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D - 50931 Köln, Germany

2 Centre for Mathematical Sciences, Wilberforce Road,
Cambridge, CB3 OWA, England

Key words: Hamiltonian systems, Nekhoroshev stability, normal forms

Abstract

We prove exponential stability theorems of Nekhoroshev type for motion in the neighbourhood of an elliptic fixed
point in Hamiltonian systems having an additional transverse component of arbitrary dimension, under certain
conditions on this transverse component. We consider both the cases (i) of a strongly constrained motion, and
(ii) of a weak perturbation.

1 Introduction and statement of main results

An integrable Hamiltonian, written in action angle variables (I, φ) = (I1, . . . In, φ1, . . . φn) ∈ Rn × (R/Z)n, takes
the form Hint(I1, . . . In), and the corresponding equations of motion imply that the action variables Ij are constant
while the angle variables φj evolve at the uniform rate ∂Hint

∂Ij
. For a nonintegrable perturbation of such a system,

described by a smooth Hamiltonian of the form

Hint(I1, . . . In) + εHpert(I1, . . . In, φ1, . . . φn) ,

Nekhoroshev proved the following exponential stability estimate in [7]: letHint satisfy a condition known as steepness,
then there exist positive numbers R0, T0, ε0, a, b such that for all small ε

|I(t)− I(0)| ≤ R0ε
b for |t| ≤ T0e

(
ε0
ε )a . (1.1)

This says that for small ε the action variables are almost, or effectively, constant since they vary little over expo-
nentially long time scales. In fact the main theorem in [7, §4.4] proves exponential stability bounds for slightly more
general perturbations

Hpert = Hpert(I1, . . . In, φ1, . . . φn, ξ1, . . . ξN , η1, . . . ηN )

in which there is dependence upon an additional set of N (Darboux) conjugate pairs (ξj , ηj); we shall refer to these
extra variables as the transverse component.

It was also conjectured in [7] that, under appropriate conditions, such exponential stability should hold in a
sufficiently small neighbourhood of an elliptic equilibrium point. Following a preliminary result in [5, §IV.2, Theorem
4] this was proved in [3, 9] and then in [10] under convexity hypotheses which can be described as follows: let

� {(xj , yj)}nj=1 be Darboux coordinates on R2n, and define Ij = (x2j + y2j )/2,

� α ∈ Rn, and let A be a strictly positive n× n matrix,

� f be a real analytic function vanishing to fifth order at the origin,

then the dynamics in a neighbourhood of the origin in R2n for the Hamiltonian

H0 = 〈α, I〉+ 1

2
〈AI, I〉+ f
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satisfies exponential stability estimates; see theorem 5.5 for a precise statement.

In view of the above it is to be expected that exponential stability for {Ij}nj=1 might continue to hold in a
neighbourhood of an elliptic fixed point, under perturbations depending also on an additional transverse component.
In this paper we study this situation in detail. We shall consider perturbations in which the additional transverse
variable ζ = (ξ, η) ∈ R2N , while the original phase space R2n 3 z = (x, y) is a symplectic subspace of the new
enlarged phase space R2n × R2N . We shall deal with Hamiltonians coupling z and ζ of the form1

H = H0 + σΛ, Λ = O(|ζ|2) as ζ → 0 (1.2)

and ask the question: under which conditions does Nekhoroshev exponential stability hold for z ∈ R2n in a
neighbourhood of the origin? We shall consider (1.2) in both limits σ ↗ +∞ and σ ↘ 0.

Counterintuitively perhaps, the case σ ↗ +∞ can sometimes be regarded as a perturbation of a Hamiltonian
flow on R2n, as is discussed in section 3. To be precise, this is the case when Λ is such as to force the flow onto
the R2n × {0} subspace for large σ, on which subspace the dynamics is governed by the restricted Hamiltonian
H0(z) = H(z, 0), that is, motion in a constraining potential. (To ensure this, it will be required that Λ = 0 if and
only if ζ = 0; see section 3 for the precise conditions). In this case we have the main theorem 3.4, which can be
stated heuristically as:

Exponential stability estimates like (1.1) continue to hold for the R2n projection of the flow in R2n×R2N

determined by the Hamiltonian H = H0 + σΛ, with Λ a constraining potential, when σ is sufficiently
large (independent of N).

Such results in general come only with the assurance that they hold for sufficiently large σ, but without precise
quantitative information on their domain of validity (at least in the absence of more special assumptions). In fact
theorem 3.4 is obtained by combining general compactness results based on the Arzelà-Ascoli theorem with the
standard Nekhoroshev estimate for H0(z). We provide details, (i) to explain the method in a simple case, (ii)
to clarify how quantitative information on the domains can be derived in special cases (theorem 3.9) and (iii) to
emphasize the difference with the case σ ↘ 0 which is treated in section 4. We remark that stronger results could be
proved with the assumption that Λ vanishes faster than quadratically as ζ → 0, but we are not aware of any likely
applications in this case. The convergence of the strongly constrained motion to the formal limiting motion has
previously been studied in [11, 14]. However, in addition to deriving the exponential estimates in this limit, we give
a new short proof of the convergence itself which emphasizes that it is an immediate consequence of “asymptotic
non-transfer of energy in the limit” - see (3.6) and its role in the proof of lemma 3.2. Perturbative methods of
Nekhoroshev type were applied before in [1, 2] to obtain exponential estimates on the energy exchange between the
constraining forces and this limiting equation.

The more obvious perturbative problem in (1.2) arises by considering small σ; here our second main theorem
4.2 can be stated heuristically as:

There exists a neighbourhood N of the origin in R2n ×R2N and σ0 such that for 0 < σ < σ0 and initial
data in N exponential stability estimates like (1.1) hold for the flow projected onto R2n. All of the
neighbourhoods and estimates can be bounded explicitly and uniformly in N .

(See also theorems 4.1 and 4.6 for alternative formulations.) The proof of theorem 4.2 relies on a normal form
lemma 5.4 which involves applying the method of averaging in a way which couples z and ζ. The method of proof
for this auxiliary lemma is known in principle, but is nevertheless included for convenience. Some results in a similar
direction were obtained before in [8, p. 1713].

Apart from the difficult limit N → ∞ (infinite-dimensional case), another possibility for future work and
generalizing our results would consist of trying to relax the differentiability assumptions, as in [4].

2 Some notation

In general we will be concerned with real analytic Hamiltonians H = H(z, ζ) depending on the variables (z, ζ) ∈
R2n × R2N or (z, ζ) ∈ C2n × C2N . (By real analytic mapping from a complex domain into another complex vector
space, we mean a complex analytic mapping which maps real vectors into real vectors.) Denoting z = (z1, . . . , zn)

1It is possible to put the coupling between z and ζ into either f or Λ, and we make different choices depending upon which is most
convenient.
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for zj = (xj , yj) ∈ C2 for 1 ≤ j ≤ n we write Ij = (x2j + y2j )/2 ∈ C, and also ζj = (ξj , ηj) ∈ C2 for 1 ≤ j ≤ N .
Define the domains

Da, b, c = {(z, ζ) ∈ C2n × C2N : |I − I0| < a, |z| < b, |ζ| < c}

for a, b, c > 0, where I0 ∈ Rn is given and

|I − I0| =
n∑

j=1

|Ij − I0j |, |z|2 =
n∑

j=1

(|xj |2 + |yj |2) and |ζ|2 =
N∑
j=1

(|ξj |2 + |ηj |2).

The norm of a matrix A ∈ Rn×n is the operator norm w.r.t. the l1-norm |I| =
∑n

j=1 |Ij |. We always view I as a
function of z and note the estimate, with z̃j = (x̃j , ỹj):

|I(z̃)− I(z)| ≤ 1

2

( n∑
j=1

|x̃j − xj |2 + |ỹj − yj |2
) 1

2
( n∑
j=1

|x̃j + xj |2 + |ỹj + yj |2
) 1

2

≤ 1

2
|z̃ − z| (|z̃|2 + 2|z̃||z|+ |z|2) 1

2 =
1

2
|z̃ − z| (|z̃|+ |z|). (2.1)

The Hamiltonian vector field generated by a function f = f(z, ζ) is written as Xf , and the associated flow as Xt
f .

We shall refer to integral curves of Xf also as integral curves of f when no confusion seems likely. The supremum
norm of functions or vector fields on Da, b, c is denoted by | · |a, b, c. For r = (r1, r2, r3) we will write Dr = D r1, r2, r3

and | · |r = | · |r1, r2, r3 .
Let Π1 (resp. Π2) be the orthogonal projection operator onto the C2n (resp. C2N ) factor of C2n×C2N . We will

refer to ζ = Π2(z, ζ) as the transverse component. The symbols C,C1, C2, . . . are reserved for constants which are
allowed to depend only on n.

In practice, the domains Dr will be used when r1 � r2 and when I0j = Ij(z
0) for some z0 ∈ C2n with |z0| < r2.

In this situation the Dr are non-empty open neighbourhoods of the sets
⋂n

j=1{z : Ij(z) = I0j } on which the “action”
variables Ij take particular values. Ignoring the transverse component, these domains may be pictured as very small
islands (open neighbourhoods) around

⋂n
j=1{z : Ij = I0j }, all contained within an overall small (but less small!)

neighbourhood {z : |z| < r2}.

3 Constrained motion: the case of large σ

In this section, we consider the case in which there is a transverse variable, ζ ∈ R2N , which is subject to a strong
constraining potential. Precisely, we consider real analytic Hamiltonians of the form

H(z, ζ) = H0(z) + σΛ(z, ζ) , (3.1)

in the limit σ → +∞, assuming that

Λ ≥ 0 and Λ(z, ζ) = 0 if and only if ζ = 0. (3.2)

The idea is that in this limit Λ forces the motion onto the set Λ = 0, thus dynamically enforcing the constraint
ζ = 0. We will work under the assumption that there exist positive numbers c0, c1, p such that for real (z, ζ)

H(z, ζ) ≥ c0(|z|p + σ|ζ|p)− c1 , (3.3)

and also that for all R > 0 there exists c2(R) > 0 such that∣∣∣∣∂Λ∂z (z, ζ)
∣∣∣∣ ≤ c2(R)Λ(z, ζ) for |z| ≤ R . (3.4)

Remark 3.1 The numbers c0, c1, c2, p, and hence the bound (3.4), are assumed to be independent of σ.

The first result does not require analyticity:

Lemma 3.2 Assume that H is a C1,1 function (i.e. C1 with Lipschitz derivative) of the form (3.1), also verifying
(3.2)-(3.4). Let there be given real initial data (zσ(0), ζσ(0)) for σ ≥ σ0, such that
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(i) zσ(0) → z(0) as σ → +∞;

(ii) σΛ(zσ(0), ζσ(0)) → 0 as σ → +∞;

(iii) supσ≥σ0
H(zσ(0), ζσ(0)) = E <∞.

Then there exist, for each σ ≥ σ0, global integral curves (zσ(t), ζσ(t)) of H which have the property that

lim
σ→+∞

max
|t|≤T

(
|zσ(t)− z(t)|+ |ζσ(t)|

)
= 0 (3.5)

for any T > 0, where z(t) is an integral curve of the Hamiltonian H(z, 0) = H0(z). Furthermore

lim
σ→+∞

max
|t|≤T

(
|H0(z

σ(t))−H0(z
σ(0))|+ σΛ(zσ(t), ζσ(t))

)
= 0 . (3.6)

Proof of lemma 3.2 The co-ercivity in (3.3) together with energy conservation implies the bound

σ|ζσ(t)|p + |zσ(t)|p ≤ c1 + E

c0
, (3.7)

which is uniform in σ, and shows that ζσ(t) = O(σ− 1
p ), uniformly in t. To obtain compactness for zσ(t) we use the

z component of the differential equation, i.e.

d

dt
zσ = Π1XH(zσ, ζσ) ,

conservation of energy, (3.4) and (3.7) to deduce that żσ(t) is bounded, uniformly in t and σ ≥ σ0. It follows from
the Arzelà-Ascoli theorem that there exists a subsequence converging uniformly on bounded intervals [−T, T ] to a
continuous limit z = z(t). To prove that this limit is an integral curve of H0 we consider the integrated form of the
equation:

zσ(t) = zσ(0) +

∫ t

0

Π1XH(zσ(s), ζσ(s)) ds =

∫ t

0

[
XH0(z

σ(s)) + σΠ1XΛ(z
σ(s), ζσ(s))

]
ds . (3.8)

Notice first that it is possible to take the limit of this equation once we know (3.6) holds, on account of (3.4).
So we first prove (3.6). Energy conservation H0(z

σ(t)) + σΛ(zσ(t), ζσ(t)) = H0(z
σ(0)) + σΛ(zσ(0), ζσ(0)) and the

assumptions (i), (ii) imply that subsequentially limσ→+∞ sup|t|≤T σΛ(zσ(t), ζσ(t)) exists for all T > 0, and:

Q(T ) := lim
σ→+∞

sup
|t|≤T

σΛ(zσ(t), ζσ(t))

= lim
σ→+∞

sup
|t|≤T

[
H0(z

σ(0))−H0(z
σ(t))

]
= sup

|t|≤T

[
H0(z(0))−H0(z(t))

]
.

On the other hand, the equation of motion and (3.4) imply that∣∣∣H0(z
σ(t))−H0(z

σ(0))
∣∣∣ =

∣∣∣∫ t

0

d

ds
[H0(z

σ(s))] ds
∣∣∣ = ∣∣∣∫ t

0

〈DH0(z
σ(s)), żσ(s)〉 ds

∣∣∣
=

∣∣∣σ ∫ t

0

〈DH0(z
σ(s)),Π1XΛ(z

σ(s), ζσ(s))〉 ds
∣∣∣

≤ c∗

∫ t

0

sup
|s′|≤s

σΛ(zσ(s′), ζσ(s′)) ds ,

with c∗ uniform as σ → +∞. Now, defining Qσ(T ) := sup|t|≤T σΛ(zσ(t), ζσ(t)) , we deduce from this and energy
conservation that

Qσ(t) ≤ Qσ(0) + c∗

∫ t

0

Qσ(s) ds . (3.9)

It follows from the Gronwall inequality, that Qσ(T ) ≤ Qσ(0)ec∗T . Taking the limit σ → +∞ we obtain Q(T ) ≤
c∗

∫ T

0
Q(s) ds, and, using Q(0) = 0, we deduce that Q(T ) = 0 for all T ≥ 0, which implies the validity of (3.6). It

then follows from (3.4), (3.8) and assumption (i) that

z(t) = z(0) +

∫ t

0

Π1XH0(z(s), 0) ds, (3.10)
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i.e. the curve t 7→ z(t) is the integral curve of the Hamiltonian H(z, 0) = H0(z) starting at z(0), which is unique
since H0 defines a Lipschitz continuous Hamiltonian vector field by assumption. It follows from the uniqueness
of this limit curve that all subsequences have a subsequence which converges to the same limit, and hence that
(zσ(t), ζσ(t)) converges to (z(t), 0) without recourse to subsequences, as asserted in the lemma. 2

Remarks 3.3 (a) The conclusion (3.5) says in words that in the limit the curve is constrained to lie on the ζ = 0
subspace, while (3.6) says in words that in the limit all the energy is in the z variable, and this variable evolves in
a way that conserves H0(z) - this evolution is in fact the Hamiltonian evolution determined by H0(z); see (3.10).

(b) Clearly the conditions on H,H0,Λ only need to hold on some open set containing the region defined in (3.7).
Also, in (3.3) the function c0| · |p could be replaced by any function tending to +∞ at ∞.

We now consider the dynamics for (3.1) under the situation described in lemma 3.2 and assuming in addition that
the initial values z(0) = (x(0), y(0)) ∈ R2n are close to the equilibrium point (0, 0) for the real analytic Hamiltonian.
In that case it is a consequence of lemma 3.2 that for sufficiently large σ properties of the integral curves of H0 will
be inherited by those of H on finite time intervals. Theorem 3.4 expresses this fact for the particular case of the
Nekhoroshev exponential stability bound (which is recalled for H0 in theorem 5.5).

Theorem 3.4 Let H be a real analytic function of the form

H(z, ζ) = H0(z) + σΛ(z, ζ), with H0(z) = 〈α, I(z)〉+ 1

2
〈AI(z), I(z)〉+ f(z) , α ∈ Rn \ {0} , (3.11)

such that 〈AI, I〉 ≥ 1
M |I|2 and f is real analytic so that f(z) = O(z5) as |z| → 0, and also verifying (3.2)-(3.4).

Fix a ∈]0, 1
1+3n [. Then there exist positive numbers K, k (depending on a, n, α, M and ‖A‖) and θ0 (depending on

a, n, α, M , ‖A‖ and f) with the following properties. If t 7→ (zσ(t), ζσ(t)) is an integral curve of H which verifies
the conditions in lemma 3.2 for large σ > 0, and if I(0) = I(zσ(0)) is such that |I(0)| = θ2 for some 0 < θ ≤ θ0,
then I(t) = I(zσ(t)) satisfies

|I(t)− I(0)| ≤ Kθ2+a for |t| ≤ e
k
θa , (3.12)

for sufficiently large σ ≥ σ0 (depending on the initial conditions and θ).

Remark 3.5 The proof here depends upon the compactness method used to prove lemma 3.2, and does not provide
very explicit or optimal information on the number σ0 above which a bound like (3.12) holds - rather it proves that
the bound will hold eventually, along any sequence of integral curves satisfying the conditions in lemma 3.2. In this
regard, compare with the statements of theorem 4.2 and 4.6.

However, more explicit quantitative information on domains of validity for Nekhoroshev bounds can be extracted
under additional structural hypotheses as explained in theorem 3.9. It is to derive this, as well as for expository
purposes, that we now present a proof of the bound (3.12) as a large σ stability estimate for the integral curves of
H, rather than attempt to read it off from the σ = ∞ case.

Remark 3.6 To match the notation in lemma 3.2, the integral curve for H is written as t 7→ (zσ(t), ζσ(t)), but in
the proof we drop the additional σ superscript to simplify the notation.

Beginning of proof of theorem 3.4 Following [5] this will be deduced from three facts:

(a) periodic orbits are dense in a neighbourhood of the fixed point,

(b) motion in a neighbourhood of a periodic orbit satisfies long-time stability estimates, on account of the normal
form lemma 5.4, and

(c) a priori control of the effect of the transverse component ζ is provided by (3.6).

To begin with, since z(0) ∈ R2n has real components, note that |z(0)|2 =
∑n

j=1 |zj(0)|2 = 2
∑n

j=1 |Ij(0)| = 2|I(0)| =
2θ2. In what follows the parameter θ will be used as a book-keeping device, i.e. all quantities which need to be
controlled will be controlled in terms of θ. We are going to apply the normalization lemma 5.4 to H0 = H0(z),
i.e. averaging will be performed in the z variable only. Therefore we make the following modification of the notation
defined in section 2:
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Throughout this proof only, we write Dr = D r1, r2 and Dr1, r2 = {z ∈ C2n : |I − I0| < r1, |z| < r2} and drop the
third component from the definition of the corresponding norms | · |r.

First we apply corollary 5.8 with I replaced by I(0) and g = 0 in (5.26) below. Then Ω(I) = α+ AI and there
exist K1 > 0 (depending on α and A) and θ1 > 0 (depending on α, A, a and n) such that the following holds. If
|I(0)| = θ2 for some 0 < θ ≤ θ1, then there are I0 ∈ Rn and τ > 0 satisfying

(i) |I(0)− I0|∞ ≤ K1
θ2+a

τ , and

(ii) π ≤ τ ≤ 4πθ−a(n−1)

and such that ω0 = α+AI0 is τ/θ2-periodic, i.e. Tω0 ∈ 2πZn for T = τ/θ2. We will call this orbit the approximating
periodic orbit. Up to a constant, which does not affect the flow, we rewrite H0 from (3.11) as

H0(z) = 〈ω0, I〉+ 1

2
〈A(I − I0), I − I0〉+ f(z). (3.13)

We will now apply the following result on stability in a neighbourhood of periodic orbits:

Lemma 3.7 (Local Stability) Consider the Hamiltonian H from (3.11). Assume also that H0 is written as in
(3.13), with f real analytic on an open neighbourhood of D 3r with |f | 3r ≤ ε and r1, r2 > 0 such that

r1 <
1

4
r22, εM <

r21
2200

, and |I0| < r22
16
. (3.14)

Assume further that ω0 ∈ Rn is such that Tω0 ∈ 2πZn, and that for some m ∈ N and l2 > 0

54m‖A‖r1T ≤ 1

4
, m2εT <

l2r
2
1

r22
. (3.15)

Let t 7→ (z(t), ζ(t)) be an integral curve for H whose initial data (z(0), ζ(0)) are such that

σΛ(z(0), ζ(0)) ≤ r21
360M

, and |I(0)− I0| ≤ l1r1 . (3.16)

Then, for l1, l2 sufficiently small, there holds

|I(t)− I0| < r1 for |t| ≤ t∗, (3.17)

where t∗ > 0 is any time such that

t∗ ≤ 3 · 2mr1
50|ω0|r22

and t∗σ max
|t|≤t∗

Λ(z(t), ζ(t)) ≤ 8ε

5r2c2(r2)|ω0|
, (3.18)

with c2 from (3.4). To be precise, the following choices for l1, l2 will suffice:

l1 = min
{1

4
,

1

5
√
M‖A‖

}
, l2 = min

{ 1

2592
,

1

120
√
M‖A‖

}
. (3.19)

Proof of lemma 3.7 As already stated we apply the normal form lemma 5.4, specialized to the case that there is
no ζ dependence, to H0 = H0(z) so that all the conditions involving r3 or σ are to be disregarded, and also g = 0
and δ = 0. The conditions in (iv)–(vi) of that lemma are then easily seen to be satisfied as a consequence of (3.14),
(3.15) and (3.19). Hence there exists a real analytic symplectic transformation Ψ : D 2r → D 3r such that, on D2r,

H̃0(z̃) := H0 ◦Ψ(z̃) = 〈ω0, I(z̃)〉+ 1

2
〈A(I(z̃)− I0), I(z̃)− I0〉+ ĝ(z̃) + f̂(z̃)

and with the properties:

(a) |Ψ− id| 2r ≤ 18mr2
r1

εT ,

(b) |ĝ| 2r ≤ 2ε and {ĝ, h} = 0,
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(c) |f̂ | 2r ≤ 2−mε.

The total Hamiltonian is now H̃(z̃, ζ) = H̃0(z̃) + σΛ̃(z̃, ζ) where Λ(Ψ(z̃), ζ) = Λ̃(z̃, ζ) defines Λ̃. Note that in order
to distinguish integral curves of the normal form Hamiltonian H̃ from those of the original Hamiltonian H, its
z-variables are marked by a tilde; the relation is z = Ψ(z̃). We first obtain bounds for Ĩ(t)− I0 = I(z̃(t))− I0 for
the flow of H̃. We will then show that these imply (3.17) for I(t) − I0 = I(z(t)) − I0 with z(t) = Ψ(z̃(t)), using
lemma 3.8 below to ensure that z(t) ∈ D r can indeed be written thus. But for the moment we assume this and

consider an integral curve t 7→ (z̃(t), ζ(t)) of XH̃ such that t 7→ z̃(t) ∈ D 5r/3. Since in general {G(Ĩ), F (Ĩ)} = 0,

using (b) we obtain for h̃(t) = h(z̃(t)) = 〈ω0, I(z̃(t))〉 = 〈ω0, Ĩ(t)〉 the relation

dh̃

dt
= 〈Dh,XH̃〉 = {h, H̃} = {h, f̂ + σΛ̃} = 〈Dh,Xf̂ 〉+ σ〈Dh,Π1XΛ̃〉 .

Next observe that
z̃ ∈ D5r/3 and |w̃ − z̃| ≤ r1

10 r2
=⇒ w̃ ∈ D2r, (3.20)

since |w̃| ≤ |w̃ − z̃| + |z̃| < r1/10r2 + 5r2/3 < 2r2 by the condition r1 < r22/4 in (3.14); using in addition (2.1) we
obtain

|I(w̃)− I0| ≤ |I(w̃)− I(z̃)|+ |I(z̃)− I0| ≤ 1

2
(|w̃ − z̃|+ 2|z̃|)|w̃ − z̃|+ 5r1

3
< 2r1.

Thus we can bound by means of Cauchy’s estimate, cf. (5.7) below:

|Xf̂ | 5r/3 ≤
10 r2|f̂ | 2r

r1
≤ 10 r22

−mε

r1
. (3.21)

Also by Cauchy’s estimate, (3.20) and (a) we obtain

|DΨ− 1| 5r/3 ≤ 10 r2
r1

|Ψ− id| 2r ≤ 180mr22
r21

εT ≤ 180m2r22
r21

εT < 180 l2 <
1

2
, (3.22)

from which we derive the pointwise estimate |Π1XΛ̃| ≤ |∂Λ∂z ||DΨ| ≤ 3c2(r2)Λ/2, using also (3.4). It follows that, for
as long as z̃(t) remains in D 5r/3 and z(t) = Ψ(z̃(t)) ∈ D r,∣∣∣∣dh̃dt (t)

∣∣∣∣ = |〈Dh̃,Xf̂ + σΠ1XΛ̃〉| ≤
5

3
|ω0| r2

(10 r22−mε

r1
+

3σ

2
c2(r2) |Λ(z(t), ζ(t))|

)
. (3.23)

From the definition of t∗ we deduce that, for |t| ≤ t∗ as in (3.17)-(3.18),

|h̃(t)− h̃(0)| ≤ ε+
5σ

2
r2c2(r2)|ω0| |t| max

|t′|≤|t|
Λ(z(t′), ζ(t′)) ≤ 5ε .

Energy conservation H̃(z̃(t), ζ(t)) = H̃(z̃(0), ζ(0)) together with Λ ≥ 0 from (3.2) and the convexity assumption
(strict positivity of the matrix A) then give:

1

2M
|Ĩ(t)− I0|2 ≤ 1

2
‖A‖ |Ĩ(0)− I0|2 + |h̃(t)− h̃(0)|+ 2|ĝ| 5r/3 + 2|f̂ | 5r/3 + σΛ(z(0), ζ(0))

≤ 1

2
‖A‖ |Ĩ(0)− I0|2 + 5ε+ 6ε+ σΛ(z(0), ζ(0)), (3.24)

so that due to (3.14)-(3.19) and for |t| ≤ t∗:

|Ĩ(t)− I0|2 ≤ M‖A‖ |Ĩ(0)− I0|2 + 22 εM + 2MσΛ(z(0), ζ(0))

≤ M‖A‖ |Ĩ(0)− I0|2 + r21
100

+ 2MσΛ(z(0), ζ(0)) (3.25)

for as long as z̃(t) ∈ D 5r/3 and z(t) ∈ D r.
Now to deduce (3.17) it is necessary both to show that (3.25) implies the inequality in (3.17), and also to

justify the assumption that z̃(t) ∈ D 5r/3 and z(t) ∈ D r made above in deriving (3.25). To this end suppose that
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|I(0) − I0| ≤ l1r1 for an integral curve t 7→ (z(t), ζ(t)) of the original Hamiltonian vector field XH . Since we are
considering real-valued solutions of the Hamiltonian equations,

|z(0)|2 = 2|I(0)| ≤ 2(|I(0)− I0|+ |I0|)

≤ 2l1r1 +
1

8
r22 <

( l1
2
+

1

8

)
r22 ≤ r22

4
.

Therefore we have z(0) ∈ D r/2. Denote by t0 > 0 the longest time such that z(t) ∈ D r for all |t| ≤ t0.
The point of the following lemma 3.8 is to show that a sufficiently large neighbourhood of the approximating

periodic orbit is covered by the transformation Ψ (as a consequence of (a) and the various assumptions on the
parameters used). This ensures that stability information just derived for integral curves of the transformed Hamil-
tonian H̃ will imply stability information for the integral curves of H on a sufficiently large neighbourhood of this

periodic orbit. Here we write D(real)
r = D(real)

r1, r2 where

D(real)
a, b = {z ∈ R2n : |I(z)− I0| < a, |z| < b},

and similarly we denote
B(real)

r (w) = {z ∈ R2n : |z − w| < r}
for r > 0 and w ∈ R2n.

Lemma 3.8 Under the hypotheses of lemma 3.7, Ψ satisfies Ψ(D(real)
5r/3 ) ⊃ D(real)

r .

Proof of lemma 3.8 According to (a) and (3.22) we have |Ψ− id| 2r ≤ 18mr2
r1

εT =: µ and |DΨ− 1| 5r/3 < 1/2.

Hence DΨ(z) is invertible for every z ∈ D 5r/3, and accordingly Ψ : D 5r/3 → Ψ(D 5r/3) =: W is a real-analytic

diffeomorphism such that ‖DΨ−1(w)‖ ≤ 2 for w ∈ W. Now fix w ∈ D(real)
r . Then B

(real)
δ (w) ⊂ D(real)

3r/2 for δ = r1
4 r2

,

as can be shown using r1 < r22/4 and (2.1), analogously to (3.20). Furthermore, for w ∈ D(real)
r ,

|w −Ψ(w)| ≤ µ <
δ

2

due to 18mr2
r1

εT ≤ 4·18m2r22
r21

εT × r1
4r2

≤ 72 l2δ <
δ
2 . In other words, we have w ∈ B

(real)
δ/2 (Ψ(w)). Next we apply

lemma 5.9 below and use the fact that Ψ is real on real vectors, to deduce that

Ψ
(
B

(real)
δ (w)

)
⊃ B

(real)
δ/2 (Ψ(w)).

To summarize, for fixed w ∈ D(real)
r we obtain

w ∈ B
(real)
δ/2 (Ψ(w)) ⊂ Ψ

(
B

(real)
δ (w)

)
⊂ Ψ

(
D(real)

3r/2

)
⊂ Ψ(D(real)

5r/3 ),

and this concludes the proof of lemma 3.8. 2

Continuation of the proof of lemma 3.7 Due to lemma 3.8 we may write z(t) = Ψ(z̃(t)) for |t| ≤ t0 with an

integral curve t 7→ (z̃(t), ζ(t)) of XH̃ such that t 7→ z̃(t) ∈ D(real)
5r/3 . Then by (a) and (3.14)-(3.19),

|Ĩ(0)− I0| ≤ |Ĩ(0)− I(0)|+ |I(0)− I0| ≤ 1

2

(
|z̃(0)|+ |z(0)|

)
|z̃(0)−Ψ(z̃(0))|+ l1r1

≤ 1

2

(5r2
3

+ r2

) 18mr2
r1

εT + l1r1 ≤ 24m2r22
r1

εT + l1r1 ≤ (24 l2 + l1) r1. (3.26)

Then we can apply (3.25) and use t∗ ≤ T together with (3.16) to obtain

|Ĩ(t)− I0|2 ≤ M‖A‖ |Ĩ(0)− I0|2 + r21
100

+ 2MσΛ(z(0), ζ(0))

≤
(
M‖A‖ (24 l2 + l1)

2 +
1

100

)
r21 +

r21
180

≤
( 4

100
+

1

100

)
r21 +

r21
180

=
r21
20

+
r21
180

<
(r1
4

)2

(3.27)
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for |t| ≤ min{t∗, t0}, since l2, l1 are such that M‖A‖ (24 l2 + l1)
2 ≤ 4

100 = ( 15 )
2. In the same manner as for (3.26)

this in turn leads to

|I(t)− I0| ≤ |I(t)− Ĩ(t)|+ |Ĩ(t)− I0|

≤ 1

2

(
|z̃(t)|+ |z(t)|

)
|z̃(t)−Ψ(z̃(t))|+ r1

4

≤
(
24 l2 +

1

4

)
r1 <

r1
2

(3.28)

for |t| ≤ min{t∗, t0}, due to 24l2 <
1
4 . Since also r1 < r22/4, this implies that for such times

|z(t)|2 = 2|I(t)| ≤ 2
(
|I(t)− I0|+ |I0|

)
≤ 2

[r22
8

+
r22
16

]
< r22 .

Hence we see that min{t∗, t0} < t0, or in other words min{t∗, t0} = t∗. Thus (3.17) is a consequence of (3.28). 2

Completion of proof of theorem 3.4 We now aim to show that the stability bound (3.17), applied in the
neighbourhood of the approximating periodic orbit obtained prior to lemma 3.7, implies (3.12). Since f vanishes
to fifth order we take r2 = 8θ and ε = C1θ

5 to ensure that |f | 3r ≤ sup {|f(z)| : |z| ≤ 3r2} ≤ C0(3r2)
5 ≤ ε, where

C1 = 245 C0 has to be chosen large enough (depending on f). In addition, let

m = [δ θ−a] ∈ N and r1 =
Lθ2+a

τ
, (3.29)

where δ, L > 0 will be fixed below; recall that the period of the approximating periodic orbit is T = τ/θ2. We will
now verify that having fixed l1, l2 satisfying (3.19), the conditions (3.14)-(3.15) can be made to hold by making θ
sufficiently small and choosing δ, L appropriately. To start with

r1
r22

=
Lθa

64τ
≤ Lθa

64π

by (ii), and hence the first condition of (3.14) holds if θ is small enough. In addition,

mr1T = [δ θ−a]
Lθ2+a

τ

τ

θ2
≤ δL

whence we need to have

δL ≤ 1

216 ‖A‖
(3.30)

to validate the first condition of (3.15). Next,

ε

r21
=

C1θ
5τ2

L2θ4+2a
≤ 16π2C1

L2
θ1−2an

by (ii) shows that we can fulfill the second condition of (3.14) for θ sufficiently small, due to a < 1
2n . Concerning

the condition on |I0| in (3.14), here

|I0| ≤ |I(0)− I0|+ |I(0)| ≤ nK1
θ2+a

τ
+ θ2 ≤

(
nK1

θa

π
+ 1

)
θ2 ≤ 2θ2

by (i) and (ii) for θ small enough. Hence
|I0|
r22

≤ 2θ2

64θ2
<

1

16
,

and thus all of (3.14) is verified, provided that (3.30) can be ensured. To establish the second condition of (3.16),
note that

|I(0)− I0|
r1

≤ nK1
θ2+a

τ

τ

Lθ2+a
=
nK1

L

by (i). Accordingly, we need to have
nK1

L
≤ l1 (3.31)
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for l1 from (3.19). For the last condition of (3.15) finally

m2εTr22
r21

≤ δ2θ−2aC1θ
5τ3 · 64θ2

θ2L2θ4+2a
=

64C1δ
2

L2
θ1−4a τ3 ≤ 4096π3C1δ

2

L2
θ1−a(1+3n)

by (ii). Since a < 1
1+3n , the right-hand side is smaller than l2 from (3.19), if θ is sufficiently small. Altogether,

(3.14) and (3.15) will be satisfied, provided that (3.30) and (3.31) hold. This can be achieved by explicitly taking

L =
nK1

l1
and δ =

1

216 ‖A‖L
.

We thus have shown so far that there is θ0 > 0 (depending on the quantities as stated in the theorem) such that
for 0 < θ ≤ θ0 the assumptions (3.14) and (3.15) from lemma 3.7 hold, as does the second condition of (3.16). Now
fix 0 < θ ≤ θ0 and put t∗ = 3·2mr1

50|ω0|r22
(depending on θ). Then (3.6) from lemma 3.2 ensures that

lim
σ→+∞

max
|t|≤t∗

σΛ(z(t), ζ(t)) = 0 ;

(recall that (z(t), ζ(t)) = (zσ(t), ζσ(t)) in the notation of lemma 3.2). To be more explicit, the Gronwall bound
from (3.9) implies that:

t∗σ max
|t|≤t∗

Λ(zσ(t), ζσ(t)) ≤ t∗ e
c∗t∗ σΛ(zσ(0), ζσ(0)) . (3.32)

In particular, referring to the hypotheses of lemma 3.2, the first condition of (3.16) and the second condition from
(3.18) will be satisfied, if σ ≥ σ0 for an appropriate σ0 = σ0(θ) > 0 depending on the initial data and θ. Therefore
lemma 3.7 applies and we deduce from (3.17) that |I(t)− I0| < r1 for |t| ≤ t∗. Now combine this with (i) to bound,
for |t| ≤ t∗,

|I(t)− I(0)| ≤ |I(t)− I0|+ |I0 − I(0)| ≤ r1 + nK1
θ2+a

τ
≤ 2L

π
θ2+a = Kθ2+a ,

where we have defined K = 2L
π . (The penultimate inequality holds since r1 = Lθ2+a

τ and L ≥ nK1).
It remains to observe that by (ii),

t∗ =
3 · 2mLθa

3200 |ω0|τ
≥ 3 · 2mLθan

12800π|ω0|
,

so that with B = 3L
12800π|ω0| and m as in (3.29) and for θ small enough (reducing θ0 further if necessary)

ln t∗ ≥ lnB + an ln θ + (ln 2) [δ θ−a] ≥ kθ−a

for any k < (ln 2)δ, and in particular for k = ln 2
2 δ, completing the proof of (3.12) and the theorem. 2

As already remarked, theorem 3.4 does not provide very explicit quantitative information on the domains on
which the bound (3.12) holds, only the assurance that it holds for sufficiently large σ along a sequence of solutions
verifying the conditions in lemma 3.2 - this situation arises because of the implicit determination of σ0 via the
bound (3.32). However, the situation can improve in particular situations, when the nonlinear interaction has a
special structure which allows extraction of more precise information on the domains, as we now explain. We don’t
have in mind any specific application, but just want to point out an example of how variants of theorem 3.4 might
look, and how they are proved. We assume that there are additional smooth functions Jk, k = 1, . . . l, of ζ ∈ R2N

which all Poisson commute with Λ:

{Jk,Λ} =0 for k = 1, . . . , l, (3.33a)

and with the additional property that for all R > 0 there exists c3(R) > 0 such that:∣∣∣∣∂Λ∂z (z, ζ)
∣∣∣∣ ≤ c3(R)

l∑
k=1

|Jk(ζ)| for |z| ≤ R . (3.33b)

Alternatively, we may work drop (3.2) and work under the hypothesis:

|Λ(z, ζ)| +
∣∣∣∣∂Λ∂z (z, ζ)

∣∣∣∣ ≤ c3(R)

l∑
k=1

|Jk(ζ)| for |z| ≤ R . (3.33c)

Then we have the following quantitative version of theorem 3.4:
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Theorem 3.9 Let H be a real analytic function of the form (3.11) such that 〈AI, I〉 ≥ 1
M |I|2 and f is real analytic

so that f(z) = O(z5) as |z| → 0, and also verifying (3.2)-(3.3) and (3.33a)-(3.33b). Fix a ∈]0, 1
1+3n [. Then there

exist positive numbers K, k (depending on a, n, α, M and ‖A‖) and θ0 (depending on a, n, α, M , ‖A‖ and f) with
the following properties. If t 7→ (z(t), ζ(t)) is an integral curve of H and I(0) = I(z(0)) is such that |I(0)| = θ2 for
some 0 < θ ≤ θ0, then I(t) = I(z(t)) satisfies

|I(t)− I(0)| ≤ Kθ2+a for |t| ≤ e
k
θa

for initial data such that:

σ
l∑

k=1

|Jk(ζ(0))| ≤
θ4e−

k
θa

K2
and σΛ(z(0), ζ(0)) ≤ L2θ4+2an

(4π)2360M
, (3.34)

with K2 such that:
K2 ≥ 5C∗|ω0|/C1 , (3.35)

where c3(8θ) ≤ C∗ for θ ≤ 1 and C1 is as defined just prior to (3.29).
Alternatively, under the same assumptions except for the replacement of (3.2) and (3.33b) by (3.33c), and with

the condition (3.34) on the initial data replaced by:

σ
l∑

k=1

|Jk(ζ(0))| ≤ min

{
θ4e−

k
θa

K2
,

L2θ4+2an

2(4π)2360MC∗

}
, (3.36)

the same conclusion holds.

Proof The Hamiltonian is the same as in theorem 3.4, and so the proof of theorem 3.9 proceeds almost identically
to the proof of theorem 3.4 and lemmas 3.7 and 3.8. There are two points at which the argument if modified:

� firstly, the condition (3.16) required to apply lemma 3.7 is an explicit consequence of (3.29) and the second
inequality in (3.34); and

� secondly, to bound dh̃
dt the estimate (3.23) is now replaced by∣∣∣∣dh̃dt (t)
∣∣∣∣ = |〈Dh̃,Xf̂ + σΠ1XΛ̃〉| ≤

5

3
|ω0| r2

(10 r22−mε

r1
+

3σ

2
c3(r2)

l∑
k=1

|Jk(ζ(0))|
)
.

(The fact that this holds with the Jk evaluated at ζ(0) is a consequence of the assumption that they Poisson
commute with Λ and so are constants of motion.)

Now continuing the proof, to ensure that |h̃(t)− h̃(0)| ≤ 5ε for |t| ≤ e
k
θa we require

e
k
θa

5σ

2
r2c3(r2)|ω0|

k∑
l=1

|Jk(ζ(0))| ≤ 4ε

which, using the definitions r2 = 8θ and ε = C1θ
5 from the paragraph preceding (3.29), is a consequence of (3.34)

for sufficiently large K2 such that (3.35) holds. Now that the inequality |h̃(t)− h̃(0)| ≤ 5ε is derived, the remainder
of the proof is exactly as that of theorem 3.4

For the proof of the alternative version asserted in the last sentence, notice that (3.33c) and (3.36) imply that

σ max
|t′|≤|t|

Λ(z(t′), ζ(t′)) ≤ L2θ4+2an

2(4π)2360M
,

by the conservation of the {Jk} . From this the same bound (3.23) for dh
dt follows, and from then on the proof differs

only at the stage (3.24), at which point the use of Λ ≥ 0 from (3.2) is to be avoided, and replaced by

1

2M
|Ĩ(t)− I0|2 ≤ 1

2
‖A‖ |Ĩ(0)− I0|2 + 5ε+ 6ε+ 2σ max

|t′|≤|t|
Λ(z(t′), ζ(t′)) . (3.37)

With the defintions in (3.29) we have 4Mσmax|t′|≤|t| Λ(z(t
′), ζ(t′)) ≤ r21

180 which implies |Ĩ(t)− I0|2 ≤
(
r1
4

)2
as in

(3.27), and from there on the remainder of the proof is identical to that of theorem 3.4. 2
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Remark 3.10 This last quantitative result holds whenever the stated assumptions in (3.34) hold, which is in prin-
ciple more general than the assumption σ → +∞ made in theorem 3.4 (the strongly constrained case).

An example for theorem 3.9: Examples for this theorem arise naturally in systems with a continuous symmetry
group with associated conserved quantities {Jk}, the “Noether charges”. A well known example of such a conserved
quantity is the total probability in quantum mechanics,

∫
|ψ(x)|2 dx, which is the Noether charge associated to

global invariance under phase rotation of the wave function, ψ 7→ eiθψ. Coupling z to such a wave function would
correspond to an infinite dimensional transverse variable (here ζ is the wave function ψ(x)), taking us beyond the
scope of the present article. In order to obtain a simple finite dimensional model problem, we can replace the spatial
domain by a finite periodic one dimensional lattice: points are labelled by j = 1, . . . , N and a discrete wave function
ζj = (ξj , ηj) ∈ R2 or ζj = ξj + iηj ∈ C is given as a function on the lattice with periodic boundary conditions
ζj+N = ζj . In this context a natural possible lattice discretization of the quantum mechanical energy is of the form:

Λ(ζ) =
∑
j

Vj |ζj |2 +
∑

|j−j′|=1

|ζj − ζj′ |2 . (3.38)

The first term in this expression is the equivalent of the potential energy
∫
V (x)|ψ(x)|2 dx in quantum mechanics,

while the second is a discrete kinetic energy (analogous to
∫
|∇ψ(x)|2 dx in quantum mechanics). Now consider,

for example, the Hamiltonian (3.11) with H0 as described in the forgoing theorem, and with Λ as in (3.38), but
now with Vj = Vj(z). There is an overall global phase invariance ζj = ξj + iηj 7→ eiθ(ξj + iηj) and the associated
Noether charge is

J =
∑
j

|ζj |2 =
∑
j

(ξ2j + η2j )

which is a conserved quantity for the Hamiltonian dynamics determined by H = H0+σΛ. The assumptions (3.33b)
and (3.33c) hold with c3 ∼ const. (1 + maxj |∂zVj |) and theorem 3.9 thus applies. The Hamiltonian described in
this example might be regarded as a very simple caricature for the description of the interaction of a very large
molecule, described by the Hamiltonian H0, with electrons on a lattice, described by the discrete wave function
ζj in a tight binding approximation. However we do not claim that this model is realistic: for this to be justified
physically a more complicated model would be needed, including at a minimum prefactors in the above expression
with dependence on N in order to ensure that the correspondence with the quantum mechanical energy holds in
the continuum large N limit. A more complicated analysis would be required for such physically realistic systems,
but we included this model just to indicate how the structural feature involving Noether charges could be exploited
in principle.

4 Nekhoroshev stability in the case of small σ

In this section, the function t 7→
(
z(t), ζ(t)

)
∈ R2n × R2N is an integral curve of the real-analytic Hamiltonian

H(z, ζ) = 〈α, I(z)〉+ 1

2
〈AI(z), I(z)〉+ fσ(z, ζ) + σΛ(ζ) , α ∈ Rn \ {0} . (4.1)

We will consider the case that fσ is allowed to depend on σ and satisfies

|fσ(z, ζ)| ≤ C0

(
|z|5 + |ζ|2|z|4 + σ|ζ|2|z|

)
(4.2)

in a sufficiently large neighbourhood of the origin. In addition we will always assume that

〈AI, I〉 ≥ 1

M
|I|2 and Λ(ζ) ≥ |ζ|2

2
, (4.3)

and

Λ(ζ) ≤ CΛ

2
|ζ|2 and |DΛ(ζ)| ≤ CΛ|ζ|. (4.4)

(These conditions are all understood to hold on some open set in R2n×R2N in which the integral curve lies. In fact
the quadratic growth assumptions on Λ in (4.3)-(4.4) could be replaced by more general assumptions, but in order
to avoid the introduction of yet another set of parameters we will stick to the case of quadratic bounds, which is
both the most natural and the most important for applications.)

We will prove that exponential stability estimates like (3.12) hold for the projected motion in the z-plane,
together with long time bounds for ζ(t), as long as σ is sufficiently small.
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Theorem 4.1 Let t 7→
(
z(t), ζ(t)

)
be an integral curve of the real-analytic Hamiltonian H verifying (4.1)-(4.4).

There exist constants σ0, k > 0 and 0 < p1 < p2 < 1, 1 < 2p2 < q1, with the following properties. If 0 < σ ≤ σ0 and
if the initial data are such that I(0) = I(z(0)) and Λ(0) = Λ(ζ(0)) satisfy

|I(0)| = O(σp1) , σΛ(0) = O(σq1) ,

then the quantities I(t) = I(z(t)) and Λ(t) = Λ(ζ(t)) satisfy

|I(t)− I(0)| = O(σp2) and σΛ(t) = O(σ2p2) for |t| ≤ e
k

σq2 ,

where q2 = p2 − p1. All of the exponents and implicit constants are independent of N .

This theorem is a consequence of:

Theorem 4.2 Let t 7→
(
z(t), ζ(t)

)
be an integral curve of the real-analytic Hamiltonian H verifying (4.1)-(4.4).

Fix a ∈]0,min{ 1
4(n−1) ,

1
1+3n}[. Then there exist positive numbers CE, θ0 < 1, K, k with the following properties. If

the initial data are such that I(0) = I(z(0)) and Λ(0) = Λ(ζ(0)) satisfy

|I(0)| ≤ θ2 , σΛ(0) ≤ CEθ
4+2an and σ = θ2+2a(2n−1) , (4.5)

for 0 < θ ≤ θ0, then I(t) = I(z(t)) and Λ(t) = Λ(ζ(t)) satisfy

|I(t)− I(0)| ≤ Kθ2+a and σΛ(t) ≤ Kθ4+2a for |t| ≤ e
k
θa . (4.6)

The numbers CE, θ0, K, k depend on a, n, ‖A‖, C0, M , CΛ, but not on N .

Remarks 4.3 (a) Theorem 4.1 is a direct consequence of theorem 4.2: it suffices to take a ∈]0,min{ 1
4(n−1) ,

1
1+3n}[

and define:

p1 =
2

2 + 2a(2n− 1)
, q1 =

4 + 2an

2 + 2a(2n− 1)
,

p2 =
2 + a

2 + 2a(2n− 1)
, q2 =

a

2 + 2a(2n− 1)
.

Notice that a < 1
1+3n <

1
2(n−1) implies that p2 thus defined satisfies 2p2 > 1.

(b) The idea of the proof is to combine Nekhoroshev estimates for the dynamics of z with a priori estimates for ζ,
which derive from the lower bound for Λ in (4.3). The crucial point is to understand the flow of energy, and show
that it can be controlled on very long time scales. This is achieved via the use of a normal form for the Hamiltonian
(lemma 5.4), which is valid in the neighbourhood of a (dense) set of approximating periodic orbits.

(c) Regarding the allowed conditions on f , the crucial thing is that on an appropriate neighbourhood f is bounded
by a number ε satisfying the conditions in (4.8) and (4.9) and satisfying the scaling relations in the paragraph
“Completion of proof of theorem 4.2”, which ensure applicability of the normal form lemma in §5.1.2; validation
of these conditions relies upon assumptions on f like (4.2). This latter condition may not be the most general, but
we have not been able to include certain terms, in particular those linear in ζ (except in as much as they can be
bounded by the terms on the right hand side of (4.2) by e.g. Cauchy-Schwarz). However, such terms can sometimes
be removed beforehand, e.g. terms of the form “z ζ” can potentially be eliminated by symplectic diagonalization
when setting up the problem.

Beginning of proof of theorem 4.2 We follow the same basic strategy as in the proof of theorem 3.4, and start
in identical fashion by introducing an approximating periodic orbit by corollary 5.8 (with I replaced by I(0) and
g = 0). This provides a frequency vector ω0 = α+AI0 which is τ/θ2-periodic, i.e. Tω0 ∈ 2πZn for T = τ/θ2, such
that:

(i) max
1≤j≤n

|Ij(0)− I0j | ≤ CA
θ2+a

τ , and

(ii) π ≤ τ ≤ 4πθ−a(n−1).
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This is a periodic orbit for the unperturbed z part of the motion. The number CA is just a bound for the inverse
of the map I 7→ α+AI and depends on M , n. Up to a constant, which does not affect the flow, we rewrite H as:

H(z, ζ) = 〈ω0, I〉+ 1

2
〈A(I − I0), I − I0〉+ fσ(z, ζ) + σΛ(ζ) . (4.7)

We will now apply the following result on stability in a neighbourhood of periodic orbits, which is the analogue of
lemma 3.7:

Lemma 4.4 (Stability in a neighbourhood of a periodic orbit) Assume that ω0 ∈ Rn is such that Tω0 ∈
2πZn. Consider a Hamiltonian of the form (4.7), verifying (4.3) and (4.4), which is real analytic on an open
neighborhood of D 3r so that |fσ| 3r ≤ ε and with r1, r2, r3 > 0 such that

r1 < min
{1

4
r22 , 2r2r3

}
, εM < l0r

2
1 , |I0| < r22

16
, and r21 ≤ 4σMr23 , (4.8)

for some positive l0. Assume further m is a positive integer such that

54m‖A‖r1T ≤ 1

6
, m2εT <

l2r
2
1

r22
, and CΛσmT ≤ r1

54r2r3
. (4.9)

Then for initial data satisfying

|I(0)− I0| ≤ l1r1, σΛ(0) ≤ r21
200M

(4.10)

and with l0, l1, l2 > 0 sufficiently small (depending only on M , ‖A‖)

|I(t)− I0| ≤ r1, σΛ(t) ≤ r21
16M

, and |ζ(t)| ≤ r3 for |t| ≤ t∗ =
3 · 2mr1
10|ω0|r22

. (4.11)

To be specific the following choices for l0, l1, l2 will suffice:

l0 =
1

2200
, l1 = min

{1

4
,

1

20
√
M‖A‖

}
, l2 = min

{ 1

3888
,

1

480
√
M‖A‖

}
. (4.12)

Proof of lemma 4.4 We apply the normal form lemma 5.4 with g and δ set to zero: the conditions in (iv)–(vi)
of that lemma are then easily seen to be satisfied as a consequence of (4.8)-(4.9), with l2 as in (4.12). Hence there
exists a real analytic symplectic transformation Ψ : D 2r → D 3r , such that on D2r,

H̃ := H ◦Ψ = 〈ω0, I(z̃)〉+ 1

2
〈A(I(z̃)− I0), I(z̃)− I0〉+ ĝ(z̃, ζ̃) + f̂σ(z̃, ζ̃) + σΛ(ζ̃)

and with the properties:

(a) |Ψ− id| 2r ≤ 18mr2
r1

εT =: µ,

(b) |ĝ| 2r ≤ 2ε and {ĝ, h} = 0 for h = 〈ω0, I〉,

(c) |f̂σ| 2r ≤ 2−mε.

(Notice that σ is fixed in lemma 5.4, so that lemma can be applied to fσ depending on σ and yields a new f̂σ, also
depending on σ, obeying the bound in (c)). The variables in the normal form Hamiltonian H̃ are distinguished by
a tilde, and are related to the original variables by (z, ζ) = Ψ(z̃, ζ̃). The crucial point is the small rate of change
of h̃(t) = h(z̃(t)) = 〈ω0, Ĩ(t)〉, where t 7→

(
z̃(t), ζ̃(t)

)
∈ D 2r is an integral curve for XH̃ and we write Ĩ(t) and Λ̃(t)

in place of I(z̃(t)) and Λ(ζ̃(t)), respectively. Calculating the derivative, using (b) and the fact that Λ depends only
on the transverse variable ζ̃, we find:

dh̃

dt
= 〈Dh,XH̃〉 = {h, H̃} = {h, f̂σ} = 〈Dh,Xf̂σ

〉.
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Since h(z̃) = 〈ω0, I(z̃)〉 depends only on z̃ this can be estimated using only a bound for Π1Xf̂σ
which can be

obtained in the same way as (3.20)-(3.21):

|Π1Xf̂σ
|
5r/3

≤
10 r2|f̂σ| 2r

r1
≤ 10 r22

−mε

r1

for as long as the solution remains in D 5r/3, during which time:∣∣∣∣dh̃dt
∣∣∣∣ = |〈Dh,Xf̂σ

〉| ≤ 5

3
|ω0| r2 |Xf̂σ

|
5r/3

≤ 50 |ω0|r22 2−mε

3r1
. (4.13)

Energy conservation, the convexity assumption (strict positivity of the matrix A) and the coercivity assumption
(4.3) on Λ then imply:

1

2M
|Ĩ(t)− I0|2 + σ

2
|ζ̃(t)|2 ≤ 1

2
‖A‖ |Ĩ(0)− I0|2 + |h̃(t)− h̃(0)|+ 2|ĝ| 5r/3 + 2|f̂σ| 5r/3 + σΛ̃(0)

≤ 1

2
‖A‖ |Ĩ(0)− I0|2 + 50 |ω0|r22 2−mε

3r1
|t|+ 6ε+ σΛ̃(0). (4.14)

To go further we must relate the initial data in the original and tilde variables. By (4.10) we know |I(0) − I0| ≤
l1r1 < r1/2, and since we are considering real-valued solutions of the Hamiltonian equations,

|z(0)|2 = 2|I(0)| ≤ 2(|I(0)− I0|+ |I0|)

≤ 2l1r1 +
1

8
r22 <

( l1
2
+

1

8

)
r22 ≤ r22

4
,

and also |ζ(0)|2 ≤ 2Λ(0) < ( r32 )
2 by the final conditions in (4.8) and (4.10) of the lemma and (4.3). Therefore we

have
(z(0), ζ(0)) ∈ D r/2.

But (a) and (4.8)-(4.9) then imply that

|z̃(0)| ≤ |z(0)|+ 18mr2
r1

εT ≤ |z(0)|+ 18l2r1
r2

≤ |z(0)|+ 9

2
l2r2,

so that for l2 as in (4.12) we get |z̃(0)| ≤ 5r2
3 . But then, using (a) again,

|Ĩ(0)− I0| ≤ |Ĩ(0)− I(0)|+ |I(0)− I0| ≤ 1

2

(
|z̃(0)|+ |z(0)|

)
|z̃(0)−Ψ(z̃(0))|+ l1r1

≤ 1

2

(5r2
3

+ r2

) 18mr2
r1

εT + l1r1 ≤ 24m2r22
r1

εT + l1r1 ≤ (24 l2 + l1) r1 (4.15)

by (4.9) and (4.10). Thus restricting |t| as in (4.11) we obtain from (4.14):

|Ĩ(t)− I0|2 ≤M‖A‖ (24 l2 + l1)
2r21 + 2M(11 ε+ σΛ̃(0)). (4.16)

It remains to consider Λ̃(0). By the fundamental theorem of calculus and the assumption (4.4) on |DΛ| we have

|Λ(ζ)− Λ(ζ̃)| ≤ CΛ(|ζ|µ+ µ2),

since |ζ̃ − ζ| ≤ µ by (a). From (4.8) and (4.9) it follows that µ < r3 and thus

σ|Λ(0)− Λ̃(0)| ≤ 2σCΛr3µ =
36σCΛmr2r3εT

r1
≤ 36σCΛmr1r2r3l0T

M
≤ 36l0r

2
1

54M
≤ r21

200M
(4.17)

due to l0 ≤ 3/400. Hence, using also the final condition in (4.10), σΛ̃(0) ≤ r21
100M and so by (4.16), since the

conditions in (4.12) ensure that (24 l2 + l1)
√
M‖A‖ ≤ 1

10 ,

|Ĩ(t)− I0|2 ≤
( 1

100
+ 22 l0 +

1

50

)
r21 <

(r1
4

)2

. (4.18)
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Using the final condition in (4.8) we have similarly from (4.14):

|ζ̃(t)|
2
≤ 2Λ̃(t) ≤ ‖A‖

σ
(24 l2 + l1)

2r21 +
22 ε

σ
+ 2Λ̃(0) <

r21
25σM

<
(r3
2

)2

, (4.19)

for as long as
(
z̃(t), ζ̃(t)

)
∈ D 5r/3 and with |t| restricted as in (4.11).

Now to deduce (4.11) it is necessary to transfer the information in (4.18)–(4.19) back to bounds on the original
variables z, ζ, Λ, and I − I0. So let t 7→ (z(t), ζ(t)) ∈ R2n × R2N be the integral curve of the original Hamiltonian
vector field XH . Since (z(0), ζ(0)) ∈ D r/2, we can define t0 > 0 to be the longest time such that (z(t), ζ(t)) ∈ D r

for all |t| ≤ t0, since such a t0 > 0 exists by continuity. The point of the following lemma 4.5 is to show that a
sufficiently large neighbourhood (to be precise D r) of the approximating periodic orbit determined by I0 is covered
by the transformation Ψ, as a consequence of (a) and the various assumptions on the parameters used. This ensures
that stability information derived for integral curves of the transformed Hamiltonian H̃ does indeed imply stability
information for the integral curves of H on a sufficiently large neighbourhood of this periodic orbit. In what follows

we write D(real)
r = D r ∩ (R2n × R2N ), and similarly we denote

B
(real)
δ (w, η) = {(z, ζ) ∈ R2n × R2N : |z − w|+ |ζ − η| < δ}

for δ > 0 and (w, η) ∈ R2n × R2N .

Lemma 4.5 Under the hypotheses of lemma 4.4, Ψ satisfies Ψ(D(real)
5r/3 ) ⊃ D(real)

r .

Proof of lemma 4.5 According to (a) we have |Ψ− id| 2r ≤ µ = 18mr2
r1

εT . Thus from (3.20) in conjunction with

Cauchy’s estimate and (4.8)–(4.12) we obtain:

|DΨ− 1| 5r/3 ≤ max
{ 3

r3
,
10 r2
r1

}
|Ψ− id| 2r

≤ 180mr22
r21

εT ≤ 180m2r22
r21

εT < 180 l2 <
1

2
.

Hence DΨ(z) is invertible for every z ∈ D 5r/3, and accordingly Ψ : D 5r/3 → Ψ(D 5r/3) =: W is a real-analytic

diffeomorphism such that ‖DΨ−1(w, η)‖ ≤ 2 for (w, η) ∈ W. Now fix (w, η) ∈ D(real)
r . Then B

(real)
δ (w, η) ⊂ D(real)

3r/2

for δ = r1
4 r2

< r3
2 , as can be shown using the first condition in (4.8) and (2.1), analogously to (3.20). Furthermore,

for (w, η) ∈ D(real)
r ,

|(w, η)−Ψ(w, η)| ≤ µ <
δ

2

due to 18mr2
r1

εT ≤ 4·18m2r22
r21

εT × r1
4r2

≤ 72 l2δ <
δ
2 . In other words, we have (w, η) ∈ B

(real)
δ/2

(
Ψ(w, η)

)
. Next we

apply lemma 5.9 below, and use the fact that Ψ is real on real vectors, to deduce that

Ψ
(
B

(real)
δ (w, η)

)
⊃ B

(real)
δ/2

(
Ψ(w, η)

)
.

To summarize, for fixed (w, η) ∈ D(real)
r we obtain

(w, η) ∈ B
(real)
δ/2

(
Ψ(w, η)

)
⊂ Ψ

(
B

(real)
δ (w, η)

)
⊂ Ψ

(
D(real)

3r/2

)
⊂ Ψ(D(real)

5r/3 ),

and this concludes the proof of lemma 4.5. 2

Continuation of the proof of lemma 4.4 Due to lemma 4.5, and referring to the definition of t0, we may write
(z(t), ζ(t)) = Ψ(z̃(t), ζ̃(t)) for |t| ≤ t0 with an integral curve

t 7→
(
z̃(t), ζ̃(t)

)
∈ D(real)

5r/3

of XH̃ . Then we can apply (4.18)-(4.19) to obtain |Ĩ(t) − I0| < r1/4 and |ζ̃(t)| < r3/2 for |t| ≤ min{t∗, t0}, where
t∗ = 3·2mr1

10|ω0|r22
. In the same manner as for (4.15) this in turn leads to

|I(t)− I0| ≤ |I(t)− Ĩ(t)|+ |Ĩ(t)− I0|

≤ 1

2

(
|z̃(t)|+ |z(t)|

)
|z̃(t)−Ψ(z̃(t))|+ r1

4

≤
(
24 l2 +

1

4

)
r1 <

r1
2

(4.20)
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for |t| ≤ min{t∗, t0} and as 24l2 <
1
4 . Since also r1 < r22/4, this implies that for such times

|z(t)|2 = 2|I(t)| ≤ 2
(
|I(t)− I0|+ |I0|

)
≤ 2

(r22
8

+
r22
16

)
< r22. (4.21)

Also, as in the derivation of (4.17) and by (4.19), we have for |t| ≤ min{t∗, t0}

σΛ(t) ≤ σ|Λ(t)− Λ̃(t)|+ σΛ̃(t) ≤ 2CΛr3σµ+ σΛ̃(t) ≤ r21
200M

+
r21

50M
<

r21
16M

, (4.22)

and furthermore by (a),

|ζ(t)| ≤ |ζ̃(t)− ζ(t)|+ |ζ̃(t)| ≤ µ+
r3
2
< r3, (4.23)

the latter since µ ≤ 18l2r1/r2 < 36l2r3 < r3/2. Altogether from (4.21) and (4.23) we conclude that min{t∗, t0} < t0,
or in other words min{t∗, t0} = t∗, and so the assertions in (4.11) follow as a consequence of (4.20), (4.22), and
(4.23). 2

Completion of proof of theorem 4.2 We now aim to show that the stability bound (4.11), applied in the
neighbourhood of the approximating periodic orbit obtained prior to lemma 4.4, implies (4.6). Recall that the
period of the approximating periodic orbit is T = τ/θ2, and define r2 = 8θ and

m = [δ θ−a], r1 =
Lθ2+a

τ
, and r3 = Pθ1+2a(1−n), (4.24)

where δ, L, P > 0 will be fixed below. To ensure that |fσ| 3r ≤ ε define ε = C1θ
5, so that

|fσ| 3r ≤ sup {|fσ(z, ζ)| : |z| ≤ 3r2, |ζ| ≤ r3} ≤ C0

[
(3r2)

5 + r23(3r2)
4 + σr23(3r2)

]
≤ ε ,

with the choice C1 = (245 + 244P 2 + 24P 2)C0; here we have used θ < 1, σ ≤ θ2+4a(n−1) due to (4.5), and the
restriction a < 1

4(n−1) from the beginning of the theorem statement. We will now verify that having defined

l0, l1, l2 > 0 by (4.12), the conditions (4.8)–(4.10) can be made to hold by making θ sufficiently small and choosing
δ, L, P appropriately.

The conditions in (4.8). To start with

r1
r22

=
Lθa

64τ
≤ Lθa

64π
and

r1
r2r3

≤ Lθa(2n−1)

8πP

by (ii), and hence the first condition of (4.8) holds if θ is small enough (depending upon L, P , a, n). Next,

ε

r21
=

C1θ
5τ2

L2θ4+2a
≤ 16π2C1

L2
θ1−2an

by (ii) shows that we can fulfil the second condition of (4.8) for θ sufficiently small (depending upon L, C0, P , a,
n), due to a < 1

2n . Concerning the condition on |I0| in (4.8), here

|I0| ≤ |I(0)− I0|+ |I(0)| ≤ nCA
θ2+a

τ
+ θ2 ≤

(
nCA

θa

π
+ 1

)
θ2 ≤ 2θ2

by (i) and (ii) for θ small enough (depending upon CA, a, n). Hence

|I0|
r22

≤ 2θ2

64θ2
<

1

16
.

The final condition in (4.8) reads as

1 ≥ r21
4σMr23

=
L2

4MP 2τ2

recall (4.5). Since τ ≥ π, this follows from
L2

P 2
≤ 4π2M. (4.25)
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The conditions in (4.9). Next

mr1T = [δ θ−a]
Lθ2+a

τ

τ

θ2
≤ δL

whence the restriction

δL ≤ 1

324 ‖A‖
(4.26)

is sufficient to validate the first condition of (4.9). For the second condition of (4.9) calculate

m2εTr22
r21

≤ δ2θ−2aC1θ
5τ3 × 64θ2

θ2L2θ4+2a
=

64C1δ
2

L2
θ1−4a τ3 ≤ 4096π3C1δ

2

L2
θ1−a(1+3n)

by (ii). Since a < 1
1+3n , the right-hand side is smaller than l2 from (4.12), if θ is sufficiently small (depending upon

δ, L, C0, P , a, n). The final condition in (4.9) is

1 ≤ r1
54CΛσmTr2r3

=
Lθa(1−2n)

432CΛPτ2 [δθ−a]
,

which due to (ii) is a consequence of 432CΛP (4π)
2[δθ−a] ≤ Lθ−a. This in turn holds if

δP ≤ L

6912π2CΛ
. (4.27)

The conditions in (4.10). The first one holds because

|I(0)− I0|
r1

≤ nCA
θ2+a

τ

τ

Lθ2+a
=
nCA

L

by (i). Accordingly, we need to have
nCA

L
≤ l1 (4.28)

for l1 from (4.12). The second condition holds because r1 = Lθ2+a

τ ≥ Lθ2+an

4π by (ii), so that due to (4.5)

σΛ(0) ≤ CEθ
4+2an ≤ CE(4π)

2r21
L2

=
r21

200M
, taking CE =

L2

(4π)2200M
.

Altogether, the conditions necessary to apply lemma 4.4 will be satisfied provided that the restrictions in (4.25),
(4.26), (4.27) and (4.28) hold. The latter can be achieved by explicitly taking

L =
nCA

l1
, P =

L

2π
√
M

and δ = min
{ 1

324 ‖A‖L
,

L

6912π2CΛP

}
.

Therefore lemma 4.4 can be used, and we deduce from (4.11) that

|I(t)− I0| ≤ r1, σΛ(t) ≤ r21
16M

, and |ζ(t)| ≤ r3 for |t| ≤ 3× 2mr1
10|ω0|r22

=: t∗.

Now combine the former with (i) to bound

|I(t)− I(0)| ≤ |I(t)− I0|+ |I0 − I(0)| ≤ r1 + nCA
θ2+a

τ
≤ 2L

π
θ2+a

(since clearly L > nCA) for |t| ≤ t∗. Thus, recalling that τ ≥ π by (ii), we can achieve the bounds in (4.6) with

K = max
{2L

π
,

L2

16Mπ2

}
,

and

t∗ =
3× 2mLθa

640 |ω0|τ
≥ 3× 2mLθan

2560π|ω0|
.
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It follows that with B = 3L
2560π|ω0| and m as in (4.24),

ln t∗ = lnB + an ln θ + (ln 2) [δ θ−a] ≥ k θ−a ,

for θ small enough and any k < (ln 2)δ, thus completing the proof of (4.6). 2

In some applications it may be desirable to prove that the stability estimates hold for sufficiently small σ in an
open set in R2n which is essentially determined by the unperturbed z motion. In these circumstances the following
variant of theorem 4.2 is natural:

Theorem 4.6 Let t 7→
(
z(t), ζ(t)

)
be an integral curve of the real-analytic Hamiltonian H verifying (4.1), (4.3)-

(4.4) and
|fσ(z, ζ)| ≤ C0

(
|z|5 + σ|ζ|2|z|

)
(in place of (4.2)). Fix a ∈]0,min{ 1

4(n−1) ,
1

1+3n}[. Then there exist positive numbers CE, θ0 < 1, K, k with the

following properties. If the initial data are such that I(0) = I(z(0)) and Λ(0) = Λ(ζ(0)) satisfy

|I(0)| ≤ θ2 , σΛ(0) ≤ CEθ
4+2an and 0 < σ ≤ θ2+2a(2n−1) ,

for 0 < θ ≤ θ0, then I(t) = I(z(t)) and Λ(t) = Λ(ζ(t)) satisfy the stability estimate (4.6) as in theorem 4.2.

Proof of theorem 4.6 Only a small modification of the proof of theorem 4.2 is needed. We start by using periodic
approximation and lemma 4.4 in identical fashion, but then in (4.24) replace the definition of r3 by

r3 =
Pθ2+a

√
σ

(4.29)

(leaving the definitions of r1, r2,m unchanged). When σ is equal to its maximum allowed value, θ2+2a(2n−1), this
reproduces the value of r3 in (4.24), but as σ gets smaller r3 defined in (4.29) increases in such a way that σr23 is
unchanged. With this understood, it is easy to see that the conditions (4.9)-(4.10) in lemma 4.4 continue to hold
with the new definition of r3, and

|fσ| 3r ≤ sup {|fσ(z, ζ)| : |z| ≤ 3r2, |ζ| ≤ r3} ≤ C0

[
(3r2)

5 + σr23(3r2)
]
≤ ε ,

so we may set ε = C2θ
5, with the choice C2 = (245+24P 2)C0. From this, the estimate (4.6) follows as a consequence

of lemma 4.4, exactly as in the completion of the proof of theorem 4.2. 2

5 Some auxiliary results

In this section we first prove the normal form results used in the main text, then as an aside we recall in section
5.2 the classical Nekhoroshev stability estimate (which corresponds to N = 0, i.e. no transversal components), and
finally some technical results are collected in section 5.3.

5.1 Transformation to normal form

In order to make this paper self-contained, and for convenience of the reader, we include a full proof of a result
concerning a normal form transformation which in principle is known and variants of which could also be found
in other works [3, 9, 10]. However, since we needed a precise statement on how certain quantities depend on the
assumptions, we feel it is appropriate to include the proof in full. In section 5.1.1 we do a single step of improvement
of the interaction term, while the full normal form transformation in section 5.1.2 is then obtained by iteratively
applying this single step.

The actual application of the normal form lemma 5.4 to prove stability theorems requires validation of the
hypotheses (i)-(vi), which requires assumptions on f such as (4.2). However, the results of this section hold for
general analytic f satisfying the hypotheses of the lemmas which follow.

19



5.1.1 One step improvement of the interaction term

We start with an integrable Hamiltonian 〈ω0, I〉 + 1
2 〈A(I − I0), I − I0〉 and a further Hamiltonian Λ(ζ) on R2N .

We will introduce a coupling and use the following lemma iteratively to successively reduce the interaction. In the
proof we will sometimes abbreviate:

h(z) = 〈ω0, I(z)〉 and g0(z) =
1

2
〈A(I(z)− I0), I(z)− I0〉. (5.1)

Lemma 5.1 (Iteration step) Consider the Hamiltonian

H(z, ζ) = 〈ω0, I(z)〉+ 1

2
〈A(I − I0), I − I0〉+ g(z, ζ) + f(z, ζ) + σΛ(ζ),

where ω0, I0 ∈ Rn, A ∈ Rn×n is a symmetric matrix and T, σ > 0 are fixed such that Tω0 ∈ 2πZn holds. The
functions g and f are assumed to be real analytic on an open set containing Dr for r = (r1, r2, r3) with r1, r2, r3 > 0,
whereas Λ is assumed to be real analytic on an open set containing {|ζ| ≤ r3}. We suppose that for some δ, ε > 0
and some constant CΛ > 0,

(i) |g| r ≤ δ and {g, h} = 0,

(ii) |f | r ≤ ε,

(iii) |DΛ(ζ)| ≤ CΛ|ζ| for |ζ| ≤ r3.

If ρ1 ∈]0, r1[, ρ2 ∈]0, r2[, ρ3 ∈]0, r3[ are such that

εT <
1

9

(
min

{ρ1
r2
, ρ2, ρ3

})2

, (5.2)

then there exists a real analytic symplectic transformation

Φ : Dr−ρ → Dr

such that, on Dr−ρ,

H ◦ Φ = 〈ω0, I(z)〉+ 1

2
〈A(I − I0), I − I0〉+ g+(z, ζ) + f+(z, ζ) + σΛ(ζ) (5.3)

and with the properties:

(a) |Φ− id| r−ρ ≤ 3 εT

min{ρ1

r2
, ρ2, ρ3}

,

(b) |g+| r ≤ δ + ε and {g+, h} = 0,

(c) |f+|r−ρ ≤
[
6‖A‖r1r2

ρ2
+

36 (δ + ε)

(min{ρ1

r2
, ρ2, ρ3})2

+
3σCΛr3
2ρ3

]
εT.

Proof of lemma 5.1 We start by averaging over the flow generated by h: let

f̄(z, ζ) =
1

T

∫ T

0

(f ◦Xt
h)(z, ζ) dt. (5.4)

Explicitly,

Xt
h(z, ζ) = (z1(t), . . . , zn(t), ζ),

zj(t) = Rj(t)zj , zj = (xj , yj),

Rj(t) =

(
cos(ω0

j t) sin(ω0
j t)

− sin(ω0
j t) cos(ω0

j t)

)
.
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Since Tω0 ∈ 2πZn we get Rj(t + T ) = Rj(t) and the flow Xt
h is T -periodic. In addition the matrices are real and

RT
j Rj = id, so that |z(t)| = |z(0)| and Ij(t) = (xj(t)

2 + yj(t)
2)/2 = Ij(0). Then Xt

h leaves invariant every domain

Dr; in particular, f̄ is well defined on Dr, the domain of f , and |f̄ | r ≤ |f | r ≤ ε. Now define

ϕ(z, ζ) =
1

T

∫ T

0

t ((f − f̄) ◦Xt
h)(z, ζ) dt (5.5)

which is well defined on D r and satisfies

{ϕ, h} = f − f̄ and |ϕ| r ≤ T |f | r ≤ εT. (5.6)

[To establish (5.6), we use

d

ds

[
s (f − f̄) ◦Xt+s

h

]
= s

d

ds

[
(f − f̄) ◦Xt+s

h

]
+ (f − f̄) ◦Xt+s

h

= s
d

dt

[
(f − f̄) ◦Xt+s

h

]
+ (f − f̄) ◦Xt+s

h ,

which upon integration
∫ T

0
ds yields

T (f − f̄) ◦Xt+T
h =

d

dt

∫ T

0

s (f − f̄) ◦Xt+s
h ds+

∫ T

0

(f − f̄) ◦Xt+s
h ds.

Therefore

{ϕ, h} = {ϕ, h} ◦Xt
h

∣∣∣
t=0

=
d

dt

(
ϕ ◦Xt

h

) ∣∣∣
t=0

=
1

T

d

dt

(∫ T

0

s (f − f̄) ◦Xt+s
h ds

) ∣∣∣∣
t=0

= f − f̄ − 1

T

∫ T

0

(f − f̄) ◦Xs
h ds

= f − f̄ ,

(as a consequence of XT
h = id and the fact that f̄ ◦Xs

h is independent of s since

d

ds

(
f̄ ◦Xs

h

)
=

d

ds

(
1

T

∫ T

0

f ◦Xs+t
h dt

)
=

1

T

∫ T

0

d

dt
(f ◦Xs+t

h ) dt = 0,

so that the integral in the penultimate line is zero.) The formula for ϕ can be estimated in the obvious way given
the remarks already made on the action of Xt

h, completing the proof of (5.6).]
Estimates for the derivatives of ϕ follow from Cauchy’s theorem:∣∣∣∣∂ϕ∂z

∣∣∣∣
r−ρ/3

≤
3|ϕ|r

min{ρ1

r2
, ρ2}

,

∣∣∣∣∂ϕ∂ζ
∣∣∣∣
r−ρ/3

≤
3|ϕ|r
ρ3

, (5.7)

since (z, ζ) ∈ Dr−ρ/3 and |z − w| ≤ 1
3 min{ρ1

r2
, ρ2} implies (w, ζ) ∈ Dr. In fact, by (2.1),

|I(w)− I0| ≤ |I(w)− I(z)|+ |I(z)− I0| ≤ 1

2
|w − z|(|w − z|+ 2|z|) + r1 − ρ1/3

<
ρ1
6r2

(
ρ2/3 + 2(r2 − ρ2/3)

)
+ r1 − ρ1/3 < r1.

This implies bounds for the corresponding Hamiltonian vector field Xϕ:∣∣Π1Xϕ

∣∣
r−ρ/3

≤ 3 εT

min{ρ1

r2
, ρ2}

,
∣∣Π2Xϕ

∣∣
r−ρ/3

≤ 3 εT

ρ3
. (5.8)

Remark 5.2 These Hamiltonian vector fields have, respectively, 2n and 2N components and the bounds (5.8) hold
using the Euclidean norm with respect to these components; see [5, Lemma 1] or [6, Prop. 3 in §6] for an abstract
treatment for maps between Banach spaces.
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We now introduce

Φ = X1
ϕ, (the time one map of the flow of ϕ)

g+ = g + f̄ , (5.9)

f+ =

∫ 1

0

{g0 + g + ft, ϕ} ◦Xt
ϕ dt + σ (Λ ◦ Φ− Λ), (5.10)

where g0 is as in (5.1) and ft = tf + (1− t)f̄ for t ∈ [0, 1]. To verify that (5.3) holds with the properties asserted,
observe that

d

dt

[
(g0 + g + ft) ◦Xt

ϕ

]
= {g0 + g + ft, ϕ} ◦Xt

ϕ + (f − f̄) ◦Xt
ϕ,

and consequently

(g0 + g + f) ◦ Φ− (g0 + g + f̄) =

∫ 1

0

{g0 + g + ft, ϕ} ◦Xt
ϕ dt+

∫ 1

0

(f − f̄) ◦Xt
ϕ dt. (5.11)

Since
d

dt

(
h ◦Xt

ϕ

)
= −{ϕ, h} ◦Xt

ϕ = − (f − f̄) ◦Xt
ϕ

by (5.6), it follows from (5.11) that

(g0 + g + f + h) ◦ Φ− (g0 + g + f̄ + h) =

∫ 1

0

{g0 + g + ft, ϕ} ◦Xt
ϕ dt.

Thus

H ◦ Φ = (h+ g0 + g + f) ◦ Φ+ σΛ ◦ Φ
= h+ g0 + g + f̄ + σΛ + σ (Λ ◦ Φ− Λ)

+

∫ 1

0

{g0 + g + ft, ϕ} ◦Xt
ϕ dt

= h+ g0 + g+ + σΛ + f+

which is the form of H ◦ Φ asserted in (5.3), with the functions g+ and f+ being defined in (5.9) and (5.10),
respectively. To check the estimate (c) in the lemma we split up f+ as follows:

f+ =

∫ 1

0

{g0, ϕ} ◦Xt
ϕ dt+

∫ 1

0

{g + ft, ϕ} ◦Xt
ϕ dt+ σ (Λ ◦ Φ− Λ)

= f+, 1 + f+, 2 + f+, 3. (5.12)

In order to derive the bounds for the f+, j quantities and to justify the preceding calculation we summarize some
mapping properties of the flows in the following proposition, thus also establishing statement (a) in the lemma since
Φ = X1

ϕ.

Proposition 5.3 (Mapping properties for the flows Xt
ϕ and Xt

g0) Under the assumptions of lemma 5.1 the
Hamiltonian flows generated by ϕ and g0 have the following properties:

(i) For real times |t| ≤ 1, the flow Xt
ϕ satisfies

Xt
ϕ : Dr−ρ → Dr−2ρ/3, (5.13)

Xt
ϕ : Dr−2ρ/3 → Dr−ρ/3 and (5.14)

|Xt
ϕ − id|

r−2ρ/3
≤ |Xϕ| r−ρ/3 |t| ≤

3 εT

min{ρ1

r2
, ρ2, ρ3}

, (5.15)

and for complex times t such that

|t| < λ for λ =
1

18 εT

(
min

{ρ1
r2
, ρ2, ρ3

})2

(5.16)

the flow Xt
ϕ is analytic on Dr−ρ/6 and satisfies

Xt
ϕ : Dr−2ρ/3 → Dr−ρ/2 ⊂ Dr−ρ/3. (5.17)
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(ii) For complex times t such that

|t| < τ for τ =
ρ2

3‖A‖ r1r2
(5.18)

the flow Xt
g0 is analytic on Dr−ρ/3 and satisfies

Xt
g0 : Dr−2ρ/3 → Dr−ρ/3, (5.19)

Xt
g0 : Dr−ρ/3 → Dr . (5.20)

Proof of proposition 5.3 (i) To begin with, the equation (d/dt)Xt
ϕ = Xϕ(X

t
ϕ) reads

(ż(t), ζ̇(t)) = (Π1Xϕ,Π2Xϕ)(z(t), ζ(t))

where (z(t), ζ(t)) = Xt
ϕ(z(0), ζ(0)) for some fixed (z(0), ζ(0)) ∈ Dr−ρ. This implies, by (5.8), that

|ż(t)| ≤ 3 εT

min{ρ1

r2
, ρ2}

and |ζ̇(t)| ≤ 3 εT

ρ3
, (5.21)

at least as long as the solution stays in Dr−ρ/3, during which time

|İ| =
∣∣∣ n∑
j=1

(xj ẋj + yj ẏj)
∣∣∣ ≤ |z(t)||ż(t)| ≤ 3 r2εT

min{ρ1

r2
, ρ2}

.

Writing I(t) = I(z(t)) with z(0) ∈ Dr−ρ we deduce from (5.2) that for |t| ≤ 1

|I(t)− I0| ≤ |I(t)− I(0)|+ |I(0)− I0| ≤ 3 r2|t|εT
min{ρ1

r2
, ρ2}

+ r1 − ρ1 < r1 −
2

3
ρ1.

Furthermore, using (5.2) again,

|z(t)| ≤ |z(0)|+ 3 |t|εT
min{ρ1

r2
, ρ2}

≤ r2 − ρ2 +
3 |t|εT

min{ρ1

r2
, ρ2}

< r2 −
2

3
ρ2

and

|ζ(t)| ≤ |ζ(0)|+ 3 |t|εT
ρ3

≤ r3 − ρ3 +
3 |t|εT
ρ3

< r3 −
2

3
ρ3.

This argument shows in particular that if the ρj are chosen in accordance with (5.2), then the solution starting
in Dr−ρ will remain in Dr−2ρ/3 for all times |t| ≤ 1. This proves (5.13), and verification of (5.14) is analogous.

Moreover, (5.15) follows from (5.21).
For the complex case, since Xϕ is analytic, the flow (Xt

ϕ) is defined locally and is locally analytic on C2n ×C2N

and for complex t. To find for which t ∈ C and between which domains this is true, we just repeat the argument
that led to (5.13), and it is found that for |t| < λ with λ as in (5.16) the flow is well defined, analytic and satisfies
(5.17).

(ii) Again, since Xg0 is analytic, the flow (Xt
g0) is defined locally, and is locally analytic, on C2n × C2N for

complex t. Observe that
d

dt

(
I ◦Xt

g0

)
= {I, g0} ◦Xt

g0 = 0

for the function I = I(z), since g0 = g0(I) only depends on z through I = (I1, . . . In). In addition, since g0 is
independent of ζ = Π2(z, ζ) we have

d

dt

(
ζ ◦Xt

g0

)
= {ζ, g0} ◦Xt

g0 = 0.

In other words, both I and ζ are preserved by the flow, so that restrictions on the time which ensure (5.19)-
(5.20) arise only from the condition on z. To prove (5.20) for instance, write (z(t), ζ(t)) = Xt

g0(z(0), ζ(0)) and
I(t) = I(z(t)). Then by the foregoing observation:

|I(t)− I0| = |I(0)− I0| < r1 − ρ1/3 < r1,

|ζ(t)| = |ζ(0)| < r3 − ρ3/3 < r3,
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for all times, provided that initially (z(0), ζ(0)) ∈ Dr−ρ/3. Furthermore,

|ż(t)| ≤
∣∣∣ d
dt
Xt

g0

∣∣∣ = |Xg0(X
t
g0)| ≤ |Xg0 | r

as long as the flow stays inDr. Using the definition of g0 in (5.1), for any unit 2n vector (a,b) = (a1, . . . , an, b1, . . . bn)
we can estimate

|(a · ∇x + b · ∇y)g0| = |
n∑

i,j=1

Aij(I − I0)i(ajxj + bjyj)|

≤ ‖A‖ |I − I0| max
1≤j≤n

|ajxj + bjyj | ≤ ‖A‖ |I − I0| |z|.

So, maximizing over the unit vector, we can bound the Euclidean norm for Xg0 as

|Xg0(z, ζ)| ≤ ‖A‖ |I − I0| |z|

(using the l1 operator norm on A). It follows that

|Xg0 | r ≤ ‖A‖ r1r2 for any r.

Hence the desired bound |z(t)| < r2 is obtained by inserting (5.18) into the estimate:

|z(t)| ≤ |z(0)|+ |t| |Xg0 | r < r2 −
1

3
ρ2 + ‖A‖ r1r2 |t| < r2.

To summarize, it has been shown that (5.20) is verified for |t| < τ , and (5.19) follows in the same way. 2

Continuation of proof of lemma 5.1 So far the statements (5.3) and (a) of the lemma are proved. Next, notice
that the first assertion in (b) follows immediately from the definition of g+ in (5.9), and the assumption |f | r ≤ ε.

To establish the second assertion in (b) we need to prove that {f̄ , h} = 0 (in view of g+ = g + f̄ and {g, h} = 0)
which follows directly from the definition (5.4):

{f̄ , h} =
1

T

∫ T

0

{f ◦Xt
h, h} dt =

1

T

∫ T

0

d

dt
(f ◦Xt

h) dt = 0.

To complete the proof of the lemma it remains to verify (c), which is now done by estimating each of the three
terms in (5.12).

Estimation of f+, 1: As a consequence of (ii) in the previous proposition, the function

F (t) = ϕ ◦Xt
g0(z, ζ)

is analytic for complex times t as in (5.18) and for (z, ζ) ∈ Dr−ρ/3, since ϕ is defined on D r. Then by Cauchy’s
estimate

|{g0, ϕ}(z, ζ)| = |F ′(0)| ≤ 2

τ
sup

|t|=τ/2

|F (t)|

for every (z, ζ) ∈ Dr−2ρ/3. To bound F (t) = ϕ ◦Xt
g0 we just observe that by (5.19) and (5.6),

|ϕ ◦Xt
g0 | r−2ρ/3

≤ |ϕ| r−ρ/3 ≤ |ϕ| r ≤ εT,

which leads to the estimate |{g0, ϕ}| r−2ρ/3 ≤ 2εT/τ . Hence, by (5.13) in the previous proposition,

|f+, 1| r−ρ =

∣∣∣∣ ∫ 1

0

{g0, ϕ} ◦Xt
ϕ dt

∣∣∣∣
r−ρ

≤ |{g0, ϕ}| r−2ρ/3 ≤ 6‖A‖ r1r2εT
ρ2

.

Estimation of f+, 2: Next, to bound f+, 2 =
∫ 1

0
{g + ft, ϕ} ◦Xt

ϕ dt we proceed in a similar fashion, but using the
flow Xt

ϕ in place of Xt
g0 . To treat the first term in the integral define

G(t) = g ◦Xt
ϕ(z, ζ)
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where (z, ζ) ∈ Dr−2ρ/3 is fixed. By (i) in the previous proposition this is analytic for complex times t as in (5.16),
so that Cauchy’s estimate gives

|{g, ϕ}| r−2ρ/3 = |G′(0)| ≤ 2

λ
sup

|t|=λ/2

|G(t)| r−2ρ/3.

By (5.17), G is bounded as |G(t)| r−2ρ/3 ≤ |g| r−ρ/3 ≤ δ for these t, leading to the overall bound

∣∣∣ ∫ 1

0

{g, ϕ} ◦Xt
ϕ dt

∣∣∣
r−ρ

≤ |{g, ϕ}| r−2ρ/3 ≤ 2δ/λ.

The second term in the integral defining f+, 2 is handled in exactly the same way, leading to the same bound with
δ replaced by ε, since |ft| r ≤ ε for t ∈ [0, 1]. Therefore altogether

|f+, 2| r−ρ ≤ 2(δ + ε)

λ
=

36 εT (δ + ε)

(min{ρ1

r2
, ρ2, ρ3})2

.

Estimation of f+, 3: The last contribution to f+ arises from f+, 3 = σ (Λ ◦Φ−Λ). By definition of Φ = X1
ϕ this

can be rewritten as

f+, 3 = σ (Λ ◦X1
ϕ − Λ ◦X0

ϕ) = σ

∫ 1

0

d

dt
(Λ ◦Xt

ϕ) dt = σ

∫ 1

0

{Λ, ϕ} ◦Xt
ϕ dt, (5.22)

so that, using (5.13) and {Λ, ϕ} = 〈DΛ,Π2Xϕ〉 (the latter due to Λ = Λ(ζ)), we deduce

|f+, 3| r−ρ ≤ σ |〈DΛ,Π2Xϕ〉| r−2ρ/3 ≤ σ CΛr3 |Π2Xϕ| r−2ρ/3.

Since only the ζj = (ξj , ηj) derivatives of ϕ contribute to Π2Xϕ, this can be combined with Cauchy’s estimate as

|f+, 3| r−ρ ≤ 3σCΛr3
2ρ3

|ϕ| r ≤ 3σCΛr3
2ρ3

εT

by (5.6). If we add together these bounds on |f+, j | r−ρ, then (c) is obtained. 2

5.1.2 Transformation to normal form

We iterate lemma 5.1 m times to prove the following result.

Lemma 5.4 (Normal form) Consider the Hamiltonian

H(z, ζ) = 〈ω0, I〉+ 1

2
〈A(I − I0), I − I0〉+ g(z, ζ) + f(z, ζ) + σΛ(ζ),

where ω0, I0 ∈ Rn, A ∈ Rn×n is a symmetric matrix and T, σ > 0 are fixed such that Tω0 ∈ 2πZn holds. The
functions g and f are assumed to be real analytic on an open neighbourhood of D3r, and Λ is assumed to be real
analytic on an open neighbourhood of {|ζ| ≤ 3r3}. We suppose that

(i) |g| 3r ≤ δ and {g, h} = 0,

(ii) |f | 3r ≤ ε,

(iii) |DΛ(ζ)| ≤ CΛ|ζ| for |ζ| ≤ 3r3,

(iv) r1 < 2r22 and r1 < 2r2r3,

(v) m2εT <
r21

81 r22
,

(vi) 54m‖A‖r1T +
324 (δ + 2ε)m2r22T

r21
+

9σCΛmT

2
≤ 1

2
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for some δ, ε > 0 and CΛ > 0. Then there exists a real analytic symplectic transformation

Ψ : D 2r → D 3r

such that, on D2r,

H ◦Ψ = 〈ω0, I〉+ 1

2
〈A(I − I0), I − I0〉+ ĝ(z, ζ) + f̂(z, ζ) + σΛ(ζ)

and with the properties:

(a) |Ψ− id| 2r ≤ 18mr2
r1

εT ,

(b) |ĝ| 2r ≤ δ + 2ε and {ĝ, h} = 0,

(c) |f̂ | 2r ≤ 2−mε.

Proof We apply the iterative lemma (lemma 5.1) m times, where at the jth stage r is taken to be 3r − jr/m and
ρ = r/m with j = 0, . . . ,m− 1. For j = 0 we need to check (5.2), which reads as

εT <
1

9m2

(
min

{ r1
3r2

, r2, r3

})2

.

According to (iv) we have min{ r1
3r2
, r2, r3} = r1

3r2
and the condition becomes

εT <
1

81m2

r21
r22

which is verified by (v). Thus lemma 5.1 yields a real analytic symplectic transformation Φ1 : D3r−r/m → D3r

such that, on D3r−r/m,

H ◦ Φ1 = 〈ω0, I〉+ 1

2
〈A(I − I0), I − I0〉+ g1(z, ζ) + f1(z, ζ) + σΛ(ζ)

and moreover:

� |Φ1 − id| 3r−r/m ≤ 9mr2
r1

εT ,

� |g1| 3r ≤ δ + ε and {g1, h} = 0,

� |f1|3r−r/m ≤
[
54m‖A‖r1 +

324 (δ + ε)m2r22
r21

+
9σCΛm

2

]
εT ≤ ε

2
,

the latter in view of (vi). Put Ψ1 = Φ1. For the induction step assume that we have constructed a real analytic
symplectic transformation Ψj such that, on D 3r−jr/m,

H ◦Ψj = 〈ω0, I〉+ 1

2
〈A(I − I0), I − I0〉+ gj(z, ζ) + fj(z, ζ) + σΛ(ζ)

with

� |Ψj − id| 3r−jr/m ≤ 9mr2
r1

εT

j−1∑
i=0

2−i,

� |gj | 3r−(j−1)r/m ≤ δ + ε

j−1∑
i=0

2−i and {gj , h} = 0,

� |fj | 3r−jr/m ≤ 2−jε.
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In order to apply the iterative lemma to this Hamiltonian (and with ε replaced by 2−jε and δ replaced by δ +

ε
∑j−1

i=0 2−i), we have to see that (5.2) holds, which reads as

2−jεT <
1

9m2

(
min

{ r1
r2(3− j/m)

, r2, r3

})2

. (5.23)

Since r1
r2(3−j/m) ≤

r1
2r2

≤ min{r2, r3} by (iv), (5.23) reduces to

2−jεT <
1

9m2

( r1
r2(3− j/m)

)2

,

which is a consequence of (v). Therefore lemma 5.1 applies, yielding a real analytic symplectic transformation

Φj+1 : D 3r−(j+1)r/m → D 3r−jr/m

such that, on D 3r−(j+1)r/m,

H ◦Ψj ◦ Φj+1 = 〈ω0, I〉+ 1

2
〈A(I − I0), I − I0〉+ gj+1(z, ζ) + fj+1(z, ζ) + σΛ(ζ)

and furthermore by the hypotheses:

� |Φj+1 − id| 3r−(j+1)r/m ≤ 3 · 2−jεTm

( r1
r2(3−j/m) )

≤ 9mr2
r1

2−jεT ,

� |gj+1| 3r−jr/m ≤ δ + ε

j−1∑
i=0

2−i + 2−jε = δ + ε

j∑
i=0

2−i and {gj+1, h} = 0,

� |fj+1| 3r−(j+1)r/m ≤
[
6m‖A‖r1(3− j/m)2 +

36 (δ + ε
∑j

i=0 2
−i)m2

( r1
r2(3−j/m) )

2
+

3σCΛ(3− j/m)m

2

]
2−jεT

≤ 2−(j+1)ε.

Now define Ψj+1 = Ψj ◦ Φj+1 and estimate

|Ψj+1 − id| 3r−(j+1)r/m ≤ |(Ψj − id) ◦ Φj+1| 3r−(j+1)r/m + |Φj+1 − id| 3r−(j+1)r/m

≤ |Ψj − id| 3r−jr/m +
9mr2
r1

2−jεT ≤ 9mr2
r1

εT

j∑
i=0

2−i

to deduce that the inductive assumptions hold also at this step. The process terminates at j = m− 1 and we can
define ĝ = gm−1, f̂ = fm−1, and Ψ = Ψm−1. 2

5.2 Nekhoroshev stability in the case N = 0

We recall the statement of Nekhoroshev stability in the case N = 0, so that only the z component appears. We
assume that the initial values z(0) = (x(0), y(0)) ∈ R2n are close to the equilibrium point (0, 0) for the real analytic
Hamiltonian:

H(z) = 〈α, I(z)〉+ 1

2
〈AI(z), I(z)〉+ f(z), with 〈AI, I〉 ≥ 1

M
|I|2 =

1

M

( n∑
j=1

|Ij |
)2

and f(z) = O(z5) for |z| → 0. In that case we have the following theorem:

Theorem 5.5 There exist positive numbers K, k, a (depending on n, α, M and ‖A‖) and θ0 (depending on n, α,
M , ‖A‖ and f) with the following properties. If I(0) = I(z(0)) is such that |I(0)| = θ2 for some 0 < θ ≤ θ0, then
I(t) = I(z(t)) satisfies

|I(t)− I(0)| ≤ Kθ2+a for |t| ≤ e
k
θa .

Proof This is the classical Nekhoroshev bound of [7] for the case of an elliptic equilibrium, see [3, 5, 9, 10]. The
proof can also be extracted from the proof of our theorem 3.4 above, although not in its putative sharpest form
(with a = 1

2n ). 2
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5.3 Some further lemmas

In this section | · |∞ denotes the maximum norm on Rn, i.e. |x|∞ = max1≤j≤n |xj |.

Lemma 5.6 (Dirichlet) For every Q ∈ N and ω ∈ Rn,

min
q∈{1,...,Q}

min
p∈Zn

|qω − p|∞ ≤ 1

Q1/n
.

Proof See [12, Thm. 1B, p. 34]. 2

Corollary 5.7 For every Q ∈ N and ω ∈ Rn such that |ω|∞ > 1 there exists ω0 ∈ Rn and T ∈ [2π(1−|ω|−1
∞ ) , 2πQ]

and such that ω0T ∈ 2πZn and

|ω − ω0|∞ ≤ 2π

TQ1/(n−1)
. (5.24)

Proof We may assume that ωn = |ω|∞ > 1, where ω = (ω1, . . . , ωn). Then write

ω =
ωn

[ωn]

( [ωn]

ωn
ω1, . . . ,

[ωn]

ωn
ωn−1, [ωn]

)
and apply lemma 5.6 to find q ∈ {1, . . . , Q} and p ∈ Zn−1 such that∣∣∣q [ωn]

ωn
ωj − pj

∣∣∣ ≤ 1

Q1/(n−1)
, 1 ≤ j ≤ n− 1. (5.25)

Defining T = 2πq [ωn]/ωn and

ω0 =
ωn

[ωn]

(p1
q
, . . . ,

pn−1

q
, [ωn]

)
,

it follows that Tω0 = 2π(p1, . . . , pn−1, q[ωn]) ∈ 2πZn. Furthermore, 1 − 1/ωn ≤ [ωn]/ωn ≤ 1 and 1 ≤ q ≤ Q yield
the bound on T . Finally, (5.24) is a direct consequence of (5.25). 2

As a further corollary we obtain the density of periodic orbits in sufficiently small neighbourhoods of elliptic
equilibria for convex integrable Hamiltonians. The frequency ω0 is called T−periodic if ω0T ∈ 2πZn. Now to be
precise consider a real analytic Hamiltonian on R2n of the form

〈α, I〉+ 1

2
〈AI, I〉+ g(I) (5.26)

where A is a strictly positive matrix and g(I) = O(|I|3), and the notation is as in the introduction. The function

I 7→ Ω(I) = α+AI +Dg(I) = α+AI +O(|I|2) (5.27)

is invertible in a neighbourhood of the origin in Rn by the inverse function theorem, since DΩ(I) = A + O(|I|) is
invertible for |I| small enough. The smooth inverse Ω−1 is defined on a neighbourhood of α = Ω(0).

Corollary 5.8 Given a function Ω : Rn → Rn as in (5.27), with α ∈ Rn \ {0}, and a number a > 0, there exist
C > 0 (depending upon Ω) and θ0 > 0 (depending upon Ω, α, a, n) such that the following holds: if I ∈ Rn and
|I| = θ2 for some 0 < θ ≤ θ0, then there exist I0 ∈ Rn and τ > 0 such that

(i) |I − I0|∞ ≤ C θ2+a

τ ,

(ii) π ≤ 2π(1− θ2|Ω(I)|−1
∞ ) ≤ τ ≤ 4πθ−a(n−1), and

(iii) ω0 = Ω(I0) is τ/θ2-periodic, i.e. ω0 τ
θ2 ∈ 2πZn.
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Proof By the above remarks there is ε > 0 such that Ω : Bε(0) → Ω(Bε(0)) =: U is smoothly invertible and
C = 2π‖DΩ−1‖L∞(U) < ∞. Choose δ obeying 0 < δ < |α|∞ such that Bδ(α) ⊂ U . Next fix θ0 > 0 sufficiently

small that for 0 < θ ≤ θ0 and |I| = θ2 there holds:

|Ω(I)− α|∞ < δ/2, θ2 < min{ε, |α|∞/4}, θa(n−1) < 1, 2θ2+a < δ/2;

hence θ0 depends on Ω, α, a and n. Now if |I| = θ2 for some 0 < θ ≤ θ0, then |I| < ε ensures that ω = Ω(I) ∈ U
is well-defined, and |ω|∞ > |α|∞/2 since δ < |α|∞. Putting Q = [θ−a(n−1)] + 1 and ω̃ = θ−2ω, we have |ω̃|∞ ≥
θ−2|α|∞/2 > 2 > 1. Therefore corollary 5.7 applies and yields the existence of τ > 0 and ω̃0 ∈ Rn such that

ω̃0τ ∈ 2πZn, 2π(1− |ω̃|−1
∞ ) ≤ τ ≤ 2πQ and

|ω̃ − ω̃0|∞ ≤ 2π

τQ1/(n−1)
. (5.28)

Also, τ ≥ 2π(1− |ω̃|−1
∞ ) ≥ π follows since |ω̃|∞ > 2. Defining ω0 = θ2ω̃0, we get ω0 τ

θ2 ∈ 2πZn. Furthermore,

|ω − ω0|∞ = θ2|ω̃ − ω̃0|∞ ≤ 2πθ2

τQ1/(n−1)
≤ 2θ2

θ−a
= 2θ2+a < δ/2

implies that |ω0 − α|∞ ≤ |ω0 − ω|∞+ |Ω(I)− α|∞ < δ/2+δ/2 = δ, and consequently ω0 ∈ U so that I0 = Ω−1(ω0)
is well defined. Then (ii) follows from 2πQ ≤ 2π(θ−a(n−1) + 1) ≤ 4πθ−a(n−1). Finally, concerning (i) it suffices to
note that since both ω and ω0 lie in the ball Bδ(α) ⊂ U

|I − I0|∞ = |Ω−1(ω)− Ω−1(ω0)|∞ ≤ ‖DΩ−1‖L∞(U) |ω − ω0|∞ ≤ ‖DΩ−1‖L∞(U)

2πθ2

τθ−a
= C

θ2+a

τ

by (5.28), completing the proof. 2

We also need the following quantitative version of the inverse mapping theorem.

Lemma 5.9 Let X,Y be Banach spaces and suppose that U ⊂ X is open. If Ψ : U → Ψ(U) ⊂ Y is a homeomor-
phism, Ψ−1 is Lipschitz continuous with constant Lip(Ψ−1) < λ, and Br(x) ⊂ U , then

Ψ(Br(x)) ⊃ Br/λ(Ψ(x)).

Proof See [13, Prop. I.3, p. 50]. 2
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