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Abstract

We prove the existence of static, asymptotically flat non-vacuum
spacetimes with axial symmetry where the matter is modeled as a colli-
sionless gas. The axially symmetric solutions of the resulting Einstein-
Vlasov system are obtained via the implicit function theorem by per-
turbing off a suitable spherically symmetric steady state of the Vlasov-
Poisson system.
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1 Introduction

The aim of the present investigation is to prove the existence of static,
asymptotically flat, and axially symmetric solutions of the Einstein-Vlasov
system. This system describes, in the context of general relativity, the evo-
lution of an ensemble of particles which interact only via gravity. Examples
from astrophysics of such ensembles include galaxies or globular clusters
where the stars play the role of the particles and where collisions among
these particles are usually sufficiently rare to be neglected. The particle
distribution is given by a density function f on the tangent bundle TM of
the spacetime manifold M . We assume that all particles have the same rest
mass which is normalized to unity. Hence the particle distribution function
is supported on the mass shell

PM = {gαβp
αpβ = −c2 and pα is future pointing} ⊂ TM.

Here gαβ denotes the Lorentz metric on the spacetime M and if xα are
coordinates on M , then pα denote the corresponding canonical momentum
coordinates; Greek indices always run from 0 to 3, and we have a specific
reason for making the dependence on the speed of light c explicit. We assume
that the coordinates are chosen such that

ds2 = c2g00dt
2 + gabdx

adxb

where Latin indices run from 1 to 3 and t = x0 should be thought of as a
timelike coordinate. On the mass shell p0 can be expressed by the remaining
coordinates,

p0 =
√

−g00
√

1 + c−2gabpapb,

and f = f(t, xa, pb) ≥ 0. The Einstein-Vlasov system now consists of the
Einstein field equations

Gαβ = 8πc−4Tαβ (1.1)

coupled to the Vlasov equation

p0∂tf + pa∂xaf − Γa
βγp

βpγ∂paf = 0 (1.2)

via the following definition of the energy momentum tensor:

Tαβ = c|g|1/2

∫

pαpβf
dp1dp2dp3

−p0
. (1.3)

Here |g| denotes the modulus of the determinant of the metric, and Γα
βγ are

the Christoffel symbols induced by the metric. We note that the character-
istic system of the Vlasov equation (1.2) are the geodesic equations written
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as a first order system on the mass shell PM which is invariant under the
geodesic flow. For more background on the Einstein-Vlasov equation we
refer to [3].

In [15, 17, 18] the existence of a broad variety of static, asymptotically
flat solutions of this system has been established, all of which share the
restriction that they are spherically symmetric. The purpose of the present
investigation is to remove this restriction and prove the existence of static,
asymptotically flat solutions to the Einstein-Vlasov system which are axially
symmetric but not spherically symmetric. From the applications point of
view this symmetry assumption is more “realistic” than spherical symmetry,
and from the mathematics point of view the complexity of the Einstein field
equations increases drastically if one gives up spherical symmetry.

We use usual axial coordinates t ∈ R, ρ ∈ [0,∞[, z ∈ R, ϕ ∈ [0, 2π] and
write the metric in the form

ds2 = −c2e2ν/c2dt2 + e2µdρ2 + e2µdz2 + ρ2B2e−2ν/c2dϕ2 (1.4)

for functions ν,B, µ depending on ρ and z. The reason for writing ν/c2

instead of ν is so that below ν converges to the Newtonian potential UN in
the limit c → ∞. The metric is to be asymptotically flat in the sense that
the boundary values

lim
|(ρ,z)|→∞

ν(ρ, z) = lim
|(ρ,z)|→∞

µ(ρ, z) = 0, lim
|(ρ,z)|→∞

B(ρ, z) = 1 (1.5)

are attained at spatial infinity with certain rates which are specified later.
In addition we need to require the condition that the metric is locally flat
at the axis of symmetry, i.e.,

ν(0, z)/c2 + µ(0, z) = lnB(0, z), z ∈ R. (1.6)

We refer to [4] for more information on axially symmetric spacetimes and
state our main result.

Theorem 1.1 There exist static solutions of the Einstein-Vlasov system
(1.1), (1.2), (1.3) with c = 1 such that the metric is of the form (1.4) and
satisfies the boundary conditions (1.5), (1.6), and the spacetime is axially
symmetric, but not spherically symmetric.

It should be pointed out that the above form of the metric excludes solutions
with non-zero total angular momentum. Since the corresponding general-
ization induces qualitatively new, additional difficulties it is postponed to a
later investigation.
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The strategy of the proof of this result is as follows. Due to the symme-
tries of the metric the following quantities are constant along geodesics:

E := −g(∂/∂t, pα) = c2e2ν/c2p0

= c2eν/c2
√

1 + c−2
(

e2µ(p1)2 + e2µ(p2)2 + ρ2B2e−2ν/c2(p3)2
)

, (1.7)

L := g(∂/∂ϕ, pα) = ρ2B2e−2ν/c2p3; (1.8)

E can be thought of as a local or particle energy and L is the angular
momentum of a particle with respect to the axis of symmetry. Since up to
regularity issues a distribution function f satisfies the Vlasov equation if
and only if it is constant along geodesics, any distribution function f which
depends only on E and L satisfies the Vlasov equation with a metric of the
above form. Hence we make the ansatz

f(xa, pb) = φ(E,L), (1.9)

and the Vlasov equation (1.2) holds. Upon insertion of this ansatz into the
definition (1.3) of the energy momentum tensor the latter becomes a func-
tional Tαβ = Tαβ(ν,B, µ) of the yet unknown metric functions ν,B, µ, and
we are left with the problem of solving the field Einstein equations (1.1) with
this right hand side. We obtain solutions by perturbing off spherically sym-
metric steady states of the Vlasov-Poisson system via the implicit function
theorem; the latter system arises as the Newtonian limit of the Einstein-
Vlasov system. Our main result specifies conditions on the ansatz function
φ above such that a two parameter family of axially symmetric solutions
of the Einstein-Vlasov system passes through the corresponding spherically
symmetric, Newtonian steady state. The parameter γ = 1/c2 turns on gen-
eral relativity and the second parameter λ turns on the dependence on L
and hence axial symmetry; notice that L is not invariant under arbitrary
rotations about the origin, so if f actually depends on L the solution is not
spherically symmetric. The scaling symmetry of the Einstein-Vlasov system
can then be used to obtain the desired solutions for the physically correct
value of c.

The detailed formulation of our result is stated in the next section to-
gether with the basic set up of its proof. The remaining sections of the
paper are then devoted to establishing the various features of the basic set
up which are needed to apply the implicit function theorem, and to prove
various properties of the solutions we obtain.

We conclude this introduction with some further references to the litera-
ture. The idea of using the implicit function theorem to obtain equilibrium
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configurations of self-gravitating matter distributions from already known
solutions can be traced back to L. Lichtenstein who argued the exis-
tence of axially symmetric, stationary, self-gravitating fluid balls in this way
[11, 12]. His arguments were put into a rigorous and modern framework in
[8]. The analogous approach was used in [16] to obtain axially symmetric
steady states of the Vlasov-Poisson system, see also [19]. The approach has
also been used to construct axially symmetric stationary solutions of the
Einstein equations coupled to a matter model: In [9] matter was described
as an ideal fluid whereas in [1, 2] is was described as a static or a rotating
elastic body respectively. Besides the different matter model our investiga-
tion differs from the latter two in that we employ the rather explicit form of
the metric stated above and a reduced version of the Einstein field equations
which closely follows [4].

2 Set up of the proof

In what follows we also use the Cartesian coordinates

(x1, x2, x3) = (ρ cosϕ, ρ sinϕ, z) ∈ R
3

which correspond to the axial coordinates ρ ∈ [0,∞[, z ∈ R, ϕ ∈ [0, 2π]; it
should be noted that tensor indices always refer to the spacetime coordinates
t, ρ, z, ϕ. By abuse of notation we write ν(ρ, z) = ν(x) etc. In Section 3 we
collect the relevant information on the relation between regularity properties
of axially symmetric functions expressed in the variables x ∈ R

3 or ρ ∈
[0,∞[, z ∈ R, respectively.

We introduce two (small) parameters γ = 1/c2 ∈ [0,∞[ and λ ∈ R. In
order to obtain the correct Newtonian limit below we adjust the ansatz for
f as follows. Let

v1 = eµp1, v2 = eµp2, v3 = ρBe−γνp3,

so that
p0 = e−γν

√

1 + γ|v|2.
For the particle distribution function we make the ansatz

f(x, v) = φ (E − 1/γ)ψ(λL). (2.1)

The important point here is that

E − 1/γ =
eγν(x)

√

1 + γ|v|2 − 1

γ
→ 1

2
|v|2 + ν(x) as γ → 0, (2.2)
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i.e., the limit is the non-relativistic energy of a particle with phase space
coordinates (x, v) in case ν = UN is the Newtonian gravitational potential.
For γ = 0 this limit is to replace the argument of φ in (2.1). We now specify
the conditions on the functions φ and ψ.

Conditions on φ and ψ.

(φ1) φ ∈ C2(R) and there exists E0 > 0 such that φ(η) = 0 for η ≥ E0 and
φ(η) > 0 for η < E0.

(φ2) The ansatz f(x, v) = φ
(

1
2 |v|2 + U(x)

)

leads to a compactly supported
steady state of the Vlasov-Poisson system, i.e., there exists a solution
U = UN ∈ C2(R3) of the semilinear Poisson equation

∆U = 4πρN = 4π

∫

φ

(

1

2
|v|2 + U

)

dv, U(0) = 0,

UN (x) = UN (|x|) is spherically symmetric, and the support of ρN ∈
C2(R3) is the closed ball BRN

(0) where UN (RN ) = E0 and UN (r) < E0

for 0 ≤ r < RN , UN (r) > E0 for r > RN .

(φ3) 6 + 4πr2aN (r) > 0, r ∈ [0,∞[,
where

aN (r) :=

∫

R3

φ′
(1

2
|v|2 + UN (r)

)

dv.

(ψ) ψ ∈ C∞(R) is even with ψ(L) = 1 iff L = 0, and ψ ≥ 0.

For such a steady state

lim
|x|→∞

UN (x) = UN (∞) > E0.

The normalization condition UN (0) = 0 instead of UN (∞) = 0 is unconven-
tional from the physics point of view, but it has technical advantages below.
Examples for ansatz functions φ which satisfy (φ1) and (φ2) are found in
[5, 18], the most well-known ones being the polytropes

φ(E) := (E0 − E)k+ (2.3)

for 2 < k < 7/2; here E0 > 0 and (·)+ denotes the positive part. In Section 7
we show that for this class of ansatz functions also (φ3) holds. Numerical
checks indicate that (φ3) holds for general isotropic steady states of the
Vlasov-Poisson system.

We can now give a more detailed formulation of our result.
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Theorem 2.1 There exists δ > 0 and a two parameter family

(νγ,λ, Bγ,λ, µγ,λ)(γ,λ)∈[0,δ[×]−δ,δ[ ⊂ C2(R3)3

with the following properties:

(i) (ν0,0, B0,0, µ0,0) = (UN , 1, 0) where UN is the potential of the Newto-
nian steady state specified in (φ2).

(ii) If for γ > 0 a distribution function is defined by Eqn. (2.1) and a
Lorentz metric by (1.4) with c = 1/

√
γ then this defines a solution

of the Einstein-Vlasov system (1.1), (1.2), (1.3) which satisfies the
boundary condition (1.6) and is asymptotically flat. For λ 6= 0 this
solution is not spherically symmetric.

(iii) If for γ = 0 a distribution function is defined by Eqn. (2.1), observing
(2.2), this yields a steady state of the Vlasov-Poisson system with grav-
itational potential ν0,λ which is not spherically symmetric for λ 6= 0.

(iv) In all cases the matter distribution is compactly supported both in phase
space and in space.

Remark.

(a) The smallness restriction to γ = 1/c2 is undesired because c is, in a
given set of units, a definite number. However, if (f, ν,B, µ) is a static
solution for some choice of c ∈]0,∞[ then the rescaling

f̃(ρ, z, p1, p2, p3) = c−3f(cρ, cz, cp1, cp2, p3),

ν̃(ρ, z) = c−2ν(cρ, cz),

B̃(ρ, z) = B(cρ, cz),

µ̃(ρ, z) = µ(cρ, cz)

yields a solution of the Einstein-Vlasov system with c = 1. The factor
c2 in the metric (1.4) is removed by a rescaling of time.

(b) The smallness restriction to λ means that the solutions obtained are
close to being spherically symmetric.

(c) The metric does not satisfy the boundary conditions (1.5), but

lim
|(ρ,z)|→∞

ν(ρ, z) = ν∞, lim
|(ρ,z)|→∞

µ(ρ, z) = −ν∞/c2, lim
|(ρ,z)|→∞

B(ρ, z) = 1.

(2.4)
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However, if we by abuse of notation redefine ν = ν − ν∞ and µ =
µ+ ν∞/c

2 then the original condition (1.5) is restored and the metric
(1.4) takes the form

ds2 = −c2e2ν/c2c21dt
2 + c22

(

e2µdρ2 + e2µdz2 + ρ2B2e−2ν/c2dϕ2
)

(2.5)

with constants c1, c2 > 0 which simply amounts to a choice of different
units of time and space. By general covariance of the Einstein-Vlasov
system (1.1), (1.2), (1.3) the equations still hold.

(d) In view of [16] part (iii) of the theorem does not give new information
on steady states of the Vlasov-Poisson system and is stated mainly in
order to understand the obtained two parameter family of states as a
whole. However, we note that for the Newtonian set-up in [16] axially
symmetric steady states were obtained as deformations of a spherically
symmetric one. The present approach differs considerably from this
and in principle is more direct.

(e) In the course of the proof of the theorem additional regularity prop-
erties and specific rates at which the boundary values at infinity are
approached will emerge.

In the rest of this section we transform the problem of finding the desired
solutions into the problem of finding zeros of a suitably defined operator.
The Newtonian steady state specified in (φ2) will be a zero of this operator
for γ = λ = 0, and the implicit function theorem will yield our result.
In order that the overall course of the argument becomes clear we will go
through its various steps, postponing the corresponding detailed proofs to
later sections.

The Einstein field equations are overdetermined, and we need to identify
a suitable subset of (combinations of) these equations which, on the one
hand, suffice to determine ν,B, µ, and which are such that at the end of
the day all the field equations hold once this reduced system is solved. We
introduce the auxiliary metric function

ξ = γν + µ.

Let ∆ and ∇ denote the Cartesian Laplace and gradient operator respec-
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tively. Taking suitable combinations of the field equations one finds that

∆ν +
∇B
B

· ∇ν = 4πγ

[

γe(2ξ−4γν)T00 + T11 + T22 +
1

ρ2B2
e2ξT33

]

, (2.6)

∆B +
∇ρ
ρ

· ∇B = 8πγ2B (T11 + T22) , (2.7)

(

1 + ρ
∂ρB

B

)

∂ρξ − ρ
∂zB

B
∂zξ

=
1

2ρB
∂ρ(ρ

2∂ρB) − ρ

2B
∂zzB + γ2ρ

(

(∂ρν)
2 − (∂zν)

2
)

, (2.8)

(

1 + ρ
∂ρB

B

)

∂zξ + ρ
∂zB

B
∂ρξ =

∂ρ(ρ∂zB)

B
+ 2γ2ρ ∂ρν∂zν. (2.9)

The last two equations arise from ρ (G11 − G22) = 0 and ρG12 = 0 re-
spectively; note that due to (2.1), T11 = T22 and T12 = 0. Because of the
asymptotic behavior of B and the structure of the left hand side of (2.7) we
write

B = 1 + h/ρ.

Next, we observe that by taking suitable combinations of (2.8) and (2.9)
we obtain equations which contain only ∂ρξ or ∂zξ respectively, and we
chose the former. In the above equations the terms Tαβ are functions of the
unknown quantities ν, h, ξ = γν + µ for which we therefore have obtained
the following reduced system of equations:

∆ν = 4π (Φ00 + γΦ11 + γΦ33) (ν,B, ξ, ρ; γ, λ) − 1

B
∇(h/ρ) · ∇ν, (2.10)

∂ρρh+ ∂zzh = 8πγ2ρBΦ11(ν,B, ξ, ρ; γ, λ), (2.11)

(

(1 + ∂ρh)
2 + (∂zh)

2
)

∂ρξ = ∂zh
(

∂zρh+ 2γ2(ρ+ h)∂ρν∂zν
)

+ (1 + ∂ρh)

(

1

2
(∂ρρh− ∂zzh) + γ2(ρ+ h)

(

(∂ρν)
2 − (∂zν)

2
)

)

. (2.12)

We supplement this with the boundary condition (1.6) which in terms of the
new unknowns and since necessarily h(0, z) = 0, reads

ξ(0, z) = ln (1 + ∂ρh(0, z)) . (2.13)

It remains to determine precisely the dependence of the functions Φαβ on the
unknown quantities ν, h, ξ. Since the ansatz (2.1) is even in the momentum
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variables p1, p2, p3—the fact that ψ is even is needed here—, all the off-
diagonal elements of the energy-momentum tensor vanish. The computation
of its non-trivial components uses the new integration variables

η =
eγν
√

1 + γ|v|2 − 1

γ
, s = v3,

the abbreviation

m(η,B, ν, γ) = Be−γν

√

e−2γν(1 + γη)2 − 1

γ
,

and yields

Φ00(ν,B, ξ, ρ; γ, λ) = γ2e(2ξ−4γν)T00 (2.14)

=
4π

B
e(2ξ−4γν)

∫ ∞

(eγν−1)/γ
φ(η)(1 + γη)2

∫ m(η,B,ν,γ)

0
ψ(λρs) ds dη,

Φ11(ν,B, ξ, ρ; γ, λ) = T11 + T22 (2.15)

=
4π

B3
e2ξ

∫ ∞

(eγν−1)/γ
φ(η)

∫ m(η,B,ν,γ)

0
ψ(λρs)(m2(η,B, ν, γ) − s2) ds dη,

Φ33(ν,B, ξ, ρ; γ, λ) =
e2ξ

ρ2B2
T33 (2.16)

=
4π

B3
e2ξ

∫ ∞

(eγν−1)/γ
φ(η)

∫ m(η,B,ν,γ)

0
ψ(λρs) s2ds dη;

we recall that T11 = T22. The reason for keeping B as argument on the right
hand sides above is that the matter terms are differentiable in this variable,
but taking a derivative with respect to h would yield an irritating factor
1/ρ. For elements of the function space chosen below h/ρ extends smoothly
to the axis of symmetry ρ = 0.

We now define the function spaces in which we will obtain the solutions
of the system (2.10), (2.11), (2.12). As noted above we write, by abuse
of notation, axially symmetric functions as functions of x ∈ R

3 or of ρ ≥
0, z ∈ R; regularity properties of axially symmetric functions are considered
in Section 3. We fix 0 < α < 1/2 and 0 < β < 1, and consider the Banach
spaces

X1 :=
{

ν ∈ C3,α(R3) | ν(x) = ν(ρ, z) = ν(ρ,−z) and ‖ν‖X1
<∞

}

,

X2 :=
{

h ∈ C4,α(R2) | h(ρ, z) = −h(−ρ, z) = h(ρ,−z) and ‖h‖X2
<∞

}

,

X3 :=
{

ξ ∈ C2,α(ZR) | ξ(x) = ξ(ρ, z) = ξ(ρ,−z) and ‖ξ‖X3
<∞

}

,
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where
ZR := {x ∈ R

3 | ρ < R}
is the cylinder of radius R > 0, the latter being defined in (2.17) below. The
norms are defined by

‖ν‖X1
:= ‖ν‖C3,α(R3) + ‖(1 + |x|)1+β∇ν‖∞,

‖h‖X2
:= ‖h‖C4,α(R2) + ‖(1 + |(ρ, z)|)2∇(h/ρ)‖∞,

‖ξ‖X3
:= ‖ξ‖C2,α(ZR),

and

X := X1 ×X2 ×X3, ‖(ν, h, ξ)‖X := ‖ν‖X1
+ ‖h‖X2

+ ‖ξ‖X3
.

Here ‖ · ‖∞ denotes the L∞-norm, functions in Ck,α(Rn) have by definition
continuous derivatives up to order k and all the highest order derivatives
are Hölder continuous with exponent α,

‖g‖Ck,α(Rn) :=
∑

|σ|≤k

‖Dσg‖∞ +
∑

|σ|=k

sup
x,y∈Rn,x 6=y

|Dσg(x) −Dσg(y)|
|x− y|α .

and Dσ denotes the derivative corresponding to a multi-index σ ∈ N
n
0 . We

note that if h ∈ X2 then B = 1 + h/ρ ∈ C3(R3), cf. Lemma 3.2. Moreover,
it will be straightforward to extend ξ to R

3 once a solution is obtained in
the above space.

Now we recall the properties of the Newtonian steady state specified in
(φ2). That condition implies that there exists R > RN > 0 such that

UN (r) > (E0 + UN (∞))/2, r > R. (2.17)

If
||ν − UN ||∞ < |E0 − UN (∞)|/4 and 0 ≤ γ < γ0,

with γ0 > 0 sufficiently small, depending on E0 and UN , then

eγν(x) − 1

γ
> E0 for all |x| > R.

This implies that there exists some δ > 0 such that for all (ν, h, ξ; γ, λ) ∈ U
the matter terms resulting from (2.14)–(2.16) are compactly supported in
BR(0), where

U := {(ν, h, ξ; γ, λ) ∈ X × [0, δ[×] − δ, δ[ | ‖(ν, h, ξ) − (UN , 0, 0)‖X < δ}.
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In addition we require that δ > 0 is sufficiently small so that for all elements
in U it holds that B = 1+h/ρ > 1/2, and the factor in front of ∂ρξ in (2.12) is
larger than 1/2; since h vanishes on the axis of symmetry, h/ρ is controlled by
∇h. Now let an element (ν, h, ξ; γ, λ) ∈ U be given and substitute it into the
matter terms defined in (2.14)–(2.16). With the right hand sides obtained
in this way the equations (2.10)–(2.12) can then be solved, observing the
boundary condition (2.13) and the fact that we require h to vanish on the
axis of symmetry. We define the corresponding solution operators by

G1(ν, h, ξ; γ, λ)(x) := −
∫

R3

(

1

|x− y| −
1

|y|

)

M1(y) dy

+
1

4π

∫

R3

∇(h/ρ)(y) · ∇ν(y)
B(y)

dy

|x− y| ,

G2(ν, h, ξ; γ, λ)(x) := 4

∫

R2

ln |(ρ− ρ̃, z − z̃)| ρ̃M2(ρ̃, z̃) dρ̃ dz̃,

G3(ν, h, ξ; γ, λ)(x) := ln (1 + ∂ρh(0, z)) +

∫ ρ

0
g(s, z) ds, 0 ≤ ρ < R.

Here

M1(x) := (Φ00 + γΦ11 + γΦ33)(ν(x), B(x), ξ(x), ρ, ; γ, λ),

M2(ρ, z) := γ2B(x)Φ11(ν(x), B(x), ξ(x), ρ; γ, λ),

M2(ρ, z) = M2(−ρ, z) for ρ < 0 and z ∈ R, and

g :=
(

(1 + ∂ρh)
2 + (∂zh)

2
)−1

[

∂zh
(

∂zρh+ 2γ2(ρ+ h)∂ρν∂zν
)

+ (1 + ∂ρh)

(

1

2
(∂ρρh− ∂zzh) + γ2(ρ+ h)

(

(∂ρν)
2 − (∂zν)

2
)

)

]

. (2.18)

Finally we define the mapping to which we are going to apply the implicit
function theorem as

F : U → X , (ν, h, ξ; γ, λ) 7→ (ν, h, ξ) − (G1, G2, G3)(ν, h, ξ; γ, λ).

The proof of Theorem 2.1 now proceeds in a number of steps.
Step 1.
As a first step we need to check that the mapping F is well defined, in
particular it preserves the various regularity and decay assumptions. This
is done in Section 4.
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Step 2.
The next step is to see that

F(UN , 0, 0; 0, 0) = 0.

This is due to the fact that for γ = λ = 0 the choice h = ξ = 0 trivially
satisfies (2.11), (2.12), while (2.10) reduces to

∆ν = 4πΦ00(ν, 1, 0; 0, 0)

with

Φ00(ν, 1, 0; 0, 0) = 4π

∫ ∞

ν
φ(η)

√

2(η − ν) dη =

∫

R3

φ

(

1

2
|v|2 + ν

)

dv;

notice that h = 0 implies that B = 1. By (φ2), ν = UN is a solution of
this equation, and the fact that UN ∈ X1 is part of what was shown in the
previous step.
Step 3.
Next we show that F is continuous, and continuously Fréchet differentiable
with respect to (ν, h, ξ). The fairly technical but straightforward details are
covered in Section 5.
Step 4.
The crucial step is to see that the Fréchet derivative

L := DF(UN , 0, 0; 0, 0) : X → X

is one-to-one and onto. Indeed,

L(δν, δh, δξ) = (δν − L1(δν) − L2(δh), δh, δξ − L3(δh))

where

L1(δν)(x) := −
∫

R3

(

1

|x− y| −
1

|y|

)

aN (y)δν(y) dy,

L2(δh)(x) :=
1

4π

∫

R3

∇(δh/ρ)(y) · ∇UN (y)
dy

|x− y| ,

L3(δh)(x) := ∂ρδh(0, z) +
1

2

∫ ρ

0
(∂ρρδh − ∂zzδh)(s, z) ds, 0 ≤ ρ < R,

with aN as defined in (φ3). To see that L is one-to-one let L(δν, δh, δξ) = 0.
Then the second component of this identity implies that δh = 0, and hence
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also δξ = 0 by the third component. It therefore remains to show that
δν = 0 is the only solution of the equation δν = L1(δν), i.e., of the equation

∆δν = 4πaNδν, δν(0) = 0 (2.19)

in the space X1. Under the assumption on aN stated in (φ3) this is correct
and shown in Section 6. It is at this point that our unconventional normal-
ization condition in (φ2) together with the shift in the solution operator G1

become important; notice that L1(δν)(0) = 0.
To see that L is onto let (g1, g2, g3) ∈ X be given. We need to show

that there exists (δν, δh, δξ) ∈ X such that L(δν, δh, δξ) = (g1, g2, g3). The
second component of this equation simply says that δh = g2. Now δh ∈ X2

implies that L3(δh) ∈ X3, cf. Lemma 3.1 (b). Hence we set δξ = g3 +L3(δh)
to satisfy the third component of the onto equation, and it remains to show
that the equation

δν − L1(δν) = g1 + L2(δh) (2.20)

has a solution δν ∈ X1. Firstly, L2(δh) ∈ X1. The assertion therefore follows
from the fact that L1 : X1 → X1 is compact, as is shown in Lemma 6.2.

We are now ready to apply the implicit function theorem, cf. [7,
Thm. 15.1], to the mapping F : U → X ; strictly speaking we should suitably
extend F to γ < 0, but this is not essential. We obtain the following result.

Theorem 2.2 There exists δ1, δ2 ∈]0, δ[ and a unique, continuous solution
map

S : [0, δ1[×] − δ1, δ1[→ Bδ2(UN , 0, 0) ⊂ X
such that S(0, 0) = (UN , 0, 0) and

F(S(γ, λ); γ, λ) = 0 for all (γ, λ) ∈ [0, δ1[×] − δ1, δ1[.

The definition of F implies that for any (γ, λ) the functions (ν, h, ξ) =
S(γ, λ) are a solution of the equations (2.10)–(2.12), and if f is defined by
(2.1) then the equations (2.6), (2.7), (2.12) hold with the induced energy
momentum tensor. We can extend ξ to the whole space using the solution
operator G3 for all x ∈ R

3. Also, the boundary condition (1.6) on the axis
of symmetry is satisfied:

ξ(0, z) = G3(ν, h, ξ)(0, z) = ln(1 + ∂ρh(0, z)) = lnB(0, z);

recall that ξ = γν + µ. For γ = 0 we conclude first that h = 0, cf. (2.11) or
the G2-part of the solution operator respectively, then the G3-part implies
that ξ = 0 so that the solution reduces to (ν, 0, 0) where ν solves

∆ν = 4πΦ00(ν, 1, 0, ρ; 0, λ).

14



Since

Φ00(ν, 1, 0, ρ; 0, λ) = 4π

∫ ∞

ν
φ(η)

∫

√
2(η−ν)

0
ψ(λρs) ds dη

coincides with the spatial density induced by the ansatz (2.1) for the New-
tonian case, cf. [16, Lemma 2.1], part (iii) of Theorem 2.1 is established.
If λ 6= 0 then condition (ψ) implies that f really depends on the angular
momentum variable L which is not invariant under all rotations about the
origin, but only invariant under rotations about the axis ρ = 0. Moreover,
if the metric were spherically symmetric then the explicit dependence of the
quantities Φjj on ρ would imply that the induced energy momentum tensor
would not be spherically symmetric which is a contradiction. Hence the
obtained solutions are not spherically symmetric if λ 6= 0. To complete the
proof of Theorem 2.1 we must show that indeed all the field equations are
satisfied by the obtained metric (1.4). The corresponding argument relies on
the Bianchi identity ∇αG

αβ = 0 which holds for the Einstein tensor induced
by any (sufficiently regular) metric, and on the identity ∇αT

αβ = 0 which is
a direct consequence of the Vlasov equation (1.2); ∇α denotes the covariant
derivative corresponding to the metric (1.4). The details are carried out in
Section 8.

Finally we collect the additional information on the solution which we
obtain in the course of the proof.

Proposition 2.3 Let (ν, h, ξ) = S(γ, λ) be any of the solutions obtained in
Theorem 2.2 and define µ := ξ − ν/c2 and B = 1 + h/ρ. Then the limit
ν∞ := lim|x|→∞ ν(x) exists, and for any σ ∈ N

3
0 with |σ| ≤ 1 and x ∈ R

3 the
following estimates hold:

|Dσ(ν(x) − ν∞)| ≤ C(1 + |x|)−(1+|σ|),

|Dσ(B − 1)(x)| ≤ C(1 + |x|)−(2+|σ|),

|Dσξ(x)| ≤ C(1 + |x|)−(2+|σ|).

In particular, the spacetime equipped with the metric (1.4) is asymptotically
flat in the sense that (2.4) and, after a trivial change of coordinates, also
(1.5) holds.

Proof. By definition of G1, lim|x|→∞ ν(x) =
∫ M1(y)

|y| dy. The first two
estimates are established in Lemma 4.2. As to the third one we observe that
by the boundary condition (2.13) and Lemma 4.2,

|ξ(0, z)| ≤ C|∂ρh(0, z)| ≤
C

(1 + |z|)2 .
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By (2.12) and the known asymptotic behavior of the coefficients in that
equation which are given in terms of ν and h and their derivatives,

|∂ρξ(ρ, z)| ≤
C

1 + ρ3 + |z|3 ,

cf. Lemma 4.2. Hence

|ξ(ρ, z)| ≤ |ξ(0, z)| +
∫ ρ

0
|∂ρξ(s, z)| ds

≤ C

1 + |z|2 + C

∫ ∞

0

ds

1 + s3 + |z|3 ≤ C

1 + |z|2

which is the desired estimate for ξ(ρ, z), provided ρ < |z|. Since we already
know that the metric under consideration satisfies the full set of the Einstein
equations we can now use (2.8) and (2.9) to see that also ∂zξ is given in terms
of ν and h and their derivatives and satisfies the same decay estimate as ∂ρξ.
Starting from

|ξ(ρ, z)| ≤ |ξ(ρ, ρ)| +
∫ ρ

z
|∂zξ(ρ, s)| ds,

we can use the decay of ∂zξ to obtain the decay estimate for ξ(ρ, z) for
ρ ≥ z ≥ 0 (or ρ ≥ −z ≥ 0), and the proof is complete. 2

3 Regularity of axially symmetric functions

We call a function f : R
3 → R axially symmetric if there exists a function

f̃ : [0,∞[×R → R such that

f(x) = f̃(ρ, z), where ρ =
√

x1
1 + x2

2 and z = x3 for x ∈ R
3.

In this section we collect some results on the relation between the regularity
properties of f and those of f̃ .

Lemma 3.1 Let f : R
3 → R be axially symmetric and f(x) = f̃(ρ, z) where

f̃ : [0,∞[×R → R. Let k ∈ {1, 2, 3} and α ∈]0, 1[.

(a) f ∈ Ck(R3) iff f̃ ∈ Ck([0,∞[×R) and all derivatives of f̃ of order up
to k which are of odd order in ρ vanish for ρ = 0.

(b) f is Hölder continuous with exponent α ∈]0, 1[ iff f̃ is.
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Proof. As to part (a) let f ∈ Ck(R3) be axially symmetric. Then f is even
in x1 and x2 and f̃(ρ, z) = f(ρ, 0, z). This proves the “only-if” part. For
the “if” part one checks that the corresponding derivatives of f , which exist
for ρ 6= 0, extend continuously to ρ = 0. As to part (b) one only needs to
observe that x 7→ ρ(x) =

√

x2
1 + x2

2 is Lipschitz, since |∇ρ(x)| = 1. 2

At several places in our analysis it is convenient to extend functions of
(ρ, z) to negative values of ρ.

Lemma 3.2 Let h = h(ρ, z) ∈ C4(R2) be odd in ρ and define

b(ρ, z) :=

{

h(ρ, z)/ρ , ρ 6= 0,
∂ρh(0, z) , ρ = 0.

Then b ∈ C3(R2) and all derivatives of b up to order 3 which are of odd
order in ρ vanish for ρ = 0. By abuse of notation, b ∈ C3(R3).

Proof. The regularity of b only needs to be checked at ρ = 0. Since h is
odd in ρ it follows that h(0, z) = ∂ρρh(0, z) = 0 for z ∈ R. Hence as ρ→ 0,

b(ρ, z) =
1

ρ
(h(ρ, z) − h(0, z)) → ∂ρh(0, z),

and by Taylor expansion,

∂ρb(ρ, z) =
1

ρ
∂ρh(ρ, z) −

1

ρ2
h(ρ, z)

=
1

ρ
(∂ρh(0, z) + ∂ρρh(τ, z)ρ)

− 1

ρ2

(

h(0, z) + ∂ρh(0, z)ρ +
1

2
∂ρρh(σ, z)ρ

2

)

= ∂ρρh(τ, z) −
1

2
∂ρρh(σ, z) (3.1)

→ 1

2
∂ρρh(0, z) = 0

where σ, τ are between 0 and ρ. All other derivatives can be treated in a
similar fashion, where one should observe that ∂zh(0, z) = 0. The regularity
with respect to x then follows by Lemma 3.1. 2

4 F is well defined

As a first step we investigate the regularity properties of the functions
Φjj, j = 0, . . . , 3, and of the induced matter terms M1, M2.
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Lemma 4.1 Let φ and ψ satisfy the conditions (φ1) and (ψ) respectively.

(a) The functions Φ00 and Φ33 have derivatives with respect to ν, ξ, ρ ∈
R and B ∈]1/2, 3/2[ up to order three and these are continuous in
ν, ξ,B, ρ, γ, λ. The same is true for Φ11 for derivatives up to order
four.

(b) For (ν, ξ, h; γ, λ) ∈ U , M1 ∈ C2(R3) and M2 ∈ C2,α(R2) are both
compactly supported.

Proof. As to part (a) we note that differentiability with respect to ξ and
ρ is straight forward. Concerning differentiability with respect to ν and B
we observe that for j = 0, . . . , 3 the expression Φjj is differentiable once
with respect to the indicated variables, provided φ ∈ L∞

loc, cf. the proof of
[16, Lemma 2.1]. Under the assumption (φ1) we can first differentiate twice
before the change to the integration variables η and s and obtain expressions
which are essentially of the same form as Φjj, but with φ′ or φ′′ instead of φ
so that the resulting expression can be differentiated once more. The reason
why Φ11 is one order more differentiable is that when differentiating this
expression with respect to ν or B the integral with respect to s is preserved,
its integrand is differentiated, and the resulting expression is qualitatively
of the same type as Φ00 and can be differentiated three more times.

Part (b) follows since the functions ν,B, ξ which are now substituted
into Φjj are all at least in C2,α(R3); the fact that ξ is defined only on the
cylinder ZR does not matter here because the integrals in the definitions of
Φjj yield functions with support in ZR. 2

We now show that F is well defined, more precisely:

Lemma 4.2 Let (ν, ξ, h; γ, λ) ∈ U . Then the following holds.

(a) G1 = G1(ν, ξ, h; γ, λ) ∈ C3,α(R3) is axially symmetric, even in z = x3,

and ‖(1+|x|)(G1−a)‖∞, ‖(1+|x|)2∇G1‖∞ <∞, where a =
∫ M1(y)

|y| dy.

(b) G2 = G2(ν, ξ, h; γ, λ) ∈ C4,α(R2) is odd in ρ, even in z, and

‖(1+|(ρ, z)|)G2‖∞, ‖(1+|(ρ, z)|)2D1G2‖∞, ‖(1+|(ρ, z)|)3D2G2‖∞ <∞.

Moreover,

‖(1 + |(ρ, z)|)2(G2/ρ)‖∞, ‖(1 + |(ρ, z)|)3D1(G2/ρ)‖∞ <∞.

Here Dj stands for any derivative of order j with respect to (ρ, z) ∈ R
2.
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(c) G3 = G3(ν, ξ, h; γ, λ) ∈ C2,α(ZR) is axially symmetric, even in z = x3,
and ‖G3‖C2,α(ZR) <∞.

(d) F(ν, ξ, h; γ, λ) ∈ X .

Proof. As to part (a) the potential induced by the matter term M1, which
is in C1,α(R3) by Lemma 4.1 (b), has the desired regularity and decay prop-
erties due to standard regularity results in Hölder spaces, cf. [13, Thms. 10.2,
10.3], and the decay of 1/|x− y| and its derivatives together with the com-
pact support of M1. As to the source term g = ∇(h/ρ) · ∇ν of the second
term in G1 we notice that ν ∈ X1 and h ∈ X2 implies that g ∈ C1,α(R3)
with |g(x)| ≤ C(1 + |x|)−3−β , in particular g ∈ L1 ∩ L∞(R3). This implies
the regularity of the potential induces by g and also its decay:

∫ |g(y)|
|x− y|dy ≤

∫

|x−y|≤|x|/2
. . .+

∫

|x−y|>|x|/2

≤ C

∫

|x−y|≤|x|/2
(1 + |y|)−3−β dy

|x− y| +
2

|x|

∫

|g(y)| dy

≤ C(1 + |x|/2)−3−β

∫

|x−y|≤|x|/2

dy

|x− y| +
C

|x| ≤
C

|x|

for large |x| as desired; for the gradient of the potential induced by g we
argue completely analogously.

As to part (b) we first recall that M2 = M2(ρ, z) is even in ρ, and the
actual source term ρM2 is odd, compactly supported, and by Lemma 4.1 (b)
and Lemma 3.1 (b), M2 ∈ C2,α(R2). Hence G2 ∈ C4,α(R2) is odd in ρ ∈ R.
As to the decay of G2 let suppM2 ⊂ BR(0) ⊂ R

2. Then for |(ρ, z)| ≥ 2R
and (ρ̃, z̃) ∈ suppM2 the estimate

|ln |(ρ− ρ̃, z − z̃)| − ln |(ρ, z)|| ≤ 2R

|(ρ, z)|

holds, and since
∫

ρ̃M2 = 0 this implies that

|G2(ρ, z)| =

∣

∣

∣

∣

G2(ρ, z) − 4

∫

ln |(ρ, z)| ρ̃M2(ρ̃, z̃) dz̃ dρ̃

∣

∣

∣

∣

≤ C

|(ρ, z)| ;

the estimates for the derivatives of G2 follow along the same lines. Finally,
∂ρ(G2/ρ) = −G2/ρ

2 + ∂ρG2/ρ which implies that

|∂ρ(G2/ρ)(ρ, z)| ≤
C

|(ρ, z)|ρ2
+

C

|(ρ, z)|2|ρ| .
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This yields the asserted decay when |ρ| becomes large. But we can also use
(3.1) to see that |∂ρ(G2/ρ)(ρ, z)| ≤ C/|z|3. Both estimates together yield
the asserted decay for ∂ρ(G2/ρ), and the decay for G2/ρ and ∂z(G2/ρ) can
be dealt with similarly.

In order to prove part (c) we observe that (2.18) and the regularity of ν
and h imply that g and hence G3 ∈ C2,α(ZR). By construction, ∂ρG3 = g.
Since h is odd in ρ we find that

h(0, z) = ∂zh(0, z) = ∂zzh(0, z) = ∂ρρh(0, z) = 0,

which implies that g(0, z) = 0. Thus by Lemma 3.1, G3 ∈ C2,α(ZR), and
the proof is complete. 2

5 F is continuous and continuously differentiable

with respect to ν, h, ξ

In this section we give some details of the proof of the following result:

Lemma 5.1 The mappings

Gi : U → Xi, i = 1, 2, 3

are continuous and continuously Fréchet differentiable with respect to ν, h,
and ξ.

Proof. We only show the differentiability assertion and focus on G1. Defin-
ing Φ = Φ00+γΦ11+γΦ33 we consider the differentiability only with respect
to ν, and neglecting the dependence on the remaining variables we look at
the prototype mapping

G : V → X1, G(ν)(x) :=

∫

R3

Φ(ν(y))

|x− y| dy,

where V ⊂ X1 is open, Φ ∈ C3(R) and Φ ◦ ν has support in a fixed ball for
all ν ∈ V. Our first claim is that G has the Fréchet derivative

[DG(ν)δν](x) =

∫

R3

Φ′(ν(y))δν(y)

|x− y| dy, ν ∈ V, δν ∈ X1.

In order to prove this claim we need to show that for ν ∈ V there exists
ǫ > 0 such that for δν ∈ Bǫ(0) ⊂ X1,

||G(ν + δν) −G(ν) −DG(ν)δν||X1
= o(||δν||X1

).

20



The support property and the standard elliptic estimate imply that

||G(ν + δν) −G(ν) −DG(ν)δν||X1

≤ C ||G(ν + δν) −G(ν) −DG(ν)δν||C3,α(R3)

≤ C ||Φ(ν + δν) − Φ(ν) − Φ′(ν)δν||C1,α(R3)

≤ C ||Φ(ν + δν) − Φ(ν) − Φ′(ν)δν||C2

b
(R3).

Clearly,

||Φ(ν + δν) − Φ(ν) − Φ′(ν)δν||∞ = o(||δν||∞) ≤ o(||δν||X1
).

We need to establish analogous estimates for expressions where we take
derivatives with respect to x up to second order of the left hand side. Let
i, j ∈ {1, 2, 3}. Then

∂xi

(

Φ(ν + δν) − Φ(ν) − Φ′(ν)δν
)

=
(

Φ′(ν + δν) − Φ′(ν)
)

∂xi
δν

+
(

Φ′(ν + δν) − Φ′(ν) − Φ′′(ν)δν
)

∂xi
ν

where both terms on the right are o(||δν||X1
). Similarly,

∂xixj

(

Φ(ν + δν) − Φ(ν) − Φ′(ν)δν
)

=
(

Φ′′(ν + δν) − Φ′′(ν) − Φ′′′(ν)δν
)

∂xi
ν ∂xj

ν

+
(

Φ′′(ν + δν) − Φ′′(ν)
) (

∂xi
ν ∂xj

δν + ∂xj
ν ∂xi

δν
)

+
(

Φ′(ν + δν) − Φ′(ν) − Φ′′(ν)δν
)

∂xixj
ν

+
(

Φ′(ν + δν) − Φ′(ν)
)

∂xixj
δν + Φ′′(ν + δν) ∂xi

δν ∂xj
δν,

and all the terms appearing on the right are o(||δν||X1
). This proves the

differentiability assertion for G. As to the continuity of this derivative,

||DG(ν) −DG(ν̃)||L(X1,X1) = sup
||δν||X1

≤1

∥

∥

∥

∥

∫

R3

[(Φ′(ν) − Φ′(ν̃)) δν] (y)

| · −y| dy

∥

∥

∥

∥

X1

≤ C sup
||δν||X1

≤1
||(Φ′(ν) − Φ′(ν̃)) δν||C1,α(R3)

≤ C ||Φ′(ν) − Φ′(ν̃)||C2

b
(R3) → 0 as ν̃ → ν in X1.

These arguments prove the continuous Fréchet differentiability of the first
part of G1 with respect to ν. The derivatives with respect to h or ξ can be
dealt with in exactly the same manner. The source term in the potential
which represents the second part of G1 can be expanded explicitly in powers
of δh and δν which together with the standard elliptic estimate proves the
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assertion for that term; note that both B and B + δh/ρ are bounded away
from 0.

The mapping G2 is treated in the same way as our prototype G above,
except that we have to estimate the source term including its third order
derivatives, observing that Φ11 has derivatives up to order four with respect
to ν,B, ξ.

The mapping G3 is easier since the term g defined in (2.18) can be
expanded explicitly in powers of δν and δh where again we observe that the
denominator in that expression is bounded away from 0. 2

6 DF(UN , 0, 0; 0, 0) is one-to-one and onto

We recall from Section 2 and Eqn. (2.19) that in order to prove that the
map L is one-to-one it remains to show that g = 0 is the only solution of

∆g = 4πaNg, g(0) = 0, (6.1)

in the space X1. Inspired by the method in [16] we expand g into spherical
harmonics Ylm, l ∈ N0, m = −l, ..., l, where we use the notation of [10]; for
a more mathematical reference on spherical harmonics see [14]. Denote by
(r, θ, ϕ) and (s, τ, ψ) the spherical coordinates of a point x ∈ R

3 and y ∈ R
3

respectively. For l ∈ N0 and m = −l, . . . , l we define

glm(r) :=
1

r2

∫

|x|=r
Y ∗

lm(θ, ϕ) g(x) dSx. (6.2)

The symmetry assumptions in the function space X1 imply that g1−1 =
g10 = g11 = 0, since up to multiplicative constants the spherical harmonics
with l = 1 are given by sin θe±iϕ and cos θ. To proceed, we use the following
expansion, cf. [10],

1

|x− y| =
∞
∑

l=0

l
∑

m=−l

4π

2l + 1

rl
<

rl+1
>

Y ∗
lm(τ, ψ)Ylm(θ, ϕ),
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where r< := min (r, s) and r> := max (r, s). In view of (6.1),

glm(r) = − 1

r2

∫

R3

∫

|x|=r

1

|x− y|Y
∗
lm(θ, ϕ) dSxaN (s) g(y)dy

= − 4π

2l + 1

∫ ∞

0
aN (s)

rl
<

rl+1
>

∫

|y|=s
Y ∗

lm(τ, ψ) g(y) dSyds

= − 4π

2l + 1

∫ ∞

0
aN (s)

rl
<

rl+1
>

s2glm(s)ds

= − 4π

2l + 1

(
∫ r

0
aN (s)

sl+2

rl+1
glm(s) ds +

∫ ∞

r
aN (s)

rl

sl−1
glm(s) ds

)

.

By a straightforward computation we find that glm satisfies the equation

(

r2g′lm
)′

=
(

l(l + 1) + 4π r2aN (r)
)

glm, (6.3)

where prime denotes a derivative with respect to r.
We use this to show that g00 = 0 as follows. We define w(r) :=

sup0≤s≤r |g′00(s)| so that |g00(r)| ≤ rw(r); at this point it becomes essential
that g(0) = g00(0) = 0. Now (6.3) can be integrated to yield the Gronwall
estimate

w(r) ≤ 4π

∫ r

0
s|aN (s)|w(s) ds, r ≥ 0,

so that w = 0 and hence g00 = 0 as desired.
It therefore remains to consider glm with l ≥ 2. For these we prove the

following auxiliary result.

Lemma 6.1 Let a ∈ Cc([0,∞[) and λ > 0 be such that λ + 4πr2a(r) > 0
for r ∈ [0,∞[. Let u ∈ C2([0,∞[) be a bounded solution to

(r2u′)′ = (λ+ 4πr2a(r))u. (6.4)

Then u = 0.

Proof. We fix ra > 0 such that a(r) = 0 for r ≥ ra. Multiplying (6.4) with
u and integrating by parts we obtain for r > 0,

∫ r

0
(λ+ 4πs2a(s))u2(s) ds =

∫ r

0
(s2u′(s))′ u(s) ds

= r2u′(r)u(r) −
∫ r

0
s2(u′(s))2 ds. (6.5)
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Now if there exists r0 > 0 so that u(r0) = 0 or u′(r0) = 0 then (6.5) implies
that u(r) = u′(r) = 0 for r ∈ [0, r0]. The unique solvability of (6.4) for
r ≥ r0 then shows that u = 0 as claimed.

So we assume now that u(r) 6= 0 and u′(r) 6= 0 for r > 0. Since (6.4)
is invariant under u → −u, we may suppose that u(r) > 0 and u′(r) > 0
for all r ∈]0,∞[; note that (6.5) enforces uu′ > 0 on ]0,∞[. For r ≥ ra > 0
(6.4) simplifies to (r2u′)′ = λu, which has the solution

u(r) =
(l + 1)u(ra) + rau

′(ra)

(2l + 1)

(

r

ra

)l

+
l u(ra) − rau

′(ra)

(2l + 1)

(

ra
r

)l+1

.

Therefore u is unbounded which is a contradiction. 2

Since g ∈ X1, Eqn. (6.2) implies that glm is bounded. Due to (φ3) we
can apply Lemma 6.1 to conclude that glm = 0 for all l ≥ 2, and thus g = 0
as desired.

We now prove the compactness result which was needed to show that L
is onto.

Lemma 6.2 The mapping K : X1 → X1,

(Kw)(x) =

∫

R3

aN (y)w(y)

|x− y| dy

is compact.

We remark that the operator L1 has the form L1(δν)(x) = −K(δν)(x) +
K(δν)(0) and is compact if K is, since the mapping ν 7→ ν(0) is continuous
on X1.
Proof. First we observe that the mapping

u 7→
∫

R3

φ′
(

1

2
|v|2 + u

)

dv = 2
√

2π

∫ ∞

u
φ′(E)

√
E − u dE

is in C2(R), and since UN ∈ C2(R3) the function aN is in C2
c (R3). Hence

aNw ∈ C1,1/2(R3) for any w ∈ X1, and since α < 1/2 the mapping K is well
defined.

We fix a function χ ∈ C∞
c (R3) such that 0 ≤ χ ≤ 1, χ(x) = 1 for |x| ≤ 1,

and χ(x) = 0 for |x| ≥ 2. Let χR(x) = χ(x/R) for R > 0 and define

(KRw)(x) = χR(x)(Kw)(x).

We show that KR → K in the operator norm as R → ∞. To this end, let
ζR = 1 − χR so that for w ∈ X1 and x ∈ R

3,

(Kw −KRw)(x) = ζR(x)(Kw)(x), (6.6)
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and the latter vanishes for |x| ≤ R. Now let ‖w‖X1
≤ 1. For σ ∈ N

3
0 with

|σ| ≤ 3 it follows that

|Dσ(Kw −KRw)(x)| ≤ ζR(x) |Dσ(Kw)(x)|
+
∑

0<τ≤σ

∣

∣cτD
τζR(x)Dσ−τ (Kw)(x)

∣

∣

≤ 1{|x|≥R}
C

|x| + C
∑

0<τ≤σ

1

R

∣

∣Dσ−τ (Kw)(x)
∣

∣ ≤ C

R
;

constants denoted by C do not depend on x or R. In order to estimate
the Hölder norm of Dσ(Kw − KRw) for |σ| = 3 we take x, x̃ ∈ R

3 with
|x̃| ≥ |x| and again apply the product rule to the expression (6.6). Adding
and subtracting terms we have to estimate expressions like

∣

∣(DτζR(x) −DτζR(x̃))Dσ−τ (Kw)(x)
∣

∣ ≤ C

R
|x− x̃|

and terms like the following:

|DτζR(x)|
∫

R3

∣

∣Dσ−τ |y|−1
∣

∣ |(aNw)(x − y) − (aNw)(x̃− y)| dy;

if |σ−τ | = 3 we throw one derivative onto aNw. The latter quantity together
with its first order derivatives is Hölder continuous. The factor in front of
the integral vanishes for |x| ≤ R, so we need only consider |x̃| ≥ |x| ≥ R.
Since the domain of integration extends only over y with |y − x| ≤ RN or
|y − x̃| ≤ RN we can on the domain of integration estimate |y| ≥ |x| −
|x − y| ≥ R − RN ≥ R/2 or analogously with x̃ instead of x, where we
assume that R > 2RN . Since

∣

∣Dσ−τ |y|−1
∣

∣ ≤ |y|−j with j ≥ 1 the term
under consideration can be estimated by CR−1|x − x̃|α and altogether we
conclude that

‖Kw −KRw‖C3,α(R3) ≤ C/R.

Recalling the definition of the norm ‖ ·‖X1
we see that the following chain of

estimates finally shows that KR → K in the corresponding operator norm
as desired:

|∇(Kw)(x) −∇(KRw)(x)| ≤ ζR(x)

∫

R3

|aN (y)w(y)|
|x− y|2 dy

+R−1|∇χ(x/R)|
∫

R3

|aN (y)w(y)|
|x− y| dy

≤ 1{|x|≥R}
C

|x|2 +R−1 1{R≤|x|≤2R}
C

|x|
≤ C(1 + |x|)−β−1R−(1−β).
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To complete the proof we have to show that KR is compact for any R > 0
on the space X1. First the fact that aN ∈ C2

c (R3) implies that

KR : C3,α(R3) → C3,1/2(R3)

is continuous, and the same is true for

KR : C3,α(R3) → C3,1/2(B3R(0))

where we note that all the functions KRw with w ∈ C3,α(R3) are supported
in B3R(0). Since α < 1/2 the embedding

C3,1/2(B3R(0)) →֒ C3,α(B3R(0))

is compact, and because of the support property we conclude that

KR : X1 → X1

is compact; on ∇KRw the weight (1+|x|)1+β only amounts to multiplication
with a bounded function. 2

7 Discussion of Condition (φ3)

In this section we investigate Condition (φ3) for the case of the polytropic
steady states (2.3). We first allow for the general range k ∈] − 1/2, 7/2[ of
polytropic exponent. Using the elementary integration formula

∫

R3

(

s− 1

2
|v|2
)k

+
dv = (2π)3/2 Γ(k + 1)

Γ(k + 5
2)
s
k+ 3

2

+ , s ∈ R, (7.1)

the Poisson equation in (φ2) is found to be

1

r2
(r2U ′

N )
′
= 4π(2π)3/2 Γ(k + 1)

Γ(k + 5
2)

(E0 − UN )
k+ 3

2

+

for UN = UN (r). According to [18] there exists a solution UN such that
UN (0) < E0, U

′
N (0) = 0, UN (RN ) = E0, UN (r) > E0 for r > RN , and

U ′
N (r) > 0 for r ∈]0, RN [. For z := E0 − UN this means that

− 1

r2
(r2z′)

′
= 4πcn z

n
+, where n := k +

3

2
∈]1, 5[, cn := (2π)3/2 Γ(k + 1)

Γ(k + 5
2 )
,
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and furthermore z(0) > 0, z′(0) = 0, z(RN ) = 0, and z′(r) < 0 for r ∈
]0, RN [. In terms of z the function aN from (φ3) reads

aN (r) = −(2π)3/2 kΓ(k)

Γ(k + 3
2)
z(r)

k+ 1

2

+ = −n cn z(r)n−1
+ ,

where once more (7.1) was used. Thus condition (φ3) is equivalent to

4πn cn r
2z(r)n−1

+ < 6. (7.2)

Now consider the function ζ(s) := z(αs) for α := (4πcn)−1/2. It is found to
satisfy the Emden-Fowler equation

− 1

s2
(s2ζ ′)

′
= ζn

+ (7.3)

and ζ(0) > 0, ζ ′(0) = 0, ζ(s0) = 0 for s0 := RN/α, as well as ζ ′(s) < 0 for
s ∈]0, s0[. In terms of s = α−1r condition (7.2) becomes

s2ζ(s)n−1
+ <

6

n
. (7.4)

The left-hand side can be conveniently expressed by means of the dynamical
systems representation of (7.3). For, let

U(t) := −sζ(s)
n

ζ ′(s)
≥ 0, V (t) := −sζ

′(s)

ζ(s)
≥ 0, t := ln s,

where we consider t ∈] −∞, ln s0[. Then

U̇ = U(3 − U − nV ), V̇ = V (U + V − 1), (7.5)

and U(t)V (t) = s2ζ(s)n−1
+ , which provides the relation to (7.4). Thus we

have to verify that U(t)V (t) < 6/n. In the terminology of [6, p. 501],
where m = 0, ζ is an E-solution to (7.3). Thus [6, Prop. 5.5] implies that
(U(t), V (t)) lies in the unstable manifold of the fixed point P3 = (3, 0) of
(7.5). In particular, we have limt→−∞(U(t), V (t)) = (3, 0). Also note that P3

is of saddle type with eigenvalues −3 and 2; the corresponding eigenvectors
are (1, 0) and (−3n/5, 1). Since the line V = 1

n(3−U) separates the regions

U̇ > 0 (below the line) and U̇ < 0 (above the line), a phase plane analysis
reveals that we must always have U(t) ≤ 3, so that W (t) := U(t)V (t) ≤
3V (t). In addition, it is calculated that V and W are solutions to the system

V̇ = V (V − 1) +W, Ẇ = W (2 − (n− 1)V ), (7.6)
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such that limt→−∞(V (t),W (t)) = (0, 0). The origin is a fixed point of saddle
type for (7.6), the eigenvalues are −1 and 2 with corresponding eigenvectors
(1, 0) and (1, 3). Note that Ẇ > 0 for V < 2

n−1 , Ẇ < 0 for V > 2
n−1 , V̇ > 0

above the curve V 7→ V (1 − V ), and V̇ < 0 below this curve. Since the
curve has unity slope at V = 0, it follows that (V (t),W (t)), lying in the
unstable manifold of the origin, will be above the curve for t very negative.
Then a phase plane analysis shows that this property persists for all times.
In particular, we always have V̇ > 0, and W is increasing until it reaches its
maximal value for t0 such that V (t0) = 2

n−1 . Thus our original problem of
proving (φ3) is equivalent to showing that W (t0) = maxW < 6/n. Thanks
to the preceding observations the parametrized curve t 7→ (V (t),W (t)) for
t ∈] − ∞, t0] can be rewritten as a curve W = W (V ) in the (V,W )-plane
which solves

dW

dV
=
W (2 − (n− 1)V )

V (V − 1) +W
, (7.7)

and which is such that W (0) = 0 and W ( 2
n−1) = maxW .

Lemma 7.1 If k < 7/2 is sufficiently close to 7/2, then (φ3) holds for φ
given by (2.3).

Proof. If W (v) < 1 < 6/n for all V ∈]0, 2
n−1 ], then we are done. Hence

we assume that W (V0) = 1 for some V0 ∈]0, 2
n−1 ]. Then 1 = W (V0) ≤ 3V0

yields V0 ≥ 1/3. Since W (V ) ≥ 1 for V ≥ V0, it follows that V (V −1)+W =
(V − 1)2 + V +W − 1 ≥ V , so that by (7.7),

ln(maxW ) =

∫ max W

W=1

dW

W
≤
∫ 2

n−1

V0

(2 − (n− 1)Ṽ )

Ṽ
dṼ

≤
∫ 2

n−1

1/3

(2 − (n− 1)Ṽ )

Ṽ
dṼ

= 2 ln
( 6

n− 1

)

− 2 +
1

3
(n− 1).

Therefore

maxW ≤ 36

(n− 1)2
exp

(1

3
(n− 1) − 2

)

. (7.8)

At n = 5 the relation
9

4
e−2/3 <

6

5

holds. Hence it follows from (7.8) that maxW < 6/n is verified for n
sufficiently close to n = 5. 2
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The method of proof for the preceding lemma can be refined as follows.
Fix A < 6/n. Then W (V ) < A for V ∈ [0, 2

n−1 ] would be acceptable. Hence

we can assume that W (V0) = A for some V0 ∈]0, 2
n−1 ]. Then A = W (V0) ≤

3V0 shows that V0 ≥ A/3. From W (V ) ≥ A for V ≥ V0 we obtain

ln(maxW ) − lnA

=

∫ max W

W (V0)

dW

W
≤
∫ 2

n−1

V0

(2 − (n− 1)Ṽ )

Ṽ 2 − Ṽ +A
dṼ

≤
∫ 2

n−1

A/3

(2 − (n− 1)Ṽ )

Ṽ 2 − Ṽ +A
dṼ

=
5 − n√
4A− 1

[

arctan
( 5 − n√

4A− 1(n− 1)

)

+ arctan
( 3 − 2A

3
√

4A− 1

)

]

−
(n− 1

2

)

ln
(9[An2 − 2(A+ 1)n + 6 +A]

A(A+ 6)(n− 1)2

)

.

Therefore maxW ≤ ΦA(n) where

ΦA(n) := A
( A(A+ 6)(n − 1)2

9[An2 − 2(A+ 1)n+ 6 +A]

)
n−1

2

× exp

(

5 − n√
4A− 1

[

arctan
( 5 − n√

4A− 1(n − 1)

)

+ arctan
( 3 − 2A

3
√

4A− 1

)

]

)

.

For different A it can be checked (e.g. using Maple) for which values n ∈
]1,min{6/A, 5}[ the relation ΦA(n) < 6/n is verified. Taking A = 1 we
get at least n ∈ [2.6, 5[, for A = 6/5 we get at least n ∈ [2.35, 4.85], and
for A = 2 we get at least n ∈ [2.1, 2.5]. In summary, the desired relation
maxW < 6/n can be obtained for at least n ∈ [2.1, 5[, which corresponds to
at least k ∈ [0.6, 3.5[ in (2.3). Notice however that the regularity assumption
on φ requires k > 2.

8 The field equations hold

For a metric of the form (1.4) the components 00, 11, 12, 22, and 33 of the
field equations are nontrivial. We have so far obtained a solution ν,B, ξ of
the reduced system (2.6), (2.7), (2.12) where the appearing components of
the energy momentum tensor are induced by a phase space density f which
satisfies the Vlasov equation (1.2). We define Eαβ := Gαβ − 8πc−4Tαβ so
that the Einstein field equations become Eαβ = 0. By (2.7),

E11 + E22 = 0. (8.1)
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Using this information (2.6) says that

ρ2B2E00 + c2e4ν/c2E33 = 0

or
c2e4ν/c2E00 + ρ2B2E33 = 0. (8.2)

The Vlasov equation implies that ∇αT
αβ = 0, and ∇αG

αβ = 0 due to the
contracted Bianchi identity where ∇α denotes the covariant derivative cor-
responding to the metric (1.4). We want to use these relations to show that
the remaining components of Eαβ vanish also, but there is a technical catch:
The metric, more specifically ξ, is only C2. To overcome this complication
we approximate ξ by C3 functions ξn. The induced Einstein tensor Gαβ

n

again satisfies the Bianchi identity. Taking β = 1 and letting n → ∞ we
obtain the equation

∂zE
12 +

(

4∂zµ+
∂zB

B

)

E12 − ρBe−2ξ(B + ρ∂ρB)E33 = 0, (8.3)

where (8.2) has been used to eliminate E00 and we recall that ξ = ν/c2 +µ.
Here ∂zE

12 is at first a distributional derivative, but since all other terms
in the equation are continuous this derivative indeed exists in the classical
sense. The same approximation maneuver can be performed for β = 2 to
obtain the equation

∂ρE
12 +

(

4∂ρµ+
1

ρ
+
∂ρB

B

)

E12 − ρ2Be−2ξ∂zBE
33 = 0 (8.4)

which holds for ρ > 0. However, if we multiply this equation with ρ we
obtain an equation which holds for ρ ≥ 0. This is because E12(0, z) = 0
which is nothing but the boundary condition (2.13) on the axis of symmetry
which we have incorporated into our integration of (2.12). We eliminate E33

from (8.3), (8.4) and write the resulting equation for E12 in terms of

X := ρe4µBE12.

The result is the equation

∂ρX − ρ∂zB

B + ρ∂ρB
∂zX = 0

which again holds for ρ ≥ 0. Since X(0, z) = 0 and since any characteristic
curve of this equation intersects the axis of symmetry ρ = 0 we conclude
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that X vanishes identically. By (8.3) the same is true for E33 so that E12 =
E33 = E00 = 0. Finally we observe that by (2.12),

(

1 + ρ
∂ρB

B

)

(E11 −E22) + ρ
∂zB

B
E12 = 0.

Since E12 = 0 this means that E11 = E22, and with (8.1) we conclude that
E11 = E22 = 0, and all the non-trivial field equations are satisfied.
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