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Abstract

Twist maps (θ1, r1) = f(θ, r) on the plane are considered which do not exhibit any kind of
periodicity in their dependence on θ. Some general results are obtained which typically yield
the existence of infinitely many complete and bounded orbits. Examples that can be treated
with this theory include oscillators of the type ẍ+V ′(x) = p(t) under appropriate hypotheses,
the bouncing ball system, and the standard map.

1 Introduction

In this paper we continue our earlier work [6] on non-periodic twist maps (θ1, r1) = f(θ, r) on
the plane by providing further general results and applications. As soon as no hypothesis like
periodicity, quasi-periodicity, or almost periodicity is imposed on the dependence of f on θ, the
highly developed machineries of KAM theory and Aubry-Mather theory are no longer useful. In
[6] we were able to devise a theory that allows the construction of some special orbits for maps of
this type when the associated generating function grows quadratically. This means that

h(θ, θ1) ∼ (θ1 − θ)2

where h = h(θ, θ1) is a function satisfying

r = ∂θh(θ, θ1), r1 = −∂θ1h(θ, θ1).
∗Corresponding author
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In Section 2 we further illustrate our results by proving the existence of running solutions of
equations of the type

ẍ+ V ′(x) = p(t)

for periodic forcings p of zero average and C2-bounded potentials V . The so-called running solu-
tions are solutions x = x(t) having a bounded and uniformly positive derivative, i.e., they satisfy

0 < inf
t∈R

ẋ(t) ≤ sup
t∈R

ẋ(t) <∞.

In particular x must be unbounded and a new criterion for unbounded motions can be derived. As
an illustration, it can be proved that bounded and unbounded solutions coexist for the equation

ẍ+
x

1 + x4
= λ sin t. (1.1)

A delicate point concerning the applicability of the theory of twist maps to these differential
equations is that the generating function is not explicitly known. The required estimates on h are
obtained using the connection between generating functions and Lagrangians as described e.g. in
[9].

The general theory is extended in Section 3.1 to include generating functions with superlinear
growth,

h(θ, θ1) ∼ (θ1 − θ)κ

for some κ > 1. The example of a ball falling down under the influence of gravity and bouncing
back from a moving wall is considered Section 3.2; in this case it turns out that κ = 3. This is a
model related to the so-called Fermi-Ulam acceleration and has been studied by several authors, in
particular in the case where the wall moves periodically; see [1, 3] and the references therein. We
can also treat non-periodic walls, as long as they have bounded velocity and move in a compact
region. Our theory then leads to the existence of infinitely many bounded motions of the ball.

Section 4 deals with a somewhat different but closely related issue. For the standard map

θ1 = θ + r, r1 = r + λ sin(θ + r),

Aubry-Mather theory implies that given α > 0 there exists a complete orbit (θn, rn)n∈Z that is
monotone (θn < θn+1), bounded in r (supn∈N |rn| <∞), and has a rotation number

α = lim
|n|→∞

θn
n
.

Our theory applies to maps

fϕ : θ1 = θ + r, r1 = r + ϕ(θ + r),

for suitable non-periodic functions ϕ. In general the solutions that we construct are monotone and
bounded, but they will not have a well-defined rotation number; examples for this are easily found
when ϕ is positive. Nevertheless we can show that in a typical situation there will be a ‘large’ set
of ψ’s such that each fψ allows for what we call an AM-orbit, i.e., one that is monotone, bounded,
and admits a rotation number. This is achieved by adapting to our discrete setting the theory of
the rotation number for non-autonomous linear differential equations; see [5].

Acknowledgement: The second author thanks Alberto Abbondandolo for a conversation on the
existence of orbits with rotation number for maps on the annulus.
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2 Quadratic generating functions

In this section we prove the existence of particular solutions to the equation ẍ + V ′(x) = p(t) for
a bounded and periodic forcing p of zero average, however imposing no periodicity hypothesis on
the potential V .

Definition 2.1 A running solution of ẍ+ V ′(x) = p(t) is a solution satisfying

0 < δ ≤ ẋ(t) ≤ ∆ <∞ for t ∈ R.

Notice that then the mean value theorem implies that

δ ≤ x(t+ 1)− x(t) ≤ ∆ for t ∈ R,

and from the generalized L’Hospital rule,

δ ≤ lim inf
|t|→∞

x(t)

t
≤ lim sup

|t|→∞

x(t)

t
≤ ∆.

It turns out that for potentials V satisfying certain bounds, the problem of the existence of running
solutions can be recast in terms of a quadratic generating map, so that the results from [6] apply.

Theorem 2.2 Let V ∈ C2(R) be such that ‖V ‖L∞(R) + ‖V ′‖L∞(R) + ‖V ′′‖L∞(R) < ∞. Suppose

that p ∈ L∞(R) is T -periodic and such that
∫ T
0
p(t) dt = 0. Then there exists a sequence (xj) of

running solutions of
ẍ+ V ′(x) = p(t) (2.1)

such that inft∈R ẋj(t) → ∞ as j → ∞.

Remark 2.3 As mentioned in the introduction, running solutions are unbounded, and hence
Theorem 2.2 leads to a new result concerning the existence of unbounded solutions. For the
example (1.1) we can take V (x) = (1/2) arctan(x2) and p(t) = λ sin t. Then our theorem says
that there are many running solutions. On the other hand, the force −V ′(x) is attractive and thus
there is a periodic solution by [7]. It follows that for (1.1) bounded and unbounded motions do
coexist. It is an interesting problem to clarify the same question for

ẍ+
x

1 + x2
= λ sin t,

since Theorem 2.2 does not apply in this case.

Before going on to the proof, we present two further examples. Somehow they illustrate extreme
cases of the range of applicability of the theorem.

Example 2.4 (Periodic and quasiperiodic potentials) First we assume that V and p are pe-
riodic with period T = 1 and furthermore p ∈ C2(R). In this case, more precise information can
be obtained from Moser’s version of the Aubry-Mather theorem; see [9]. For every α ∈ R there
exists a solution satisfying

lim
|t|→∞

x(t)

t
= α
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and
|x(t+ 1)− x(t)− α| ≤ 1 for t ∈ R.

Since ‖ẍ‖L∞(R) ≤ ‖V ′‖L∞(R) + ‖p‖L∞(R) is finite, it is easy to deduce that x is a running solution
for large α. Assuming some additional smoothness for V , one can say that all solutions have
a bounded derivative [8, 10, 13], and all solutions with large initial velocity are running solu-
tions. Analogous conclusions were obtained in [2] for V quasiperiodic and satisfying appropriate
diophantine conditions. Our result is applicable to any trigonometric sum of the type

V (x) =
N∑
n=1

an sin(ωnt+ ϕn),

without imposing any condition on the ωn’s.

Example 2.5 (arctan-potentials) For V (x) = arctanx it is possible to obtain more refined
information by rather elementary methods. Let P (t) be a T -periodic solution of P̈ = p(t). The
change of variables x = y + P (t) leads us to the equation

ÿ +
1

1 + (y + P (t))2
= 0.

Then ÿ(t) < 0 for every solution, so ẏ(t) is strictly decreasing. Let us denote by ẏ(±∞) the limits,
be they finite or infinite. In any case, ẏ(−∞) > ẏ(+∞), and thus

lim
t→∞

x(t)

t
= ẏ(+∞) < ẏ(−∞) = lim

t→−∞

x(t)

t

for any solution x of the original equation. This is in contrast to the case of periodic potentials and
shows the impossibility of defining rotation numbers for general potentials. Let us now prove that
in this case nevertheless all solutions have a bounded derivative. If, for instance, ẏ(+∞) = −∞
would hold, then |y(t)| ≥ t for large t. Hence the function 1

1+(y(t)+P (t))2
is integrable in [0,∞[. Thus

ẏ(+∞) = ẏ(0)−
∫ ∞

0

dt

1 + (y(t) + P (t))2
> −∞,

a contradiction. Our result also applies to more complicated potentials like V (x) = arctanx+cosx,
for which the preceding direct argument is no longer useful.

Now we turn to the proof of Theorem 2.2. As an auxiliary step, we state a quantitative version
of the Riemann-Lebesgue lemma. The classical case of this lemma corresponds to ψ(x) = sin(2πx)
and z = 0.

Lemma 2.6 Let ψ ∈ C(R) be such that its primitive Ψ(x) =
∫ x
0
ψ(ξ) dξ is bounded, i.e., Ψ ∈

L∞(R). Suppose that z ∈ C2([0, 1]) satisfies ‖ż‖L∞([0,1]), ‖z̈‖L∞([0,1]) ≤ C1 and let α ∈ C1([0, 1]) be
such that α(0) = α(1) = 0 and ‖α‖L∞([0,1]), ‖α̇‖L∞([0,1]) ≤ C2. Then

sup
θ∈R

∣∣∣ ∫ 1

0

α(t)ψ(θ + rt+ z(t)) dt
∣∣∣ ≤ 4C2

r
‖Ψ‖L∞(R) for r ≥ 2C1.
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Proof : Let I denote the integral that we want to estimate. From r+ ż(t) ≥ r−C1 ≥ r/2 > 0 we
deduce that it is possible to integrate by parts. It follows that

|I| =
∣∣∣ ∫ 1

0

α(t)

r + ż(t)

d

dt
[Ψ(θ + rt+ z(t))] dt

∣∣∣
=

∣∣∣ ∫ 1

0

( α̇(t)

r + ż(t)
− α(t)z̈(t)

(r + ż(t))2

)
Ψ(θ + rt+ z(t)) dt

∣∣∣
≤

(2C2

r
+

4C1C2

r2

)
‖Ψ‖L∞(R) ≤

4C2

r
‖Ψ‖L∞(R),

completing the proof. 2

To simplify the notation we henceforth take T = 1 in Theorem 2.2. For every θ, r ∈ R let
x(t) = x(t; θ, r) denote the unique global solution to (2.1) with initial data x(0) = θ and ẋ(0) = r.
Since V ′ and p are bounded, this solution does exist, and it is differentiable w.r. to θ and r.
Moreover, let

θ1 = θ1(θ, r) = x(1; θ, r) and r1 = r1(θ, r) = ẋ(1; θ, r)

as well as

y(t) = y(t; θ, r) = x(t; θ, r)− θ − (θ1 − θ)t and F (θ, r) = θ1 − θ − r.

In the following lemma bounds are obtained on y and F .

Lemma 2.7 Let C1 = ‖V ′‖L∞(R) + ‖p‖L∞(R). Then

‖y‖L∞([0,1]) ≤ C1, ‖ẏ‖L∞([0,1]) ≤ C1, and ‖F‖L∞(R2) ≤ C1.

In addition,

|Fr(θ, r)| ≤
C2

r
for θ ∈ R and r ≥ 2C1,

where C2 = 8‖V ′‖L∞(R)(1 + ‖V ′′‖L∞(R)) exp(‖V ′′‖L∞(R)).

Proof : By definition y solves the Dirichlet problem ÿ + V ′(x) = p(t), y(0) = 0, y(1) = 0. Let

G(t, s) =

{
s(1− t) : s ≤ t

t(1− s) : s ≥ t
, 0 ≤ t, s ≤ 1, (2.2)

denote Green’s function for [0, 1]. Then

y(t) =

∫ 1

0

G(t, s)[V ′(x(s))− p(s)] ds

yields the estimate ‖y‖L∞([0,1]) ≤ (1/8)(‖V ′‖L∞(R) + ‖p‖L∞(R)) ≤ C1, and moreover

ẏ(t) =

∫ 1

0

∂tG(t, s)[V
′(x(s))− p(s)] ds,

so that ‖ẏ‖L∞([0,1]) ≤ (1/2)(‖V ′‖L∞(R) + ‖p‖L∞(R)) ≤ C1.
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Concerning F , note first that

F (θ, r) =

∫ 1

0

(1− t) ẍ(t) dt =

∫ 1

0

(1− t) [p(t)− V ′(x(t))] dt. (2.3)

Therefore ‖F‖L∞(R2) ≤ (1/2)(‖V ′‖L∞(R) + ‖p‖L∞(R)) ≤ C1. In addition, (2.3) leads to

Fr(θ, r) = −
∫ 1

0

(1− t)V ′′(x(t))xr(t) dt =

∫ 1

0

α(t)V ′′(x(t)) dt, (2.4)

where xr = ∂rx and α(t) = α(t; θ, r) = −(1 − t)xr(t; θ, r). We are going to apply Lemma 2.6 to
estimate this integral. To begin with, note that α(0) = α(1) = 0. According to (2.1), ξ = xr solves
( d

2

dt2
+ V ′′(x))ξ = 0, ξ(0) = 0, ξ̇(0) = 1. It follows that

ξ(t) = t−
∫ t

0

(t− s)V ′′(x(s)) ξ(s) ds.

Hence by Gronwall’s inequality, |ξ(t)| ≤ exp(‖V ′′‖L∞(R)) for t ∈ [0, 1]. Also

ξ̇(t) = 1−
∫ t

0

V ′′(x(s)) ξ(s) ds,

and accordingly |ξ̇(t)| ≤ 1 + ‖V ′′‖L∞(R) exp(‖V ′′‖L∞(R)) for t ∈ [0, 1]. To summarize,

|xr(t)| ≤ exp(‖V ′′‖L∞(R)) ≤ C̃2 and |ẋr(t)| ≤ 1 + ‖V ′′‖L∞(R) exp(‖V
′′‖L∞(R)) ≤ C̃2

for t ∈ [0, 1], where C̃2 = (1 + ‖V ′′‖L∞(R)) exp(‖V ′′‖L∞(R)). In particular,

‖α‖L∞([0,1]), ‖α̇‖L∞([0,1]) ≤ 2C̃2. (2.5)

Next denote z(t) = z(t; θ, r) = x(t; θ, r)−θ−rt. Then z solves z̈+V ′(x) = p(t), z(0) = 0, ż(0) = 0.
Thus

ż(t) =

∫ t

0

[p(s)− V ′(x(s))] ds

yields ‖ż‖L∞([0,1]) ≤ ‖V ′‖L∞(R) + ‖p‖L∞(R) ≤ C1. From z̈ + V ′(x) = p(t) also ‖z̈‖L∞([0,1]) ≤ C1 is
obtained. Recalling (2.4) and (2.5), Lemma 2.6 gives

|Fr(θ, r)| ≤
8C̃2

r
‖V ′‖L∞(R) for r ≥ 2C1,

as was to be shown. 2

The proof of Theorem 2.2 relies on an application of [6, Thm. 2.1], which we recall first. See
also Theorem 3.1 below for a more general result.

Theorem 2.8 Let ∆ > δ > 0. Suppose that h : Ω = {(θ, θ′) ∈ R2 : δ ≤ θ′ − θ ≤ ∆} → R is C1

and such that
α(θ′ − θ)2 ≤ h(θ, θ′) ≤ α(θ′ − θ)2, (θ, θ′) ∈ Ω,
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for some constants α ≥ α > 0 so that α < 3
2
α. Then there is a constant σ∗∗ ≥ 1 (depending only

on α/α ∈ [1, 3
2
[) with the following property. If

σ∗∗δ < σ−1
∗∗ ∆,

then there exists (θ∗n)n∈Z such that |θ∗0| ≤ ∆, δ ≤ θ∗n+1 − θ∗n ≤ ∆ for n ∈ Z, and

∂2h(θ
∗
n−1, θ

∗
n) + ∂1h(θ

∗
n, θ

∗
n+1) = 0, n ∈ Z.

Moreover,

δ ≤ lim inf
n→∞

θ∗n
n

≤ lim sup
n→∞

θ∗n
n

≤ ∆, δ ≤ lim inf
n→−∞

θ∗n
n

≤ lim sup
n→−∞

θ∗n
n

≤ ∆.

Proof of Theorem 2.2 : Denote

C3 = 3(C1 + C2) + 1,

where C1 > 0 and C2 > 0 are defined in Lemma 2.7. Let θ, θ1 ∈ R be fixed such that θ1 − θ ≥ C3.
Then

θ1 = θ + r + F (θ, r)

has a unique solution r = r(θ, θ1) ∈ [2(C1 +C2),∞[, since ϕ(r) = r+F (θ, r) has ϕ(2(C1 +C2)) ≤
2(C1 +C2) + ‖F‖L∞(R2) ≤ 3C1 + 2C2 < C3 ≤ θ1 − θ and ϕ′(r) = 1 + Fr(θ, r) ≥ 1−C2/r ≥ 1/2 for
r ≥ 2(C1 + C2) by Lemma 2.7. Let

X(t) = X(t; θ, θ1) = x(t; θ, r(θ, θ1)), θ1 − θ ≥ C3.

Then X solves Ẍ + V ′(X) = p(t), and moreover X(0) = θ as well as

X(1) = x(1; θ, r(θ, θ1)) = θ + r(θ, θ1) + F (θ, r(θ, θ1)) = θ1

by the definitions of F and r(θ, θ1). Let Y (t) = Y (t; θ, θ1) = X(t; θ, θ1) − θ − (θ1 − θ)t. Then Y
is the solution to Ÿ + V ′(X) = p(t), Y (0) = 0, Y (1) = 0. As in Lemma 2.7 for y, it follows that
‖Y ‖L∞([0,1]) ≤ C1 and ‖Ẏ ‖L∞([0,1]) ≤ C1. Next we introduce the restricted action functional

h(θ, θ1) =

∫ 1

0

L(t,X(t; θ, θ1), Ẋ(t; θ, θ1)) dt, θ1 − θ ≥ C3,

where L(t,X, Ẋ) = 1
2
Ẋ2 − V (X) + p(t)X is the Lagrange function. It is well known that h is the

generating function of the Poincaré map P : (θ, r) = (x(0), ẋ(0)) 7→ (x(1), ẋ(1)) = (θ1, r1); see [9,
p. 84]. In particular,

−∂θh(θ, θ1) = r(θ, θ1), ∂θ1h(θ, θ1) = ẋ(1; θ, r(θ, θ1)), (2.6)

holds, as could also be checked directly. Expressing X in terms of Y ,

h(θ, θ1) =

∫ 1

0

(1
2
[Ẏ (t) + (θ1 − θ)]2 − V (X(t)) + p(t)[Y (t) + θ + (θ1 − θ)t]

)
dt

=
1

2
(θ1 − θ)2 + (θ1 − θ)

(∫ 1

0

tp(t) dt
)
+

∫ 1

0

(1
2
Ẏ (t)2 − V (X(t)) + p(t)Y (t)

)
dt.
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Observe that for this expansion it has been used that p has zero average. Denoting R(θ, θ1) =
h(θ, θ1)− (θ1 − θ)2/2 the remainder term, it follows from the previous observations that

|R(θ, θ1)| ≤ C4(θ1 − θ) + C5, θ1 − θ ≥ C3,

for

C4 =
∣∣∣ ∫ 1

0

tp(t) dt
∣∣∣ and C5 =

1

2
C2

1 + ‖V ‖L∞(R) + C1‖p‖L∞(R).

Since C3 ≥ 1, we obtain |R(θ, θ1)| ≤ C6(θ1 − θ) for θ1 − θ ≥ C3, where C6 = C4 + C5.
In order to apply Theorem 2.8 to h, take α = 7/16, α = 9/16, and select the constant

σ∗∗ ≥ 1 accordingly. Next fix sequences (δj) and (∆j) such that δj < ∆j < δj+1 and also δj >
C3 + 16C6 and ∆j > σ2

∗∗δj are satisfied for j ∈ N. Then Theorem 2.8 can be used for h on every
Ωj = {(θ, θ1) ∈ R2 : δj ≤ θ1 − θ ≤ ∆j}, since |R(θ, θ1)| ≤ C6(θ1 − θ) ≤ (1/16)(θ1 − θ)2 yields
(7/16)(θ1 − θ)2 ≤ h(θ, θ1) ≤ (9/16)(θ1 − θ)2 on Ωj. Thus by Theorem 2.8, for every j ∈ N there is

a sequence (θ
(j)
n )n∈Z such that |θ(j)0 | ≤ ∆j,

δj ≤ θ
(j)
n+1 − θ(j)n ≤ ∆j, and ∂2h(θ

(j)
n−1, θ

(j)
n ) + ∂1h(θ

(j)
n , θ

(j)
n+1) = 0

holds for n ∈ Z. Let r(j)n = −∂θh(θ(j)n , θ
(j)
n+1) = r(θ

(j)
n , θ

(j)
n+1) for n ∈ Z and j ∈ N, cf. (2.6). Consider

the solutions
xj(t) = x(t; θ

(j)
0 , r

(j)
0 ).

Then
θ(j)n = xj(n) for n ∈ Z and j ∈ N. (2.7)

For this, the definition of r = r(θ, θ1) implies that xj(1) = θ
(j)
1 and

ẋj(1) = ∂2h(θ
(j)
0 , θ

(j)
1 ) = −∂1h(θ(j)1 , θ

(j)
2 ) = r

(j)
1 ,

because h is the generating function of the Poincaré map. The periodicity in time then allows us
to conclude that

(xj(n), ẋj(n)) = P n(θ
(j)
0 , r

(j)
0 ) = (θ(j)n , r(j)n ), n ∈ Z,

proving (2.7). Since δj ≤ xj(n+1)−xj(n) ≤ ∆j, there is ζ ∈ [n, n+1] such that δj ≤ ẋj(ζ) ≤ ∆j.
Observing ‖ẍj‖L∞(R) ≤ ‖V ′‖L∞(R) + ‖p‖L∞(R) ≤ C1 by (2.1), the estimates

δj − C1 ≤ ẋj(ζ)− |ẋj(t)− ẋj(ζ)| ≤ ẋj(t) ≤ ẋj(ζ) + |ẋj(t)− ẋj(ζ)| ≤ ∆j + C1

are obtained for t ∈ [n, n + 1]. Thus every xj is a running solution to (2.1) and inft∈R ẋj(t) ≥
δj − C1 → ∞ as j → ∞. 2

3 More general generating functions

In view of further applications it is too restrictive to be fixed to generating functions that grow
quadratically, as it was the case in Section 2. Thus we first broaden this class in Section 3.1 to
include generating functions of the type h(θ, θ′) ∼ (θ′ − θ)κ for some κ > 1. As an application
we consider in the subsequent Section 3.2 the example of a bouncing ball, where the existence of
infinitely many motions of bounded velocity is obtained.
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3.1 An abstract result

We are going to prove the following generalization of [6, Thm. 2.1] (cited in Theorem 2.8 above),
where we had κ = 2 corresponding to the case of quadratically growing generating functions.

Theorem 3.1 Fix κ > 1 and let ∆ > δ > 0. Suppose that the mapping h : Ω = {(θ, θ′) ∈ R2 : δ ≤
θ′ − θ ≤ ∆} → R is C1 and such that

α(θ′ − θ)κ ≤ h(θ, θ′) ≤ α(θ′ − θ)κ, (θ, θ′) ∈ Ω, (3.1)

for some constants α ≥ α > 0 so that α < (1
2
+ 1

2k
)−1 α. Then there is a constant σ∗∗ ≥ 1

(depending only on α/α) with the following property. If

σ∗∗δ < σ−1
∗∗ ∆,

then there exists (θ∗n)n∈Z such that |θ∗0| ≤ ∆, δ ≤ θ∗n+1 − θ∗n ≤ ∆ for n ∈ Z, and

∂2h(θ
∗
n−1, θ

∗
n) + ∂1h(θ

∗
n, θ

∗
n+1) = 0, n ∈ Z.

Moreover,

δ ≤ lim inf
n→∞

θ∗n
n

≤ lim sup
n→∞

θ∗n
n

≤ ∆, δ ≤ lim inf
n→−∞

θ∗n
n

≤ lim sup
n→−∞

θ∗n
n

≤ ∆.

The proof of Theorem 3.1 is along the lines of the proof to [6, Thm. 2.1]. Therefore we keep
the presentation short, but indicate at which places changes are needed. For fixed A > 0, N ∈ N,
and ∆ > δ > 0, define

Σ(N) =
{
Θ = (θn)−N≤n≤N : θ±N = ±A, δ ≤ θn+1 − θn ≤ ∆ for n = −N, . . . , N − 1

}
.

Since later A = AN will be chosen to depend on N , the dependence of Σ(N) on A is suppressed in
our notation. The following observation is [6, Lemma 2.3].

Lemma 3.2 If δ ≤ A
N

≤ ∆, then Σ(N) 6= ∅, and Σ(N) ⊂ R2N+1 is compact.

Let

S(Θ) =
N−1∑
n=−N

h(θn, θn+1), Θ = (θn)−N≤n≤N ∈ Σ(N).

Since S : Σ(N) → R is continuous, there exists a minimizer, i.e.,

S(Θ(N)) = min
Θ∈Σ(N)

S(Θ)

for a suitable Θ(N) = (θ
(N)
n )−N≤n≤N ∈ Σ(N), which henceforth we consider to be fixed. The bounds

obtained in the next lemma are of central importance to the proof.

Lemma 3.3 Suppose that α < (1
2
+ 1

2k
)−1 α. There exists a constant σ∗ = σ∗(α/α) ≥ 1 such that

for all N ∈ N,

σ−1
∗ (θ(N)

n − θ
(N)
n−1) ≤ θ

(N)
n+1 − θ(N)

n ≤ σ∗(θ
(N)
n − θ

(N)
n−1), −N + 1 ≤ n ≤ N − 1.

9



Proof : To derive the upper bound, write θ
(N)
n − θ

(N)
n−1 = L and θ

(N)
n+1 − θ

(N)
n = σL for L, σ > 0.

Using the method from [6, Lemma 2.4], it follows that

h(θ
(N)
n−1, θ

(N)
n ) + h(θ(N)

n , θ
(N)
n+1) ≤ h(θ

(N)
n−1, s) + h(s, θ

(N)
n+1)

for s = 1
2
(θ

(N)
n+1 + θ

(N)
n−1). Thus by (3.1),

α(1 + σκ)Lκ = α(θ(N)
n − θ

(N)
n−1)

κ + α(θ
(N)
n+1 − θ(N)

n )κ ≤ α(s− θ
(N)
n−1)

κ + α(θ
(N)
n+1 − s)κ

=
1

2κ−1
α(θ

(N)
n+1 − θ

(N)
n−1)

κ =
1

2κ−1
α(1 + σ)κLκ.

In other words, ϕ(σ) ≤ q = α/α for the strictly increasing function ϕ(σ) = 2κ−1(1+σκ)
(1+σ)κ

: [1,∞[→
[1, 2k−1[. Since 1 ≤ q < (1

2
+ 1

2k
)−1 < 2k−1 by assumption, there is a unique σ∗ ∈ [1,∞[ so that

ϕ(σ∗) = q. It follows that σ ≤ σ∗, which yields the upper bound.
For the lower bound, it is again sufficient to make use of the upper bound for the function

h0(θ, θ
′) = h(−θ′,−θ), (θ, θ′) ∈ Ω;

see [6, Lemma 2.4]. 2

For N ∈ N, put

δ(N) = min
−N≤n≤N−1

(θ
(N)
n+1 − θ(N)

n ) and ∆(N) = max
−N≤n≤N−1

(θ
(N)
n+1 − θ(N)

n ).

Then δ ≤ δ(N) ≤ ∆(N) ≤ ∆, due to Θ(N) = (θ
(N)
n )−N≤n≤N ∈ Σ(N). Next we need to generalize [6,

Lemma 2.5].

Lemma 3.4 Suppose that α < (1
2
+ 1

2k
)−1 α. There exists a constant σ∗∗ = σ∗∗(α/α) ≥ 1 such that

for all N ∈ N,
∆(N) ≤ σ∗∗δ

(N).

Proof : Put
σ∗∗ = 4(2k−1 − 1)−1/kσ∗.

Since σ∗∗ ≥ 2σ∗ ≥ 2, we still may assume without loss of generality that δ(N) ≤ 1
2σ∗

∆ and

∆(N) ≥ 2δ holds. Select −N ≤ m,n ≤ N − 1 such that

δ(N) = θ
(N)
m+1 − θ(N)

m and ∆(N) = θ
(N)
n+1 − θ(N)

n .

It is no restriction to suppose that m ≤ n. If m = n, then the assertion of the lemma is a
consequence of σ∗∗ ≥ 1. If m+ 1 = n, then it suffices to use Lemma 3.3, because σ∗∗ ≥ σ∗. Hence
we may moreover suppose that m + 2 ≤ n. Following the argument from the proof to [6, Lemma
2.5], we thus get

h(θ(N)
m , θ

(N)
m+1) + h(θ

(N)
m+1, θ

(N)
m+2) + h(θ(N)

n , θ
(N)
n+1)

≤ h(θ(N)
m , θ

(N)
m+2) + h(θ(N)

n , s) + h(s, θ
(N)
n+1),

10



where s = 1
2
(θ

(N)
n+1 + θ

(N)
n ). Since h ≥ 0, (3.1) yields

α(∆(N))κ = α(θ
(N)
n+1 − θ(N)

n )κ ≤ h(θ(N)
n , θ

(N)
n+1)

≤ h(θ(N)
m , θ

(N)
m+2) + h(θ(N)

n , s) + h(s, θ
(N)
n+1)

≤ α(θ
(N)
m+2 − θ(N)

m )κ + 2αγκ

≤ 2κ ασκ∗ (δ
(N))κ +

1

2κ−1
α (∆(N))κ,

denoting γ = s− θ
(N)
n = θ

(N)
n+1 − s = 1

2
(θ

(N)
n+1 − θ

(N)
n ) = 1

2
∆(N). Observe that

θ
(N)
m+2 − θ(N)

m = (θ
(N)
m+2 − θ

(N)
m+1) + (θ

(N)
m+1 − θ(N)

m ) ≤ (σ∗ + 1)(θ
(N)
m+1 − θ(N)

m ) ≤ 2σ∗δ
(N)

by Lemma 3.3. Therefore α < (1
2
+ 1

2k
)−1 α yields(1

2
− 1

2k

)
(∆(N))κ ≤

(
α/α− 1

2κ−1

)
(∆(N))κ ≤ 2κ σκ∗ (δ

(N))κ,

and hence the claim. 2

Having at hand Lemma 3.4, the proof of the following result is the same as in [6, Cor. 2.6].

Corollary 3.5 Suppose that the assumptions of Lemma 3.4 are satisfied. If

σ∗∗δ <
A

N
< σ−1

∗∗ ∆,

then for all N ∈ N and −N ≤ n ≤ N − 1,

δ < δ(N) ≤ θ
(N)
n+1 − θ(N)

n ≤ ∆(N) < ∆.

After deriving the needed auxiliary results, the actual proof of Theorem 3.1 can now be copied
verbatim from [6], taking once more A = AN = 1

2
(σ−1

∗∗ ∆+ σ∗∗δ)N in the definition of Σ(N). 2

Remark 3.6 (a) The relevant constants σ∗ and σ∗∗ = 4(2k−1−1)−1/kσ∗ depend only on q = α/α ∈
[1, (1

2
+ 1

2k
)−1[⊂ [1, 2k−1[. Here σ∗ ∈ [1,∞[ is the unique solution to 2κ−1(1+σκ

∗ )
(1+σ∗)κ

= q.

(b) For κ = 2, the hypothesis q < 3
2
from [6] seems to be less restrictive than q < 4

3
, as obtained

in Theorem 3.1. However, it is clear from the proof of Lemma 3.4 that a sharper estimate is
also possible. In applications it is always sufficient to have a result which covers the values of q
sufficiently close to 1.
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3.2 A model of a bouncing ball

As an example for the application of Theorem 3.1 for κ = 3, we consider a ball at the vertical
position x(t) ≥ w(t) which is in free fall (i.e. its motion is governed by the equation ẍ = −g) until
it hits a horizontal plate that is located at w(t). Denoting y = x−w ≥ 0, at an instant τ of impact
the change of velocity ẏ(τ+) = −ẏ(τ−) is assumed to be elastic. We thus analyze the dynamics of
the equation with an obstacle

ÿ(t) = −(g + ẅ(t)), y ≥ 0 everywhere, y(τ) = 0 ⇒ ẏ(τ+) = −ẏ(τ−). (3.2)

Henceforth we suppose that the given function w ∈ C2(R) satisfies ‖w‖L∞(R) + ‖ẇ‖L∞(R) < ∞.
By a solution of (3.2) we understand a function y ∈ C(R) and a sequence (tn)n∈N of impact times
such that

(i) infn∈Z(tn+1 − tn) > 0,

(ii) y(tn) = 0 for n ∈ Z and y(t) > 0 for t ∈]tn, tn+1[, and

(iii) the function y is of class C2 on every interval [tn, tn+1] and satisfies the linear differential
equation on this interval. Moreover, ẏ(t+n ) = −ẏ(t−n ).

A solution will be called bounded, if furthermore

(iv) y, ẏ ∈ L∞(R), and

(v) supn∈Z(tn+1 − tn) <∞

are satisfied.
To get a clue on how to construct bounded solutions, let us start with the Dirichlet problem

ÿ(t) = −(g + ẅ(t)), y(t0) = y(t1) = 0.

It is uniquely solved by the function

y(t; t0, t1) =
g

2
(t1 − t)(t− t0) +

w(t1)− w(t0)

t1 − t0
(t− t0) + w(t0)− w(t). (3.3)

Lemma 3.7 Suppose that

t1 − t0 >
8

g
‖ẇ‖L∞(R) =: δ∗. (3.4)

Then y(t) > 0 for t ∈]t0, t1[.

Proof : If, in general, f ∈ C1([t0, t1]) is such that f(t0) = f(t1) = 0, then

|f(t)| ≤ min{t− t0, t1 − t} ‖ḟ‖L∞([t0, t1])
, t ∈ [t0, t1].

This estimate is applied to f(t) = w(t1)−w(t0)
t1−t0 (t−t0)+w(t0)−w(t), where ‖ḟ‖L∞([t0, t1])

≤ 2‖ẇ‖L∞(R).
If t ∈ [t0, (t0 + t1)/2], thus

y(t) ≥ g

2
(t1 − t)(t− t0)− |f(t)| ≥ (t− t0)

[ g
2
(t1 − t)− 2‖ẇ‖L∞(R)

]
≥ (t− t0)

[ g
4
(t1 − t0)− 2‖ẇ‖L∞(R)

]
.
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The same estimate is obtained for t ∈ [(t0 + t1)/2, t1], which yields the claim. 2

Hence a first attempt to obtain solutions of the obstacle problem (3.2) would be to select
an arbitrary sequence (tn)n∈N such that infn∈Z(tn+1 − tn) > δ∗ and juxtapose the corresponding
solutions y(t; tn, tn+1) of the Dirichlet problems. However, this would not lead to the desired
solution, because we cannot guarantee that the condition of elastic bouncing ẏ(t+n ) = −ẏ(t−n ) will
be satisfied. To overcome this difficulty, we consider the generating function h : R2 → R given by

h(t0, t1) =

∫ t1

t0

L(t, y(t), ẏ(t)) dt,

where

L(t, y, ẏ) =
1

2
ẏ2 − (g + ẅ(t))y

is the Lagrangian associated to the differential equation and y(t) stands for y(t; t0, t1) from (3.3).
Next we observe that h is of class C1 on {(t0, t1) : t0 < t1}. Using integration by parts and the
Euler-Lagrange equation for y on ]t0, t1[, the partial derivative ∂t0h is found to be

∂t0h(t0, t1) = −L(t0, y(t0), ẏ(t+0 )) +
∫ t1

t0

{
(∂yL)(∂t0y) + (∂ẏL)(∂t0 ẏ)

}
dt

= −L(t0, y(t0), ẏ(t+0 )) + (∂ẏL) (∂t0y)
∣∣∣t=t1
t=t0

+

∫ t1

t0

{
(∂yL)−

d

dt
(∂ẏL)

}
(∂t0y) dt

= −1

2
ẏ(t+0 )

2 + ẏ(t−1 ) ∂t0y(t1)− ẏ(t+0 ) ∂t0y(t0).

Differentiating the relations y(t1; t0, t1) = 0 and y(t0; t0, t1) = 0, it follows that ∂t0y(t1) = 0 and
ẏ(t+0 ) + ∂t0y(t0) = 0. Therefore

∂t0h(t0, t1) =
1

2
ẏ(t+0 )

2

is obtained, and in the same way it is shown that

∂t1h(t0, t1) = −1

2
ẏ(t−1 )

2.

Assume now that we could find a sequence (tn)n∈N such that infn∈Z(tn+1 − tn) > δ∗ and

∂t1h(tn−1, tn) + ∂t0h(tn, tn+1) = 0, n ∈ Z. (3.5)

Then we can construct a solution y to the obstacle problem (3.2) by defining

y(t) = y(t; tn, tn+1), t ∈ [tn, tn+1],

since then the previous observations imply that

ẏ(t+n )
2 = ẏ(t−n )

2,

which in our context is equivalent to the condition of elastic bouncing.
Assume moreover that we know in addition that supn∈Z(tn+1 − tn) ≤ ∆ <∞. Then

0 ≤ y(t) ≤ g

8
∆2 + 4 ‖w‖L∞(R), t ∈ R,
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is a consequence of (3.3). Supposing that ẇ ∈ L∞(R), we obtain a similar estimate for the
derivative,

|ẏ(t)| ≤ g

2
∆ + 2 ‖ẇ‖L∞(R), t ∈ R;

it t = tn, then ẏ(t) refers to the one-sided derivatives ẏ(t±n ). The above discussions leads to a
method for proving the existence of a bounded solution to the obstacle problem (3.2). All we have
to do is to find solutions (tn)n∈N of (3.5) satisfying

δ∗ < tn+1 − tn ≤ ∆ for each n ∈ Z.

This is a question that can be treated using Theorem 3.1. First we compute the dominant terms
of the expansion of h in powers of (t1 − t0).

Lemma 3.8 We have

h(t0, t1) = −g
2

24
(t1 − t0)

3 +R(t0, t1),

where
|R(t0, t1)| ≤ C∗(t1 − t0), t1 > t0,

for C∗ = 2g‖w‖L∞(R) + ‖ẇ‖2L∞(R).

Proof : First we note that integrating
∫ t1
t0
dt the relation d

dt
(yẏ) = yÿ + ẏ2 implies that

h(t0, t1) = −1

2

∫ t1

t0

(g + ẅ)y dt.

Then we substitute the explicitly known y from (3.3) in −(g/2)
∫ t1
t0
y dt and integrate by parts

twice in −(1/2)
∫ t1
t0
ẅy dt, thereafter replacing ÿ by −(g+ ẅ). After a lengthy but straightforward

calculation it is found that

h(t0, t1) = −g
2

24
(t1 − t0)

3 − g

2
(w(t1) + w(t0))(t1 − t0) +

(w(t1)− w(t0))
2

2(t1 − t0)

+ g

∫ t1

t0

w(t) dt− 1

2

∫ t1

t0

ẇ(t)2 dt.

This yields the claimed bound on R. 2

Now we can formulate the main result of this section.

Theorem 3.9 Suppose that w ∈ C2(R) is such that ‖w‖L∞(R) + ‖ẇ‖L∞(R) < ∞. Then there are
infinitely many bounded solutions yj of the obstacle problem (3.2) such that the associated sequences

(t
(j)
n )n∈N of impact times satisfy

inf
n∈Z

(t
(j)
n+1 − t(j)n ) → ∞ as j → ∞.
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Proof : We are going to apply Theorem 3.1 for κ = 3 to h̃(t0, t1) = −h(t0, t1). Let α = g2/30 and
α = g2/20. Then α < (8/5)α. Next select the constant σ∗∗ ≥ 1 according to Theorem 3.1 and put

δ∗∗ = δ∗ +
1

g

√
120C∗,

where δ∗ and C∗ are defined in (3.4) and Lemma 3.8, respectively.
Fix sequences (δj) and (∆j) such that δ∗∗ < δj < ∆j < δj+1 and ∆j > σ2

∗∗δj are satisfied
for j ∈ N. We claim that Theorem 3.1 can be used for h̃ : Ωj → R and every j ∈ N, where
Ωj = {(t0, t1) ∈ R2 : δj ≤ t1 − t0 ≤ ∆j}. In fact, if t1 − t0 ≥ δj > δ∗∗, then

|R(t0, t1)| ≤ C∗(t1 − t0) ≤
g2

120
(t1 − t0)

3

by Lemma 3.8 and the definition of δ∗∗. Hence

α(t1 − t0)
3 =

g2

30
(t1 − t0)

3 ≤ g2

24
(t1 − t0)

3 −R(t0, t1) ≤
g2

20
(t1 − t0)

3 = α(t1 − t0)
3

yields (3.1) for h̃. Therefore by Theorem 3.1 for every j ∈ N there is a sequence (t
(j)
n )n∈Z such that

in particular
δj ≤ t

(j)
n+1 − t(j)n ≤ ∆j, j ∈ N, n ∈ Z,

and
∂2h(t

(j)
n−1, t

(j)
n ) + ∂1h(t

(j)
n , t

(j)
n+1) = 0, n ∈ Z,

hold, where ∂1h = ∂t0h and ∂2h = ∂t1h. By the remarks preceding the theorem, this is sufficient
to conclude the proof. 2

4 The remains of the Aubry-Mather theory

The complete and bounded orbits that are constructed in Theorems 2.8 or 3.1 will in general not
admit a rotation number. In this section we will investigate this point in greater detail for the
generalized standard maps

fϕ(θ, r) = (θ1, r1), where θ1 = θ + r and r1 = r + ϕ(θ + r), (4.6)

for a given function ϕ ∈ BUC(R), the space of bounded and uniformly continuous maps from R
to R. This is a homeomorphism of R2 with the inverse

f−1
ϕ (θ1, r1) = (θ, r), where θ = θ1 − r1 + ϕ(θ1) and r = r1 − ϕ(θ1).

Note that if ϕ is a trigonometric polynomial, then fϕ becomes the standard map. The periodicity
of ϕ then allows one to interpret θ as a periodic angle lying in T = R/2πZ and fϕ induces a
homeomorphism of the cylinder T× R.

In [6, Thm. 4.5] we have proved the following

Theorem 4.1 Let φ ∈ C2(R) be such that φ and ϕ = φ′ are bounded. Then fϕ has infinitely many
complete orbits (θjn, r

j
n)n∈Z such that Rj ≤ rjn ≤ Rj+1 for n ∈ Z, where Rj < Rj+1 → ∞ as j → ∞.

Moreover,

Rj ≤ lim inf
|n|→∞

θjn
n

≤ lim sup
|n|→∞

θjn
n

≤ Rj+1.
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We introduce a useful definition that will help to formalize our results.

Definition 4.2 An AM-orbit of fϕ is a complete orbit (θn, rn)n∈Z such that

(a) (θn)n∈Z is strictly increasing (monotonicity),

(b) (rn)n∈Z is bounded, and

(c) the limit lim
|n|→∞

θn
n

does exist (rotation number).

Unlike in the case of Aubry-Mather sets in the theory of twist maps on the cylinder [9,
Thm. 3.3.3], the rotation numbers in (c) will in general not exist. This is made evident by the
next example which is similar to Example 2.5.

Example 4.3 Let φ(θ) = arctan θ and ϕ(θ) = 1
1+θ2

. Take a complete orbit (θn, rn)n∈Z of fϕ such
that (a) and (b) from Definition 4.2 are satisfied. Since ϕ is positive and rn+1 = rn + ϕ(θn + rn),
the finite limits r± = limn→±∞ rn exist and r+ > r−. Thus

lim
n→∞

θn
n

= lim
n→∞

(θ0
n

+
1

n

n−1∑
j=0

rj

)
= r+

and similarly limn→−∞
θn
n
= r−. Hence lim|n|→∞

θn
n

does not exist.

To obtain positive results concerning the existence of AM-orbits for fϕ we will use the Bebutov
flow which is usually employed to associate a dynamical system to a non-autonomous differential
equation; see [12]. We will see below that this concept can also be useful in the study of twist
maps with non-periodic angles.

First we recall some definitions. The space C(R) of continuous functions is endowed with
a distance inducing the topology of uniform convergence on compact sets. Given θ ∈ R and
ϕ ∈ C(R), let

(Tθϕ)(τ) = ϕ(θ + τ), τ ∈ R,

denote the translate of ϕ by θ. The map

T : R× C(R) → C(R), T (θ, ϕ) = Tθϕ,

defines a continuous flow on C(R) which is usually called the Bebutov flow. If ϕ ∈ BUC(R), then
its orbit {Tθϕ : θ ∈ R} ⊂ C(R) is relatively compact. Thus its closure

Hϕ = {Tθϕ : θ ∈ R} (4.7)

in C(R) becomes a compact metric space, the so-called hull of ϕ. For instance, if ϕ(θ) = 1
1+θ2

is
as in Example 4.3, then

Hϕ = {Tθϕ : θ ∈ R} ∪ {0} (4.8)

which is homeomorphic to S1 by means of the map Tθϕ 7→ exp(2i arctan θ), 0 7→ exp(±iπ) =
(−1, 0). The topology of Hϕ can be quite complicated in general, but the advantage is that now
the angle is immersed in a compact space. If ϕ is fixed or clear from the context then we will only
write H instead of Hϕ.
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It turns out that H × R can play a similar role as does T × R in the periodic case. For this
consider F : H× R → H× R defined by

F(ψ, r) = (ψ1, r1), where ψ1 = Trψ and r1 = r + ψ(r);

note that this prescription makes F well-defined by (4.7). It is a homeomorphism with the inverse

F−1(ψ1, r1) = (ψ, r), where ψ = T−r1+ψ1(0)ψ1 and r = r1 − ψ1(0).

Strictly speaking, we should also write Fϕ or FH instead of only F . Then fϕ from (4.6) can be
dynamically immersed inside F . To be precise about the meaning of this statement, introduce
ι : R× R → H× R by

ι(θ, r) = (Tθϕ, r).

Then
F ◦ ι = ι ◦ fϕ

holds and thus Fn ◦ ι = ι ◦ fnϕ . In particular, if (θn, rn)n∈Z is a complete orbit of fϕ, then
(θn, rn) = fnϕ (θ0, r0) and hence

Fn(ι(θ0, r0)) = ι(θn, rn), n ∈ Z.

This means that (ψn, rn) = ι(θn, rn) = (Tθnϕ, rn) is a complete orbit for F .
Although fϕ from Example 4.3 has no AM-obits, there are obviously AM-orbits for fψ with

ψ = 0 ∈ Hϕ; see (4.8). The next result extends this observation.

Theorem 4.4 Let φ ∈ C2(R) be bounded and such that ϕ = φ′ ∈ BUC(R). Then fψ admits an
AM-orbit for some ψ in the hull H of ϕ.

Proof : We adapt ideas taken from the theory of non-autonomous linear differential equations;
see [5]. According to Theorem 4.1 there exists a complete orbit (θn, rn)n∈Z of fϕ such that

0 < R ≤ rn ≤ R <∞, n ∈ Z. (4.9)

According to the remarks preceding this theorem then (ψn, rn)n∈Z = (Tθnϕ, rn)n∈Z is a complete
orbit for F on H× R. Thus it follows from (4.9) that

K = {(Tθnϕ, rn) : n ∈ Z}

is a compact metric space and an F -invariant subset of H× [R,R]. Hence by [11, Prop. 9.5] there
exists at least one F -ergodic probability measure µ on K. Since F : K → K is homeomorphic,
note that µ is also F−1-ergodic. Next consider the projection

π2 : K → R, π2(ψ, r) = r.

Then π2 is continuous and thus µ-integrable. Therefore it follows from the Birkhoff ergodic theorem
[11, Thm. 10.2] that we can choose (ψ∗, ρ∗) ∈ K such that

lim
n→∞

1

n

n−1∑
k=0

π2(Fk(ψ∗, ρ∗)) =

∫
K

π2 dµ = lim
n→∞

1

n

n−1∑
k=0

π2(F−k(ψ∗, ρ∗)).
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If we let (ψk, ρk) = Fk(ψ∗, ρ∗) for k ∈ Z, then (ψk, ρk)k∈Z is a complete orbit for F and

lim
n→∞

1

n

n−1∑
k=0

ρk =

∫
K

π2 dµ = lim
n→∞

1

n

n−1∑
k=0

ρ−k (4.10)

is satisfied. Define

rn = ρn and θn =



n−1∑
k=0

ρk : n ≥ 1

0 : n = 0

−
|n|∑
k=1

ρ−k : n ≤ −1

for n ∈ Z. Then it is straightforward to check that (θn, rn)n∈Z is a complete orbit for fψ∗ . It is also

an AM-orbit, since (a) and (b) from Definition 4.2 are verified due to θn+1− θn = rn = ρn ∈ [R,R]
and the rotation number lim|n|→∞ θn/n =

∫
K
π2 dµ exists by (4.10). 2

Following [4] we say that a function ϕ ∈ BUC(R) is minimal, if the Bebutov flow T on Hϕ

is minimal. Then the orbits {Tθψ : θ ∈ R} ⊂ Hϕ are dense for any ψ ∈ Hϕ. Almost periodic
functions are examples of minimal functions.

Corollary 4.5 Under the assumptions of Theorem 4.4 suppose that furthermore ϕ is minimal.
Then there exists a dense subset D ⊂ Hϕ such that fψ admits an AM-orbit for every ψ ∈ D.

Proof : Let ψ∗ be as constructed in Theorem 4.4 and denote (θn, rn)n∈Z an AM-orbit of fψ∗ .
If θ ∈ R, then (θn − θ, rn)n∈Z is an AM-orbit of fTθψ∗ . Since ϕ is minimal we can thus take
D = {Tθψ∗ : θ ∈ R} to be the orbit of ψ∗. 2

To illustrate the previous result we include an example.

Corollary 4.6 Consider the quasi-periodic standard map

θ1 = θ + r, r1 = r + 2 sin(ω1θ + φ1) + 2 sin(ω2θ + φ2), (4.11)

where ω1, ω2 > 0 are fixed and not commensurable (ω1/ω2 6∈ Q); furthermore, φ1, φ2 ∈ [0, 2π] are
viewed as parameters. There exists a dense subset D ⊂ [0, 2π] × [0, 2π] such that if (φ1, φ2) ∈ D,
then (4.11) has an AM-orbit.

Proof : To apply Corollary 4.5 take φ(θ) = −(2/ω1) cos(ω1θ)−(2/ω2) cos(ω2θ) and ϕ(θ) = φ′(θ) =
2 sin(ω1θ) + 2 sin(ω2θ). Then ϕ is quasi-periodic, hence almost periodic, and thus minimal. Note
that Hϕ is homeomorphic to a torus T2 = (R/2πZ)× (R/2πZ) via the map T2 3 (φ1, φ2) 7→ ϕ∗ ∈
Hϕ, where ϕ

∗(θ) = 2 sin(ω1θ + φ1) + 2 sin(ω2θ + φ2). Therefore the claim follows from Corollary
4.5. 2
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