly in view of the boundary condi-
tions (1.1) and the formulas for µ, µ̂, µ̌, and λ from above. 2

The first part of the following lemma is due to [2], and the second part
can be proved similarly.

Lemma 4.2 For r ∈ [0,∞[,
∫ ∞

r
4πη (ρ + p)(t, η) e(µ+λ)(t, η)e2λ(t, η) dη = 1− e(µ+λ)(t, r) ≤ 1,

∫ ∞

r
4πη ρ(t, η) e(µ̂+λ)(t, η)e2λ(t, η) dη = 1− e(µ̂+λ)(t, r) ≤ 1.
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5 Proof of Theorem 3.1

In this section we use the hypotheses stated in Section 3 to prove Theo-
rem 3.1. The proof is short and emphasizes that the crucial mechanism is
captured in (GCC). Consider the out- and ingoing null geodesics γ+ and γ−

defined by

dγ±

ds
(s) = ± e(µ−λ)(s, γ±(s)), γ+(0) = r0 < r1 = γ−(0). (5.1)

The claims follow if we can show that these geodesics never intersect. By
continuity and monotonicity there exists T ∈]0,∞] such that

r0 ≤ γ+(t) < γ−(t) ≤ r1, t ∈ [0, T [; (5.2)

it will be shown that actually T = ∞. In view of (2.4) we have initially that
ρ = p = j = 0 for r ≥ R1. (GCC) implies that j ≤ 0 in D, i.e., the flow of
matter is ingoing. Therefore

ρ = p = j = 0 and m = M for (t, r) ∈ [0, T [×[R1,∞[. (5.3)

By Lemma 4.2, (3.1), (GCC), and Lemma 4.1(c) for s ∈ [0, T [ and r ∈
[γ+(s),∞[,

1− e(µ+λ)(s, r) =
∫ ∞

r
4πη (ρ + p)(s, η) e(µ+λ)(s, η)e2λ(s, η) dη

≤ −2c1R1

∫ ∞

r
4πj(s, η) e(µ+λ)(s, η)e2λ(s, η) dη = −2c1R1µ̂t(s, r),

since j(s, η) 6= 0 implies η ≤ R1. Thus

µ̂t(s, r) ≤ − 1
2c1R1

(
1− e(µ+λ)(s, r)

)
. (5.4)

This in turn implies that

µ̂(t, γ±(t))− µ̂(0, γ±(0)) =
∫ t

0

d

ds
µ̂(s, γ±(s)) ds

=
∫ t

0

(
µ̂t(s, γ±(s))± µ̂r(s, γ±(s))e(µ−λ)(s, γ±(s))

)
ds

≤
∫ t

0

(
− 1

2c1R1

(
1− e(µ+λ)(s, γ±(s))

)
± m(s, γ±(s))

γ±(s)2
e(µ+λ)(s, γ±(s))

)
ds

≤ − t

2c1R1
+

∫ t

0

( 1
2c1R1

+
m(s, γ±(s))

γ±(s)2
)

e(µ+λ)(s, γ±(s)) ds. (5.5)

13



Now for any r ∈ [r0, r1] and t ∈ [0, T [ it follows from µ̂r ≥ 0 and e−2λ =
1− 2m/r that

µ̂(t, r) ≤ µ̂(t, R1) = −
∫ ∞

R1

M dη

η2(1− 2M/η)
. (5.6)

Using M = r1/2 we get µ̂(t, R1) = 1
2 log(R1−r1

R1
), so that for r ∈ [r0, r1],

eµ̂(t, r) ≤ eµ̂(t,R1) =
√

(R1 − r1)/R1. (5.7)

By (3.2) and the properties of the initial matter distribution there is vacuum
in the region γ+(t) ≤ r ≤ γ−(t). Hence m(t, r) = M −Mout and (2.1) imply
that

eλ(t,r) ≤ 1√
1− 2(M −Mout)/r0

< 3 (5.8)

for γ+(t) ≤ r ≤ γ−(t). From Lemma 4.1(a) and (2.3), recalling κ = 2c1, we
obtain in particular that

e(µ+λ)(s,γ±(s)) ≤ e(µ̂+λ)(s,γ±(s)) < min
{

1
2
,

r2
0

8c1R1M

}
=: d.

Thus (5.5) yields

µ̂(t, γ±(t))− µ̂(0, γ±(0)) ≤ − t

2c1R1
+ d

∫ t

0

( 1
2c1R1

+
M

r2
0

)
ds

= −
(

1− d

2c1R1
− d

M

r2
0

)
t ≤ −

(
1

4c1R1
− d

M

r2
0

)
t ≤ − t

8c1R1
(5.9)

for t ∈ [0, T [. Hence Lemma 4.1(a) leads to the estimate

|γ±(t)− γ±(0)| =
∣∣∣∣
∫ t

0
e(µ−λ)(s, γ±(s)) ds

∣∣∣∣ ≤
∫ t

0
eµ̂(s, γ±(s)) ds

≤ eµ̂(0, γ±(0))

∫ t

0
e
− s

8c1R1 ds ≤ 8c1R1

√
R1 − r1

R1
,

where we used (5.7) in the last inequality. By the third condition in (2.3),√
(R1 − r1)/R1 < (r1−r0)/(16c1R1), so that |γ±(t)−γ±(0)| < (r1−r0)/2 for

t ∈ [0, T [. Since γ−(0)−γ+(0) = r1−r0, this implies that γ−(T )−γ+(T ) > 0.
Hence, if we choose T in (5.2) to be maximal, then T = ∞, i.e., γ+ and γ−

never intersect. This completes the proof of Theorem 3.1. 2

14



6 Proof of Theorem 2.2

We first check that the conditions (DEC), (NNP), and (GLO) hold for Vlasov
matter. Then we show that there exists a class of initial data such that
the corresponding solutions satisfy (GCC) with c1 = 3. Theorem 2.2 then
follows from Theorem 3.1.

The characteristic system associated to the Vlasov equation (1.6) is

dR

ds
= e(µ−λ)(s, R) W

E
, (6.1)

dW

ds
= −λt(s, R)W − e(µ−λ)(s, R)µr(s,R)E + e(µ−λ)(s, R) L

R3E
, (6.2)

dL

ds
= 0. (6.3)

If s 7→ (R,W,L)(s) is a solution with data (R, W,L)(0) = (r, w, L), then
f(s,R(s),W (s), L) =

◦
f(r, w, L) is constant in s. Hence (R(s),W (s), L) ∈

supp f(s) iff (r, w, L) ∈ supp
◦
f. Such characteristics will be addressed as

characteristics in supp f .
Direct inspection of the definition in (1.8) shows that (NNP) holds for

Vlasov matter. It is moreover well-known that (DEC) is satisfied for Vlasov
matter; see [1, Sec. 1.4]. Alternatively, we can check (3.1) and (3.2) directly.
The latter follows from (6.1) above, whereas the former is a consequence of
the expressions for the matter terms (1.7), (1.8), and (1.9).

To see that (GLO) holds we consider the spherically symmetric Einstein-
Vlasov system on D, with e−2λ = 1 − 2m/r and (4.1) replacing the usual
boundary condition λ(t, 0) = 0 of a regular centre and with (1.12) included.
We need to show firstly that regular initial data supported on {r > r0}
launch a local solution on D which can be extended as long as P (t) :=
sup{|w| | (r, w, L) ∈ supp f(t), r > γ+(t)} remains bounded, and secondly
that P (t) cannot blow up in finite time. The latter follows by the estimates
in [21] where is is shown that the w-support of a solution on the whole space
cannot blow up in finite time, provided matter is bounded away from the
centre or is controlled in a neighborhood of the centre. A local existence
and continuation result of the required type is usually shown by an iterative
scheme, cf. [18, 19]. The difficulty with such a scheme in the present situation
is that γ+ and hence D would change with the iteration. Rather than dealing
with this difficulty here we by-pass it by observing that data from our initial
data set launch solutions where the support of the matter on D stays strictly
to the right of γ+. For such data

◦
fout we take an arbitrary initial data

◦
fin
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supported in {r < r0} such that
◦
fout +

◦
fin has mass M . This launches a

local solution on the whole space which we restrict to D. Assuming that the
solution on D is maximally extended with finite existence time T and that
P is bounded on [0, T [ we pick t0 ∈]0, T [ and solve the system on the whole
space with the data fout(t0) +

◦
fin prescribed at t = t0. The corresponding

local solution exists on a time interval the length of which is bounded from
below uniformly in t0. This follows from the bound on P , cf. Step 7 in the
proof of Thm. 3.1 in [18]. If we choose t0 close enough to T we have extended
the solution, and the local existence and continuation result is established.
Notice that the matter inside {r < γ+(t)} can influence the solution on D
only through its mass which remains constant in the situation we consider.

It remains to show that (GCC) holds. To this end we let 0 < r0 < r1 <
R1, R0 = (r1 + R1)/2, and M = r1/2. For a parameter W− < 0 to be
specified below and regular data

◦
f with ADM mass M we formulate the

General support condition: For all (r, w, L) ∈ supp
◦
f the following holds:

r ∈]0, r0] ∪ [R0, R1],

and if r ∈ [R0, R1] then w ≤ W− and also

0 < L <
3L

η
◦

m(η) + η
◦

m(η), η ∈ [r0, R1]. (6.4)

We use the notation ◦
mwhen ρ = ◦

ρ in (4.1). Furthermore, we abbreviate

Γ = Γ(r1, R1) :=
√

R1 − r1

R1 + r1
. (6.5)

The following lemma shows that if the support condition holds, then the
particles in the outer domain D keep moving inward in a controlled way.

Lemma 6.1 Let
◦
f be regular and satisfy the general support condition for

some W− < 0. Then for all (r, w, L) ∈ supp f(t) such that (t, r) ∈ D,

w ≤ Γ(r1, R1)W−.

In particular, j ≤ 0 on D.

Proof : Let [0, T [ denote the maximal time interval such that for t < T

w < 0 for (r, w, L) ∈ supp f(t) with (t, r) ∈ D. (6.6)

Since W− < 0, T > 0 by continuity. By the definition of j,

j(t, r) ≤ 0 for (t, r) ∈ DT := D ∩ ([0, T [×[0,∞[). (6.7)
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Let (R,W,L)(s) be a characteristic in supp f . Then

d

ds
(e−λW ) = − e−λ

(
Wλt + Wλr

dR

ds
− dW

ds

)

=
4πR

E
eµ(2WEj −W 2ρ− E2p) + eµ

(
1− 2m

R

) L

R3E

+ eµ m

R2

(w2

E
− E

)

= − 4π2

R
eµ

∫ ∞

−∞

∫ ∞

0

[√
Ẽ

E
w −

√
E

Ẽ
w̃

]2

f dL̃ dw̃

− eµ m

R2

(
1 + L/R2

E
+

2L

R2E

)
+ eµ L

R3E
,

where E = E(R, W,L) and Ẽ = Ẽ(R, w̃, L̃). Therefore

d

ds
(e−λW ) ≤ −eµ m

R2

(
1 + L/R2

E
+

2L

R2E

)
+ eµ L

R3E
.

Differentiating e−2λ = 1 − 2m/r w.r. to t and using (1.4) leads to mt =
−4πr2eµ−λj, which by (6.7) is non-negative on DT . It follows that m(s, r) ≥
m(0, r) = ◦

m(r). Thus as long as the characteristic remains in DT ,

d

ds
(e−λW ) ≤ −eµ

◦
m(R)
R2

(
1 + L/R2

E
+

2L

R2E

)
+ eµ L

R3E

= eµ 1
R3E

(
L− 3L

R
◦

m(R)−R
◦

m(R)
)

.

Now R(0) ∈ [R0, R1] and Ṙ(s) ≤ 0 by (6.1) and (6.6) yields R1 ≥ R(0) ≥
R(s) ≥ γ+(s) ≥ r0. Hence condition (6.4) implies that, as long as the
characteristic remains in DT , d

ds(e
−λW ) < 0, so that

W (s) ≤ eλ(s, R(s))−λ(0, R(0)) W− ≤
(

min
r∈[R0,R1]

e−λ(0, r)
)

W−.

Furthermore, e−λ(0, r) ≥ (1−2M/R0)1/2 = ((R1−r1)/(R1 +r1))1/2 holds for
r ∈ [R0, R1], and recalling (6.5) it follows that W (s) ≤ Γ(r1, R1)W− < 0, as
long as the characteristic remains in DT . By the maximality of T in (6.6),
T = ∞, and the proof is complete. 2

In order to specify the initial data set I2, let r0, r1, M , and Mout be
given as in Section 2 and let R1 be such that (2.3) holds for κ = 6. We
require that W− < 0 satisfies the estimate

Γ(r1, R1) |W−| ≥ 1. (6.8)
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Then

I2 :=
{ ◦

f | ◦
f is regular, satisfies (2.4), (2.5), the general support condition,

and for (r, w, L) ∈ supp
◦
f with r ∈ [R0, R1],

√
L/r0 ≤ Γ |W−|

}
.

(6.9)

Consider now a solution f launched by initial data from this set. Condition
(6.8) and Lemma 6.1 imply that

|w| ≥ Γ(r1, R1) |W−| ≥ 1 on supp f ∩D, (6.10)

and since L is conserved along characteristics, (6.9) leads to
√

L/r ≤√
L/r0 ≤ |w| for all particles in supp f ∩ D. Hence the definition (1.7)

of ρ implies that on D,

ρ(t, r) ≤ π

r2

∫ ∞

−∞

∫ ∞

0
f dL dw +

π

r2

∫ ∞

−∞

∫ ∞

0
|w|f dL dw

+
π

r2

∫ ∞

−∞

∫ ∞

0

√
L/rf dL dw

≤ 3
π

r2

∫ ∞

−∞

∫ ∞

0
|w|f dL dw = 3 |j(t, r)|. (6.11)

Accordingly, I2 satisfies (GCC) with c1 = 3, and Theorem 2.2 follows from
Theorem 3.1. 2

We briefly show that the set I2 is far from being empty. Therefore
fix 0 < r0 < r1 < R0 < R1, M = r1/2, and 0 < Mout < M such that
R0 = (r1 + R1)/2, (2.1), and (2.3) are satisfied. Let 0 ≤ f1 ∈ C1 have
r-support in [r0 − δ, r0] for some 0 < δ < r0/9, and let 0 ≤ f2 ∈ C1

have r-support in [R0, R1]. Fix the compact w-support of f2 in ]−∞,W−]
with W− < 0 such that (6.8) holds, and fix its L-support in [0, L2] so that√

L2/r0 ≤ Γ(r1, R1) |W−| and

L < (M −Mout)
(3L

η
+ η

)
, L ∈ [0, L2], η ∈ [r0, R1].

Now take
◦
f = Af1 + Bf2, where A > 0 and B > 0 are chosen such that

(2.4) and (2.5) are satisfied. Note that ◦
m(η) ≥ M −Mout for η ∈ [r0, R1],

whence (6.4) holds as well; thus the general support condition if verified. It
remains to check (4.2). If r ∈]0, r0 − δ], then ◦

m(r) = 0. If r ∈ [r0 − δ,R0],
then ◦

m(r) ≤ M −Mout yields in view of (2.1),

2 ◦
m

r
≤ 2(M −Mout)

r0 − δ
< 1.
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If r ∈ [R0,∞[, then 2 ◦
m/r ≤ 2M/R0 < 1, since 2M = r1 < R0. Hence

◦
f is

regular and has all the properties that are required in the definition of I2.
Remark. The set I2 has “non-empty interior”, in the sense that sufficiently
small perturbations of initial data in the “interior” of this set belong to I2 as
well, provided that the support is changed very little and M is left invariant.
This is due to the fact that the various parameters entering into the definition
of I2 are defined in terms of inequalities and hence can be varied.

7 Proof of Theorem 2.1

The set up is closely related to the set up in the proof of Theorem 2.2. As
we saw above, (DEC), (NNP), and (GLO) are satisfied for Vlasov matter,
and we will again construct an initial data set such that (GCC) holds with
c1 = 3. However, since this result relies on condition (2.2) instead of (2.3),
we cannot simply invoke Theorem 3.1 after (GCC) has been verified; instead
an additional step needs to be added to the proof. For this new argument a
slightly stronger condition on the momentum variable w needs to be imposed
on supp

◦
f. We now require that W− < 0 satisfies

Γ(r1, R1)2|W−|2 ≥ 10
d

, (7.1)

where

d := min
{

1
2
,

r0

12R1
,
r1 − r0

300R1

}
.

Then

I1 :=
{ ◦

f | ◦
f is regular, satisfies (2.4), (2.5), the general support condition,

and for (r, w, L) ∈ supp
◦
f with r ∈ [R0, R1],

√
L/r0 ≤ 1.

}
(7.2)

The same construction as at the end of the previous section shows that this
set is not empty, and the same remark as at the end of the previous section
applies. Let f be a solution launched by initial data from I1. It is clear
from these conditions that Lemma 6.1 applies, and since 10/d ≥ 1, it follows
that (6.10) holds as well. Thus the argument leading to ρ ≤ 3|j| on D in the
proof of Theorem 2.2 applies again. Hence, (GCC) is satisfied with c1 = 3.
Next consider the expression

ρ(s, r)− p(s, r) =
π

r2

∫ ∞

−∞

∫ ∞

0

(
E − w2

E

)
f(s, r, w, L) dLdw.
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Since E2 ≥ w2 ≥ Γ2(r1, R1) W 2− by Lemma 6.1, we get for r ∈ [γ+(s), R1]
from

√
L/r0 ≤ 1,

E − w2

E
=

1
E

(E2 − w2) =
1
E

(
1 +

L

r2

)
≤ 2

E
≤ 2

Γ2 W 2−
E =: c0E, (7.3)

so that
ρ(s, r)− p(s, r) ≤ c0ρ(s, r). (7.4)

After this preparation, we again show that the out- and ingoing null
geodesics γ+ and γ− do not intersect. We choose T ∈]0,∞[ such that (5.2)
holds. In this case we cannot rely on the smallness of eµ̂ as in the proof of
Theorem 3.1, so we need to control the evolution also when eµ̂ is not small.
For this part the estimate (7.4) is essential. We fix t±∗ ∈ [0, T [ by requiring
that

e(µ̂+λ)(s, γ±(s)) > d for s ∈ [0, t±∗ [, e(µ̂+λ)(s, γ±(s)) ≤ d for s ∈ [t±∗ , T [.

First we note that t±∗ is well-defined, since

d

ds
(µ̂ + λ)(s, γ±(s)) =

(
µ̂t − 4πr eµ+λ(j ∓ ρ)

)
≤ 0. (7.5)

Step 1: Consider s ∈ [0, t±∗ ]; if t±∗ = 0, then this step is omitted. For η ≥
γ±(s) we have d ≤ e(µ̂+λ)(s, γ±(s)) ≤ e(µ̂+λ)(s, η), since (µ̂+λ)r = 4πrρ e2λ ≥ 0.
Hence Lemma 4.1(b) and (7.4) yield

(µ− λ)(s, γ±(s)) = 2µ̂(s, γ±(s)) +
∫ ∞

γ±(s)
4πη (ρ− p)(s, η) e2λ(s, η) dη

≤ 2µ̂(s, γ±(s)) +
c0

d

∫ ∞

γ±(s)
4πη ρ(s, η) e(µ̂+λ)(s, η)e2λ(s, η) dη

≤ 2µ̂(s, γ±(s)) +
c0

d
,

where for the last estimate Lemma 4.2 has been used.
Now we make the following observation: There is at least one charac-

teristic (R̄, W̄ , L̄)(s) with R̄(0) ∈ [R0, R1], which does not leave the strip
[r1, R1] during the finite time interval [0, T ]. In fact, if at time t = T all
characteristics had left the strip [r1, R1] (and thus had entered the region
r < r1), then m(T, r1) = M . From e−2λ = 1− 2m/r and 2M = r1 it would
follow that λ(T, r1) = ∞. However, this contradicts (GLO) which holds for
Vlasov matter.
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Since γ±(s) ≤ r1 ≤ R̄(s) and µ̂r ≥ 0, we thus obtain in view of
Lemma 4.1(a) that

(µ− λ)(s, γ±(s)) ≤ 2µ̂(s, γ±(s)) +
c0

d
≤ 2µ̂(s, R̄(s)) +

c0

d

≤ (µ− λ)(s, R̄(s)) +
c0

d
, s ∈ [0, t±∗ ].

Next note that |W | ≥ 1 by (6.10), and hence due to (6.1) and observing
R̄2 ≥ r2

0 ≥ L,

| ˙̄R| = |W |
E

eµ−λ ≥ |W |√
2 + W 2

eµ−λ ≥ 1
2

eµ−λ.

Therefore we obtain for all t ∈ [0, t±∗ ] the estimate

|γ±(t)− γ±(0)| =
∣∣∣∣
∫ t

0
± e(µ−λ)(s, γ±(s)) ds

∣∣∣∣ ≤ e
c0
d

∫ t

0
e(µ−λ)(s, R̄(s)) ds

≤ −2e
c0
d

∫ t

0

˙̄R(s) ds = 2e
c0
d (R̄(0)− R̄(t))

≤ 2e
c0
d (R1 − r1). (7.6)

Step 2: Let t ∈ [t±∗ , T [; if t±∗ = T , then this step is omitted. The arguments
here are basically the ones presented in Section 5. The computation leading
to (5.5) is almost identical, and

µ̂(t, γ±(t))− µ̂(t±∗ , γ±(t±∗ ))

≤ − t− t±∗
2c1R1

+
∫ t

t±∗

( 1
2c1R1

+
m(s, γ±(s))

γ±(s)2
)

e(µ+λ)(s, γ±(s)) ds (7.7)

for c1 = 3. By Lemma 4.1(a), e(µ+λ)(s, γ±(s)) ≤ e(µ̂+λ)(s, γ±(s)) ≤ d. Using
the definition of d we obtain by a similar chain of estimates as in (5.9)

µ̂(t, γ±(t))− µ̂(t±∗ , γ±(t±∗ ) ≤ − 1
8c1R1

(t− t±∗ ), t ∈ [t±∗ , T [.

Hence by Lemma 4.1(a),

|γ±(t)− γ±(t±∗ )| =
∣∣∣∣
∫ t

t±∗
e(µ−λ)(s, γ±(s)) ds

∣∣∣∣ ≤
∫ t

t±∗
eµ̂(s, γ±(s)) ds

≤ e(µ̂+λ)(t±∗ , γ±(t±∗ ))

∫ ∞

t±∗
e
− (s−t±∗ )

8c1R1 ds ≤ 8c1R1d. (7.8)
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Adding the contributions (7.6) from Step 1 and (7.8) from Step 2, the final
estimate |γ±(t) − γ±(0)| ≤ 2ec0/d(R1 − r1) + 8c1R1d is obtained for all
t ∈ [0, T [. From (7.3) and (7.1) we have c0/d ≤ 1/5. The third condition
on d together with (2.2) thus imply that |γ±(t)− γ±(0)| < (r1 − r0)/2. As
in the proof of Theorem 3.1 we conclude that γ+ and γ− do not intersect,
completing the proof of Theorem 2.1. 2

It remains to prove Corollary 2.3.
Proof of Corollary 2.3 : Let fs be a static solution. By [3], 2ms(r)/r <
8/9 for r > 0 where ms is the local ADM mass induced by fs. In particular,
Ms < rs/2 < r1/2 = M , and (2.1) holds. As described above we can now
specify the matter distribution for r ≥ r0, and we obtain initial data

◦
f in I1

or in I2 which coincide with the given static solution for 0 ≤ r ≤ r0.
Since no matter travels from the outer domain D to the inner one where

r ≤ γ+(t), the only way the matter in the outer domain can affect the static
solution is through the metric. Consider the time-independent version of the
Vlasov equation (1.6). Dropping all the time derivatives we see that in the
remaining equation the factor eλ−µ can be canceled. Therefore, the static
Einstein-Vlasov system is formulated in terms the quantities f, λ, and µr,
but not µ itself. Recalling e−2λ = 1 − 2m/r and (4.3), we see that λ and
µr are, on r ≤ γ+(t), not affected by the matter in the outer domain D.
Therefore f = fs, λ, and µr remain time-independent for r ≤ γ+(t). 2

Note that the metric coefficient µ of course does change on the interior
region; cf. Theorem 2.4(b).

8 Proof of Theorem 2.4

As a first step we estimate µ−λ from below for r > 2M , using Lemma 4.1(a).

(µ− λ)(t, r) ≥ 2µ̂(t, r) = −2
∫ ∞

r

m(t, η)
η2

e2λ(t,η)dη

= −2
∫ ∞

r

m(t, η)
η (η − 2m(t, η))

dη ≥ −2
∫ ∞

r

M

η (η − 2M)
dη

= ln
r − 2M

r
, r > 2M.

Now consider any characteristic in the matter support and let R(t) denote
its radial coordinate. Then by Lemma 6.1 and as long as R(t) > 2M ,

dR

ds
= e(µ−λ)(s,R) W

E
≤ −Ce(µ−λ)(s,R) ≤ −C

R− 2M

R
;
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for initial data from the set I1 respectively I2 one can take C :=
Γ|W−|/

√
2 + Γ2W 2− respectively C := 1/

√
3. Integrating this differential

inequality we find that as long as R(t) > 2M the estimate

−Ct ≥
∫ R(t)

R(0)

r

r − 2M
dr = R(t)−R(0) + 2M ln

R(t)− 2M

R(0)− 2M

≥ 2M −R1 + 2M ln
R(t)− 2M

R(0)− 2M

holds, and hence R(t) ≤ 2M + (R1 − 2M) exp(R1 − 2M − Ct/2M). This
proves the support estimate in part (a). Since all the matter, which has
ADM mass M , is contained in the region where r ≤ 2M +αe−βt =: σ(t), the
assertion on the metric follows. Moreover, for any r ≤ σ(t) the monotonicity
of µ with respect to r implies that

µ(t, r) ≤ µ(t, σ(t)) = µ̂(t, σ(t)) = ln
(

σ(t)− 2M

σ(t)

)1/2

,

which is the first assertion of part (b). The second follows immediately since
the integral

∫∞
0 eµ(t,r)dt is the proper length of a coordinate line of constant

r, θ, and ϕ in the outer region D. This completes the proof of part (b).
As to (c) we first observe that any radially outgoing null geodesic which

enters the region r > 2M escapes to r = ∞ and is future complete, since by
part (a) the metric on r > 2M + ε where ε > 0 is arbitrary eventually equals
the Schwarzschild one for which the asserted properties of the geodesics hold.
Now consider the extremal geodesic γ∗. If there existed some time t > 0
such that γ∗(t) > 2M , then by continuous dependence on the initial data
the same would be true for all radially outgoing null geodesics with γ(0)
sufficiently close to but less than r∗. Hence such geodesics would escape to
r = ∞ in contradiction to the definition of r∗. This shows that the extremal,
radially outgoing null geodesic γ∗ has the property that limt→∞ γ∗(t) ≤ 2M .

It remains to show that the limit above cannot be strictly less than
2M . To this end we consider a radially outgoing null geodesic as long as
γ(t) < σ(t) = 2M + αe−βt. Then

dγ

ds
= e(µ−λ)(s,γ(s)) ≤ eµ(s,σ(s)) =

(
σ(s)− 2M

σ(s)

)1/2

≤ Ce−βs/2,

and hence for any 0 ≤ t0 ≤ t and as long as γ(t) < σ(t) we have γ(t) ≤
γ(t0)+Ce−βt0/2, where the constant C > 0 again depends only on the initial
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data set. Assume that R∗ := limt→∞ γ∗(t) < 2M , choose t0 > 0 such that
R∗ + Ce−βt0/2 < 2M , and consider the radially outgoing null geodesic γ∗∗

with γ∗∗(t0) = R∗. By construction, γ∗∗(t) < 2M < σ(t) for all t ≥ t0, and
since γ∗∗(t0) = R∗ > γ∗(t0) it follows that γ∗∗(0) > γ∗(0) = r∗. Hence γ∗∗

is a radially outgoing null geodesic which at time t = 0 starts to the right of
r∗ and does not escape to r = ∞. This contradicts the definition of r∗. 2

Acknowledgment : The authors are grateful for discussions with A. Ren-
dall.
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[2] H. Andréasson, On global existence for the spherically symmet-
ric Einstein-Vlasov system in Schwarzschild coordinates, Indiana
Univ. Math. J. 56, 523–552 (2007).
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