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Abstract

We prove that solutions of the 3D relativistic Vlasov-Maxwell system can be extended, as

long as the quantity o_1(t, ) = max,—; Jzs \/% m f(t,z,p) is bounded in L2.

1 Introduction and main result

The relativistic Vlasov-Maxwell system describes the time evolution of a plasma, i.e., of an ensemble
of charged particles (like ions or electrons) in position-momentum phase space R? x R?. Since the
particles can move at relativistic speeds the motion of a single particle is described by the system

Xy P=FE+VAB, (1.1)

1+ |P]?

where we take only one species for simplicity and choose units where ¢ = 1 for the speed of light.
Furthermore, the rest mass and the charge of the particles are set to unity. The particle velocity is
V', whereas P denotes its momentum. The vectors E' and B in (1.1) stand for the electric and the
magnetic field, respectively. Since the number of individual particles in the plasma is large one takes
a statistical approach and models the time evolution by using a density function f = f(t,z,p) >0
depending on time t € R, position z € R3, and momentum p € R3. Then the requirement that f
be constant along the particle trajectories, i.e., the solutions of the characteristic equations (1.1),
leads to the Vlasov equation

Of(t,x,p)+v-Vf(t,z,p)+ (E(t,z) +vAB(t,z)) - V,f(t,x,p) =0; (1.2)

here V always means V,. The velocity v € R3 associated to p is

v
V= S thus

/—1+p27 p_ /—1—1}27

where p? = [p|? and v? = |v|? for brevity. The Lorentz force

L= L(t,x,v) = BE(t,z) +v A B(t,r) € R®



is obtained from the fields £ and B, which in turn satisfy the Maxwell equations
OE=VANB-j V-E=p, (1.3)
and
oB=-VANE, V-B=0. (1.4)

The coupling of (1.2) to (1.3), (1.4) is realized through the charge density p = p(t,z) € R and the
current density j = j(t, z) € R3 via

plta) = [ ftop)dp ad tto)= [ o fap)dp (15)
R3 R3

Furthermore, initial data
ft=0=rf9 FEt=0=FEY and B(t=0)=BY (1.6)

are prescribed such that the constraint equations
V-EQO=p0= [ f9g and V-B® =0 (1.7)
R3

are satisfied. Good general introductions to the subject can be found in [21, 3.

The relativistic Vlasov-Maxwell system comprises a complicated system of nonlinear partial
differential equations. Local existence of solutions for smooth and compactly supported (or suf-
ficiently decaying) initial data and a sufficient condition for global existence has been known for
some time. More precisely, we have the following result.

Theorem 1.1 (Glassey/Strauss) Let the initial data
O € CHRS < RY) and B0, BO € CHRYR) N (RS RY)

be given such that the constraint equations (1.7) are satisfied. Then there exists a maximal local
solution (f, E, B) on a time interval [0, Tyax| to the relativistic Viasov-Mazwell system (1.2), (1.3),
(1.4), (1.5) such that the initial data are attained at t = 0; see (1.6). Furthermore, if there is a
function w € C([0,00]) so that

POO(t) S w<t)7 t € [O7Tmax[7 (18)
then Thax = 00.

Here

P, (t) =10+ sup {|p| c 3se[0,t] Iz R : f(s,2,p) 7&0}

is the maximal momentum up to the time ¢. For a proof, see [7], or [11, 1] for the same result
obtained by different methods. The work [7] has been generalized to initial data of non-compact
support in [9, 12], the latter is also extending [10, 17]. The problem of unrestricted global existence
has been studied by many people. Only in the framework of weak solution it has been solved in
[2]. Regarding classical solutions, adding spherical symmetry [10], smallness of initial data [§],
or “near neutrality” [4, 17] has turned out to be sufficient to close the case. Another remarkable



work is [5], where global existence was shown for the “two and one-half-dimensional” system, i.e.,
x € R? and p € R3.

Due to the lack of a general global result in 3D it is natural to focus on deriving further
continuation criteria, apart from (1.8), which might be easier to check (although, of course, all
criteria would be equivalent in the end if global existence was known). The following result
summarizes some early attempts in this direction.

Theorem 1.2 The following are equivalent:
(a) Tiax = 0.
(b) There is a function wy € C([0,00]) such that P (t) < wy(t) fort € [0, Tiax[-

(¢) There is a function wy € C([0,00]) such that
sup {/ V1+p?f(t,z,p)dp:x € ]Rs} < ws(t), tE€ [0, Tmaxl|-
R3

(d) There is a function ws € C([0,00[) such that
sup { |P(0,2,p) = pl : (2,p) € B x R} < (1), £ € [0, Ty

Here s — (X (s;t,x,p), P(s;t,x,p)) is the solution to the characteristic system (1.1) which
at s =t equals (z,p).

(e) (i) fO=0or
(ii) there is ¢ > 0 and Ry > 0 such that fla:\<Ro Jos [O(z,p)dzdp > & so that for all
R € [0, Ry + Tinax| it holds that

lim {/R VITP [t p)dp+ (1B ) + B, )P)] dr = 0.

t—Tmax ‘xl <R

Parts (c) and (e) are more or less contained in [9] and [6], respectively; see [12] for a detailed
proof, also of (d). After some dormant period recently the interest in the subject has been revived
and further criteria have been obtained, using refined techniques. To state the results we need to

introduce the quantity
[
2

Lit.) = [ (L4t p) dy (19)
R

for 6 > 0.

Theorem 1.3 The following are equivalent:

(a) Thax = 00.
(f) There is a function w, € C([0,00[) such that

sup {|IP’Qp| c 3se[0,t] Iz e R : f(s,x,p) # O} < ay(t), te|0,Thax|

Here Q C R3 is a two-dimensional plane in p-space containing the origin and P denotes the
projection onto Q).



(9) There is a function ws € C([0,00]) such that
@)l s rsy = 1Zo(E)| Lo sy < ws(t), T € [0, Trnax|.

(h) Let q €]2,00] and 6 > 2/q, or ¢ € [1,2] and 0 > 8/q — 3. Then there is a function
wg € C([0,00]) such that

||Ie(t)||Lg(]R3) < w()'(t)? te [O7Tmax['

Part (f), in fact for more general data, is due to [13]. It shows that one does not have to control
the full momentum support, but only its projection to some plane through the origin. Part (g) has
been proved in [16]; an earlier result with [|p(¢) ||, gs) instead of [|p(¢)|| ;s gs) appeared in [20]. The
most recent result is (h), which is cited from [14], and once again holds for more general data. The
results from [14] generalize those of [15], where ¢ € [6,00[ and 6§ > 4/q, or ¢ < 6 and 6 > 22/q — 3
was assumed.

In this work we propose to study another quantity, which is

ft,z,p) (1.10)

dp 1
o_1(t,x) = max
=1 Jrs /14 p? (140 w)

and which comes up naturally in the course of the estimates. Our main result is as follows.
Theorem 1.4 Suppose that the initial data
fO e iR xR and E©,B® e C2(R*R%) N L*(R% R?)

are given such that the constraint equations (1.7) are satisfied. Let o_q1 be defined by (1.10). If
there is a function w € C([0,00]) so that

||0—1||L§°L§(ST) <@(T), T €0, Tmaxl, (1.11)
for St =10,T] x R3, then Ty = 0.

The point is that fR3 \/% f € L°L? by energy conservation, so as compared to o_; one
4

might hope to “get away with a logarithmic loss”. The method of proof is somewhat similar to
[14], in that Strichartz estimates for a wave equation related to E and B are applied. However,
we can avoid the use of iteration sequences and bounds on the field derivatives, which makes the
argument more direct. Comparing ||o-1(t)| ;2 gs) to [ [Zo(t, #)|? dx, one can also derive a corollary
in the fashion of Theorem 1.3(h).

Corollary 1.5 Under the hypotheses of Theorem 1.4, let @ > 1 and q E]e_%,oo[ be given. Then
Tinax = 00 is equivalent to the existence of a function wr; € C([0,00]) such that

/ Tyt dz < wr(t), t € [0, Tomsl.

In particular, this gives something new as compared to Theorem 1.3(h) for 0 > 1 and q e]ﬁ, %].



The paper is organized as follows. In Section 2 we collect some preliminary results which
are well-known in general. Then we turn to deriving suitable bounds on E and B in Section 3;
they mainly rely on the representation formulae for the fields due to Glassey and Strauss and
on Strichartz estimates for the wave equation. The argument for the proof of Theorem 1.4 is
elaborated in Section 4. Finally, Section 5 contains the proof of Corollary 1.5.

Constants which only depend on the initial data are denoted by C(0), whereas C'is a numerical
constant. Sometimes data terms are not made explicit and are only written as “(data)”. By our
hypotheses they are good enough with regard to all the estimates we will be aiming for.

The wave operator on R x R3 is 0 = 9? — A. For functions h = h(t, z) define

dy
O 'h)(t,x :/ / t—s,y:/ ——h(t—|z—yl,y
o = [ =] ey
dy
= h(t — |yl,z + y). 1.12
/Wmm( olo+ ) (112)

Then g = O7'h is the unique solution to

Og=nh, g(0)=049(0) =0.

2 Some preliminaries

From the system (1.2), (1.3), and (1.4) it follows that the energy
1
— [ [ ViR s dedp e [ (E@oP + B0 da
Rr3 JR3 2 Jgrs

is conserved along sufficiently regular solutions (as we are dealing with); note that V,1/1 + p? = v.
In addition, (1.5) and (1.2) yield the continuity equation d;p + V - j = 0.

For (t,z,p) fixed let s — (X(s;t,2z,p), P(s;t,z,p)) denote the solution of the characteristic
initial value problem (1.1) which at s = ¢ equals (z,p). Then (1.2) is equivalent to

d
d—f(s,X(S,t,x,p),P(S,t,x,p)) = 07
S

which leads to the relation
fta,p) = fO(X(0,t,2,p), P(0,1,z,p)) (2.1)
for the initial data £ (z,p) = f(0,z,p). Thus in particular
L) = [1F Ol o gonrsy = 1N o sxrsy = L£(0).
Since every map (z,p) — (X (s;t,x,p), P(s;t,x,p)) is a measure preserving diffeomorphism of

R3 x R3, it follows from (2.1) that for instance

(] 1 sy z/ f(t,z,p) dwdp:/ FO @, p) dz dp = ||| 1 ),
R3 JR3 R3 JR3

where p©)(z) = [5s f©(z, p) dp, which expresses the conservation of mass.

The following result is also known, but we nevertheless include a proof in order to make the
presentation self-contained.



Lemma 2.1 Let my be defined by

k

—1-1-// 1+ pHz f(t,z,p) d dp.
R3 JR3
If k € [2,00][, then

¢ 42
malt) < my(0) + CLO [ 1B s muls)H s
0

where C depends on k.
Proof: The Vlasov equation (1.2) yields

% = /Rg/RSl—i-p 20y f dedp = — /Rs/RSl+p % »- ((E+vAB)f)dzdp
_ k4343<1+p>2— p-((E+vAB)f)dzdp

— // 1+p%) 5 (v- E)fdxdp,
R3 JR3

dmk
1 )
o [0+ |

for ¢ € [1,00]. If R €]0, 00[ and € €]0, oo[ are ﬁxed, then

/Rg(lﬂo)?fdp = AI<R(1+p)2fdp+/ (1+p°) = fdp

lp|>R

so that
< E|E] Ly

(2.2)
LL(R3)

< L) / (1405 dp+ R / (14 p7)7% fdp
[pI<R

lp|>R
< CLO)(1+ R)F? + R—2‘9/ (1+p%) 7+ fdp,
R3
where C' depends on k. Tacitly assuming R € [1, 00| for the optimal R (otherwise the compact
x-support is useful to obtain the needed bound), this yields

k+2
[ @)= rap<coomto ([ @) s rap) ™,
R3

R3
where C' depends on k£ and . Therefore the estimate

H/ (14 p?) =n fdp‘
R3
fromk;—1+20—(k:+2)q—31t follows that

20 k+2(1+9)
k+2(140) <CL(©O )HQ(HO} My_1120
k42 RS)

is found. Putting ¢ =1+ k+2,

H / (1+p*)"7 fdp
R3
is verified for k € [2, 00[ and ¢ €]1, oo[, where C' depends on k and ¢. Using this in (2.2),

< CL(0)Y My 19,

L3 ()

dmk %
S < CLOT 1By g0y Mg
For the particular choice of ¢ = Zig and ¢’ = k + 3, the claimed bound is obtained. O



Lemma 2.2 [fq €]l,00[ and o € [0,1 — Qiq[, then
o)1 1
01Ol ey < CPa (1™ ey (1),
where C' depends on q, o, and L(0).

Proof: Fix w € R3 such that |w| = 1. Then by Holder’s inequality and by Lemma 2.3(b) below
for = (o + %)q’ and k = ¢,

dp 1
o Vi Arow
dp 1 2\
B /Rg (14 p2)tz (1+v-w) (L+p7)°/(0)

dp 1 1/q / ) 1/q
: Ny / 1+ p?)*1f(4)9d
</p|<Poo(t> (1 4 p2)(at3)a (1+v-w)Q> < R3( P f(t) p)

g—1

< Cla) 2O Pult?™ 4 ([ (s pr1s0)dp)

1/q

Taking first the max,—;, then the ¢’th power, and then integrating fR3 dx, the claimed bound is
obtained. a

The following general integration lemma is useful at many places.

Lemma 2.3 Suppose that R € [10,00[ and |w| = 1.
(a) If 6 € [0,3], then

/ W1 < cmRR®,
pi<r (LHP%) 14v-w

where C' depends on 0.

(b) If 0,k € [0, 00[ are such that 0 < k + 5 and Kk > 1, then

dp 1
< C«R1+2(N—€)’
/|pgR (1+p2)? (I+v-w)s

where C' depends on 6 and k.

(c) If 6 € [0, 1] and |v| < 1, then

dS(w)
/wll (1+v-w) <G

Proof: (a) First w is rotated to (0,0, 1). Then spherical coordinates and the transformation

where C' depends on 0.

G= e =2 do= (1—0®32dr, 1+72=(01-0%)7", (2.3)

Vit Vi



together with the notation R’ = \/LTW are used to get

/ dp 1 B / dp 1 <C/R dr r? /27r dp sin @
p<r (1+p?)? 1+v-w p<e (L+pH)? 1+vs = Jo (1+72)? Jo 1+ \T/Cliif
_ C/Rb do o /1 ds
B o (1—02)3% ) 1+0s

Rb
_ C/ doo ln<1+0).
0 (1—02)* 0 l—-0o

= In(4(1 + R?)) < In(8R?) < 3In R, the claim follows. (b)

Since In(132) < In(:2

)

) < In( =)

Similar as in (a),

dp 1 B s o ! ds
26 S C 5
pi<r (L% (1+v-w)" o (1—02)20 )y (1+o0s)

Rb
< C/ daa5 1
0o (1—0¢2)i 0 (1—o)!

b
< C / LA )
B o (1—

02) 3 04k —

(c) First consider the case where |v| < 1/2. Then 1 +v-w >1— |v| > 1/2 yields

15(w)
Auﬂ+vag4y

If |v| > 1/2, then v is rotated to (0,0, |v|) to get

dS(w) / / 2 / sin 0
e SR d do
LHG+WW9 Mlu+wm “Jo T cos Ol
ds

:Qfﬂmrmww g (R = (= D))

< A 210
- (-0

This completes the proof. O

3 Bounds on the fields

First we recall the following representation of the fields E' and B from [18, (A13), (A14), (A3)].

E = Ep+Epr+E, +E, .
B = Bp+ Bpr+ B, + By, (3.5)



where
Ep(t,z) =
Epr(t,x) =
Ey(t,x) =
Ey(t,x) =
and
Bp(t,z) =
Bpr(t,z) =
By(t,z) =

Bﬂ(t, J,’) =

t

(0) v
O, <47T /|w|:1 EY(z +tw) dw ) + i /w|:1 O E(0,x + tw) dw

_1/| KE,DT(w,v)f(O)(x—l—y,p) dpdo(y) (data),

/ / dp K (w0, 0) £t — [yl & + 4, p),
ly|<t |y| R3

/| W ap K yw,0) (LEE — Iyl + . p)

yl<t |CU| R3

t
0 t
O (47r /|w|—1 BY(z + tw) dw) + g / 0:B(0, z + tw) dw

|w|=1
1

[ Eaorn) Oy dpdaty) - (data)
ly|=t JR3

d
/ —yQ/ dp Kp,(w,0) f(t = [yl = +y. p),
ly|<t ‘y| R3
dy
‘ dp K s(w,v) (Lf)(t — |y, +y,p),

yl<t ‘y| R3

defining w = |y|~'y. The respective kernels are given by

and

v) = (140w (@ (v-wh)
v) = (L) (1 4vw) (o +w),
v) = Q4P 140 w) 2 (L4 v-w) + (0w

—0) Qv

—(v+w)@w| € RP?,

= —(14+v-w ' (vAw),
= —(1+p) 71+ w) (o Aw),
— () vw) (v w)w Al

—(WAW)® (v+w)| € RS,

Lemma 3.1 The following (known) estimates hold.

|\Kg pr(w,v)| + |Kp, pr(w,v)] <C(1+wv- w)_l/z,
|Kp,s(w,0)] + |Kpy(w,0)] < C(L+p") (1 +0v-w) 2,
K ¢(w,v)z| + |Kp 4(w,v)z] < C(1 +p2)’1/2(1 +v- w)’1|z\ (z € ]R?’).

(data),

(data),

(3.6)

(3.7)



Proof: The first two lines are a consequence of

o=l = (1-20wf 4 0wfet) < (1= @ewf) < VRO
lv+w| = <v2 +2(v - w) + 1)1/2 <V2(14v-w)V? (3.8)
wAwl = |[(v+w) Aw| < |v+w <V2(1+v-w)?

The bound on |Kp y(w,v)z| is immediate from the preceding estimates. To bound |Kg 4(w,v)z],
finally note that

(v-ww —v) ®v— (v+w)®w]z — - 2)((v-Ww—v) = (W-2)(v+w)
= —(w—@W-wv)-zw+w) —(1+v-w)(v-2)v.
This yields the claim. O

For functions h = h(t,z) define the operator WW by

) = [ 25 [ asene—sn = [ il
- [ mpEht- ety (39
Lemma 3.2 The following estimates hold.
|Ep(t,z)| + |Epr(t,z)| + |Bp(t,x)| + |Bpr(t,z)| < C(data), (3.10)
B, (t,2)| + | By (t, )| < C Wo_1)(t, 2), (3.11)
By(t,2)| + |By(t, 2)| < € (OB + Bl)o) ) (1, ). (3.12)

Proof: Concerning the second pair of estimates, by Lemma 3.1 for instance

E,(t < C ft—
B0 < /lylw| /1+p oo =l

1

< C/ / ft—lyl,z+y,p)
|y|<t|y| \/l—l-p 1"’“ W

d
< cf o it-lyrty) =CWo)ta),

|y|<t | |2

using the trivial bound 14+v-w > 1—|v| > 1(1—-v?) = 2(1+p ,so that (1+v-w)™Y2 < v/2/1+ p2.
The same argument can be used to show that also | By(t, x)| < C’(WU 1)(t,x). For By, again Lemma
3.1 may be invoked to give

dy dp 1
Bt ) i) G T (D= bl + )
< C B+ Bt — lylx +y) ot — |yl z+y)

‘y|<t | ’

= C (OBl +[B)o-)) (¢ 2).

10



recall (1.12). The bound on |By(t, x)| is analogous. O

For the wave equation the following Strichartz estimates are known; see [19, (4.9), p. 100]. For
every v €]0,1[ there is a constant C% > 0 with the following property. Let u be a solution to
Ou = F on a strip [a,b] x R3.

HUHLt%L;%([a bR + HUHctﬂg([a, bxR3) T Hatu||ct1'{;—1([a,b]xﬂ§3)

< €3 (1@ lagges + (@i + 17 o ).

(3.13)

The constant C7 is independent of a and b.
Next an estimate for W is derived. It might not be optimal, but it will turn out to be sufficient
in the sequel.

Lemma 3.3 Let W be defined by (3.9). If T > 0 and Sp = [0,T] x R3, then
HWhHL?H;’E(ST) < Ce'T* HhHLgOLg(sTp e €]0,1]. (3.14)

In particular,
IWhI = Coe, T) |7l e 257y, (3.15)

L Ls % (St

where Cy(e,T) = C1(e)Ce™T¢ is increasing in T.

Proof: The Fourier transform of Wh is

WR)(t,6) = A3e‘ig'm(Wh)(t,I)dx— / i Agdxe—if'wh<t—|y|,x+y>

ly|<t Amly|?
dy iy ] /t ds - / .
= ——e"“Yh(t — |yl &) = — h(t — s, dS(w) e
| et = [ Tie-sg [ ase
"sin(s[¢]) 5
h(t —s,&) ds.
-t
Now use [sin(s|¢])] < min{l, s|¢|} to obtain for € €]0, 1]
— t 1 R t .
|(Wh)(L,€)] < /0 1{1<s|£|}m|h(t—57€)ld8+/o Loc oy At —s,8)]ds

s|€]
¢ 1 e 13 t 1 1—¢
< [ tuigg Gl lhe—slds+ [ 10y () e =50l

2 tds -
|§|T_a/0 F|h(t—5,§)|'

IN

It follows that

1 —

||(Wh>(t)HH;_€(R3) = (271’)3/2 |||£’175(Wh)(t)|ng(R3)

t
ds
< 9 / 5 10t = )2
0 S

11



and this yields (3.14). By the homogeneous Sobolev embedding in R3,
(%] —— < Ol(E)HWh”LgOH;*E(ST) < Ci(e)Ce™'T* ||h||L;>°L§(ST)>

LyLy % (St)

which is (3.15). O

Corollary 3.4 For e €]0,1],

H|Eb| + |Bb|H < C3(e,T) llo-1ll poo 2 (57

6
LLs* (S1)
where Cy is increasing in T. In particular,

187 ((E] + B o) <

2
et s,y S OHE D ol ragsn (3.16)

for a constant Cy that is increasing in T

Proof: The first bound is an immediate consequence of (3.11) and (3.15). To prove (3.16), note

that

B+ 1Bl e < et o 171 e 20

< 03(€>T)HU*1HL§°L§(ST)'

Thus using (3.13) for 7. = 2(1 —¢), where % = %, 1+2% ==, 172% = 1f25, and % =2,

-1

1O~ (B[ + IBbI)U—l)IILt%EL;%E(ST) < CLIUE]+ [Bl)oll L% 7% (s
< C.T % Cs(e,T) H‘LlHLgOLg(sT):

as was to be shown. O

Lemma 3.5 For e €]0, 1],

H|Eﬁ| + |Bﬁ|H < Cs(e, T, data, |01 o 12 (5,)):

3 6
L{ = La 7 (St)
where Cs is increasing in both the T-argument and the || - ||-argument.

Proof: The argument is similar to [19, Thm. 4.8, p. 108]. Fix an interval [a,b] C [0,T]. According
0 (3.12), (3.4) and (3.5), and (3.16),

H|Eﬁ| + |Bﬁ|‘

L= ELi_T([a b]xR3)

< 107 (£ +[B)o-)ll

1 6L1+26 ([ b} ]RB)
< ||D_1((|ED|+\EDT|+!BD!+|BDT|)0—1)||

HIO7 (B + By ))o-y)l

3 6
L} % LT ([a, b]xR3)

5 O ((|Ey| + |By|)o-
pite i gy TIET BN IBDo Dl e s

(data) + Cale. ) o2 paspy + 1 O (1Bl + |By)o)]

IN

3 _6_ .
L}7° LT ([a,b]xR3)

12



Let F = (|E;| + |By|)o_y and u = O7'F. Then (3.13) for 7. = 2(1 — ¢) yields

[ —
LI L% ([0, b xR3)

< 03, (@) ey + 1000@) e oy + I,

3

of s +s ([a,b]XR3)>
< C:a <HU(CL)||H;,€(R3) + ||atu(a)|]Hgs,1(R3)
L e e
As a consequence,

|12 + 1B s

L1 5L1+2E ([a, b] xR3)

< (data) + Cale, T 012z + o (1800 ey + 11008(a) e

+[1Ed + 1Bl s

o1 “Lng([a, b]xR3)>‘
(3.17)

Without loss of generality suppose that C7_|lo_|| L22(sp) = L, since otherwise one can just take
[a,b] = [0,T]. Fix a finite partition 0 =Ty < T} < Ty < ... < Tn_1 < Tn =T of [0,T] such that
1 , 1

Ll 5L1+26([ b] R?’

||‘7—1||L§Lg([Tj,Tj+1]) - ﬂ (J=0,....,N=2), |o- 1||L2L2 (Tv-1,Tn]) = 20;5 (3.18)
Note that
1 N-2
2 2
(V- 1)4(0* )2 < 2 llo—llzzra - mp < lloillzzrasy
Ye j=0
yields the upper bound
N <1+ 4C5) ol sy (3.19)

By (3.17) and (3.18),

B+ 1B
(R L] -

< 2(data); +2C4(e 1) ol sz + 265 (1Tl ey + 19T e ) (3:20)

Thus in particular

F 1B+ 1B s
” HL5 25L2+5([T Tja]xR3) QC’:Y'; ‘ ﬁ| | ﬁ’ L1 5L1+25([T Tj41]xR3)
1 2
< c: (data); + cr Cu(e,T) llo-1llzeer2(sp)

Hw(T) e sy + 10T e 2 sy
so that by (3.13) for the interval [T}, T}44],
Hu(TjH)HH;s(Rs) + |\atu(7}+1)||1'{ge—1(ﬂ&3)

< C, (”“@)”HJE(R% H 10(T) | e sy + ||F||LE—%€L3%([TJ'7T]'+1]XR3)>

2 *
S (data)j + 04(8, T) ||O-—1HL§°L§.(ST) + 20% (H’LL(CZ})HH;s(Rs) + H@tu(E)Hng—l(R;g)) .

13



Iteration of this estimate and noting that u(0) = dyu(0) = 0 leads to the bound

—_

j_
(T3 e oy + 00T e gy < <20%1)]_1_1((data>i +Cu(e, T) ||a—1||igoLg<sT>>'

%

I
o

Hence by (3.20),

121+ 18| s

LI LIVE (13,741 ]xR9)
J

J
< 23722y (data), + 2C4(e, T) (Z (2C7) ) o1l 2 5y

=0 1=0

for j =0,..., N — 1. Therefore the estimate

H!EMHBM\

Ll 5L1+25(ST)

Z |11 + 18| s

N—

IN

LI LIV (1,75 1] )

1 N-1 j
* 1 * \1 2
< 2 E E (2C7. Y (data); + 2Cy(e, T) ( E (2C7. ) |0—1||L;>°Lg(sT)
j=0 i=0 j=0 i=0

is obtained from (3.19). Recalling (3.19), the claim is obtained.

Corollary 3.6 For e €]0, 1],

[1E1+ 181

L LI (5p) < Cole, T data, ol racs):

where Cg is increasing in both the T-argument and the || - ||-argument.
Proof: From (3.4) and (3.5),
E =Ep+ Epr+ E, + Ey and B = Bp + Bpr + B, + By,

where Fp, Epr, Bp, and Bpr are data terms. Since Corollary 3.4 implies that

1-e
H|Eb| + |Bb!H o =G T)T 5 oo poorz(sy):

it remains to apply Lemma 3.5.

Corollary 3.7 Ife €]0 then

71_10]7

msa-se) (t) < C7(0, ¢, 1, data, |01 e p2(s,)),

1+42¢

where C7 is increasing in both the t-argument and the || - ||-argument.
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Proof: By Lemma 2.1 for k = 11+225) > 2,

142e 1+2e 142¢

t
TN 3(1—2¢) (t) S TN 3(1—2¢) (O) + C(O, 6) /0 HE(S)HLFETE (&) T 3(1—2¢) (8)% ds.

By a standard differential inequality comparison theorem, this yields

c e 1 —|— 25
M 3(1—2¢) (Zf)% < M3-2e) (0)% + C( / “ dS,

1+2e - 1+2e 1"’25 (R3)

so that by Corollary 3.6,

142e

t _6_
Mmaa-2e (1) < C(O,e,data) 1+ /”E(S)||L1fzs(R3)d3] 1+25>

< C(0,¢, data) (1 5 | BT )
(St)

LiTsLi—T
2(2+¢) 6
< (C(0,¢,data) <1 + t1%2= Cg(e, t, data, |04 HL;’OL%(St)) Tt2e ) .

Hence C7 can be defined appropriately. O

Corollary 3.8 If¢ €]0 then

) 10]

HOLl(t)HL%(lT_Q%)(Rg) < 08(07 &, tv datau ||0-*1HL§°L:%(S¢)) Poo<t>7

where Cg is increasing in both the t-argument and the || - ||-argument.
Proof: In Lemma 2.2 take ¢ = 41(};2? and o = 38((1 25)) Invoking Corollary 3.7, it follows that
< C(0,6)P -5
1—e
||0—1(t)||L;1;1+#—;>(R3) < O(0,¢) Poo(t) msp_2e (t)

142¢

< O(0,¢) Pyo(t) C7(0,¢,t, data, ||o_ 1||L°°L2(St)>4(1 58

Thus it remains to choose Cy in a suitable manner. O

4 Proof of Theorem 1.4

Fix any characteristic (Xo, Py) in the support of f, i.e.,

f (s, Xo(s), Po(s)) = f(Xo(0), Po(0)) # 0, s € [0, Tinax. (4.1)

The relation

dii 1+ Py(s)? = Vo(s)-Po(s):VO(s)-(E(S,Xo(s))+%(8)/\B(S,Xo(s))>
= Vo(s) - E(s, Xo(s))

15



in conjunction with (3.4) yields

|Py(t)] < 1+ Po(t)2=+/1+ Py(0)2+ /OtVo(s)-E(s,Xo(s))ds

= 1+P0(O)2+/OtVo(s) - (Ep + Epr)(s, Xo(s))ds

+/0 Vo(s) - Ey(s, Xo(s)) ds +/0 Vo(s) - Ey(s, Xo(s)) ds. (4.2)

By the definition of Fj,
t
L(t) = / Vo(s) - Ey(s, Xo(s)) ds
0

¢ d d 1
- _/Ods LlSS%/RSl p2 . 2%(3)-(v+w)f(s—|y|,X0(S)+y,p)

+p2 (1+v-w)
= —/th tds/ dS(w)
0 T |w|=1
w [ L ) (0t w) £ Xols) + (5 — 7w ).

R31+p2 (1+v-w)2

Next write Vo(s) - (v+w) = (Vo(s) + w) - (v+w) — (1 + v - w) and split the integral accordingly as
1,(t) = La(t) + La(1). Firstly,

La(t)] = /dr/ ds /w| a5 431ipp2 Hlv — (. Xos) + (s — 7w, p)

dp 1
< /df/ ds/ / :
Jwl=1 pl<Po(r) L TP° 140w

< 0(0)/ (t—7) In Poo(7) Po(7 )dTgO(O)t/tlnPoo(T) P (7) dr,

where we used Lemma 2.3(a). Concerning I, ;(¢),

[La(t)] = ‘/dT/ds /w —1
/RSlep 1+U w)?

< /dT/ds/ d(p/ df sin 0

(L4 Vifs) )"
/Rdl—f-p (1+v-w)? f(r, Xo(s) + (s — T)w, p)

(Vo(s) +w) - (v +w) f(7, Xo(s) + (s — T)w, p)

for w = (cos psin , sin psin f, cos 0); recall (3.8). If Py (t) > 1, then the ) dr [* ds is split to find

Lap >y (0] < Lai(t) + Lao(t) + 1, 13(1),

16



where

t—Poo(t T+ Poo(t
Lt — i / ),
t— Poo

|
L) = [ ar /m ),
A

) = [ 1dr/ ds(..).
t—Poo(t)™ T

To begin with, by Lemma 2.3(b) for =1 and x = 2,

t—Poo ()1 T+Poo(t)~
I(t) = / dT/ /d@ sin 0
0 T
/

dp (1+Vo(>
X/R31+P s w)gﬂ (7, Xo(s) + (s — T)w, p)

t—Poo(t)7 dp 1
< CL(0) Poo(t)l/ dr max/ 372
0 =1 pi<po 1 +P° (14 v w)

()

< CO(0) Pyo(t)™ /tPOO(T)2dT§C(O) /tPoo(T) dr.

Note that in the last step it was used that P (7) < Ps(t), since P, is increasing by definition.

Similarly,

2m
I15(t) = / dT/ ds/ d(p/ df sin 6
Poo (t

(1 + Vo(s) - w)"/?
X/R31+p T to wpz (Xl + (s =7)wp)

£(0) /t dr (t —7) / dp 1
— 7) max
t=Poo (1)~ wl=1 Jipj<pu(ry 1+ 02 (140 - w)3/?

< CE(O)/tP o dr (t — 7) Py (7)?

-1

IN

t

< C(0) Palt)”! /

0

t

POO(T)2 dr < C’(O)/ P (1)dr.
0

It remains to deal with

t—Poo ()71 t 27 ™
L 1o(t) = /0 dT/ o ds/ dgp/ df sin 6
T+ Peo -

/ dp  (1+Vi(s) -w)"?
X
re 1+p? (1+v-w)3/?

Let M, = [1+ Py (t)71,t] x [0, 27] x [0, 7] and consider the mapping

O, M.>(5,0,0)—y=Xy(s)+ (s —T)w € R

17

f(r, Xo(s) + (s = T)w, p).



According to [15, Lemma 2.1}, ®, is a diffeomorphism and such that
dy = (1+ Vy(s) - w)(s — 7)*sin @ ds dp db.

Writing the inverse mapping as s = s(y) and w = w(y), this yields using Lemma 2.3(b) for
0=kr=3,

I, 15(t)

t—Pso(t)~1 1 1
= dr / d
/0 ®. (M) =2 (L1 Vols) -w) 2

dp 1
X
/|p|<Poo(T) 1+p2 (14v-w)3/? f(r,y,p)

e 1 1 dp 1 1/2
dr < dy . — 3)
0 o,y (=T (T 4+Vo(s) W) Jpcpun 1+p?)? (1+0v-w)

, %
x(/ / dydp (1+7%) £(7,9.0)°)
&, (M) Jpl<Poc(r)
t—Poo ()1 1 1 1/2
< 0501/2/ dr / d Poo ()2 ms ()12
= (0) ; ( .01 y(3_7)4 (1+Vb(5)‘w>> ™ 2(7)

< C(Q) /'tpoo(t)_ 0 </t s /27r dgp /7r 90 sind %)1/2 POO(T)I/Q m2<7_>1/2
0 T Pao (t)—1 0 0 (s —17)

< C(0)Py(t)'/? /t P (T)Y2 my(1)V2 dr.

IN

To summarize, it has been shown that

Lep w1y L) < Lppowz1y a1 (t)] + Lppo o>y [ Bha2(t)] + Lppo @1y [1has(t)]
+ 1upo@z1y [ h2(t)]

C(0) /Ot Po(r)dr + C’(O)Poo(t)l/2 /Ot POO(T)1/2 m2(7)1/2 dr

IN

—I—C'(O)t/t In Poo(7) Pso(T) dT

IN

C’(O)Poo(t)l/2 /t POO(T)I/Z m2(7)1/2 dr

+C(0)(1+1) /t In Py (T) Peo(T) dT. (4.4)

Next, by the definition of Ej,
t
L) = / Vals) - By(s, Xo(s)) ds
0

[ I
- /d /| o1 L, V() - Kesleo,0) (L) (s = Iyl Xo(s) +9.)

From (3.7) in Lemma 3.1 it hence follows that

dp 1
Li(t /dS/ FE + B S — y7X s +y
= ly|<s |y| R3 m 1+wv- w(| |+ 1BI)( ly], Xo(s) )

18



xf(s—lyl, Xo(s) + vy, p)
s/ /| W (1B] +1BI)(s — lyl, Xo(s) + ) 0-1(5 — [yl Xo(5) +v)

= /OdT/ ds(s—T)/H1dS(w)(]E]+]B\)(T,Xo(s)—i-(s—T)w)
xo_1(1, Xo(s) + (s — T)w).

Next the transformation @, from (4.3) is used on M, = [r,t] x [0,27] x [0, 7]. This yields

I1,(t) /dr/ ds (s — 1) /%dgp/ df sin 6 (|E| + |B])(r, Xo(s) + (s — 7))
xo_1(7, Xo(s) + (s — 7)w)

1
/ dT/@ (M) (s — T) (14 Vo(s) - w) ([E| +|B) (7, y) o-1(T,y)

for s = s(y) and w = w(y). Now fix ¢ €]0, 5] and define o = % €]1,2[. The general

Q) Tiaes 41(_1;2?) in conjunction with (4.3) and Lemma

Holder inequality in y for the exponents (
2.3(c) implies that

t 1/ae
ol = /0 o ([I)T(MT) W (s —17)% (1+ Vo(ls) ' )a5>

x[[(1E] + Bl ot ||0 (T )|| a(1-e)
(R3 AT (R3)
2m _ 2—ae 1/055
(s —17)
- [ 4a d do | d6 siné )
/ T / s/ 90/ sin (1 + Vo(s) - w)oe T
<[\(1E| + | Bl)(r |F6T( LRGN
1/ae
(o] )
0 |w]=1 'Cd) c
X E B —e
I([E] +[B[)(7 . fQS(R)HU (7 )HL:: )(R3
< taa_l/ E|+|B)) o o dr
[([E£] + [B])( )|| || (7 )HL;1<+ 2

Returning to (4.2), it follows from this estimate and (4.4) that

Lo IR0 < VIF RO+ [ Vals) (B + Bor)(s, Xo(s) ds
+ Lppe =13 | B (0] + Lppo =1y [ 13(1)]
t
< 1+P0(0)2+(data)—l—C(O)Poo(t)l/2/ P (7)Y my(1)V2 dr
0
t
+C(0)(1 +t)/ In Py (7) Poo(T) dT
0
3
+C(e)te / BT+ BN e ) Nl (D L dr.
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Since (Xo, Py) is in the support of f, /14 Py(0)?> < (data) uniformly in the characteristic, as
fO e C}(R? x R?) is compactly supported in p by assumption; also see (4.1). If f(s,z,p) # 0,
then f(s,z,p) = f(s, Xo(s), Po(s)) for a characteristic (X, Fp) in the support of f. It follows from
the preceding estimate that

¢
lup =1 Po(t) < (data)-+ C’(O)Poo(t)l/Q/ POO(T)1/2 m2(7)1/2 dr
0

+C®M1+ﬂ/ﬂn&&ﬂRﬂﬂdT

0

=1
+ 0@ [ 1B+ B, o (] b (09

for t € [0, Thnax[- Now suppose that Tj,.x < co. Then by the assumption (1.11),

||U—1||L§’°L§(ST) < w(T) < T,e%%ﬂiax} w(T,) =! Wmax < X

for all T' € [0, Tinax[- Thus according to Corollaries 3.6, 3.8, and 3.7 for T',t € [0, Tinax|

H]E| + \B[‘ Lre i ) < Cs(e, T, data, |01 e p2(s,))
S 06(57 TmaX7 data> wmax)? (46)
lo—1(t )H a0—2) < Cs(0,¢e,t,data, (|01 o2 (s,)) Poo(t)
° (R?)
S 08<Oa g, Tmaxa data7 wmax) Poo (t)a
m2<t) S m%(t) S C'7(O,5,t,data, ||0_—1||L?°L%(St))
S C7<07 g, Tma)u da’ta‘7 wmax)‘

Henceforth the dependence of the constants on £(0), the fixed £, and the initial data is suppressed,
and only the dependence on Tiax and wyay is made explicit. Thus (4.5) leads to

t
]-{tPoo(t)Zl} Poo (t) S (data) + C( max wmax) Poo(t)1/2/ Poo (7—)1/2 dr
0
t
+C(0) (1 + Thnax) / In Poo(7) Pxo(T) dT
0

3 1 ¢
+ C(Tonax; Pmax) Tinax /0||(\E\+|BD(T)|I e g Doo(T) AT

LiT2 (R3)

for t € [0, Thax|. Since Py(7) < Py(t)Y/2Py(7)Y2, it follows that for a certain constant Co =
CQ(TmaxywmaX> > 07

L1} Po(t)?

t
é (data) "‘ C( max s wmax) / POO(T)1/2 dT
0

t
+aﬁm%w/m&m”&mmm

0

+C(Tmax>wmax)/0 B+ BN s Poolr)dr

LiT2 (R3)

t
< (data) + Cy max,wmax)/ <1+||(\E|+|B|)(T)HL1%E )lnPOO(T)l/2POO(7—)1/2dT
0 T

(R?)
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for t € [0, Thax[- By the local existence theorem (Theorem 1.1), there is a constant C; > 0 such
that max,c(o, 1,0, /2) Poo(t) = Poo(Tmax/2) < C1. Hence if tP(t) < 1 and t € [0, Tiax/2], then

Pu(t)? < 0y,

On the other hand, if tPy(t) < 1 and t € [Tinax/2, Trax|, then

1 2 1/2
< = ()"

Therefore
Poo (t)l/Q S Cl (Tmaxa wmax)

+ ol @) | (14 HIEI+ DO, ) W0 Polr) Prfr) 2 r

6
Ly T (R3)

for t € [0, Tinax[, Where Cy(Tiax, @max) = (data) + C11/2 + (ﬁ)lﬂ. This integral inequality and
(4.6) imply that

t
WP < C(Tom. wm) exp(/o (L+ 101+ 18D s, ) dr)

24e
S C(Tmawimax) eXp <t +t ’ H|E| + |B|‘ L,}EELQ}JF%E(St)>
24e
S C(TmaX7 wmax) exp (Tmax + ngx 06 (57 Tmaxa data, wmax))

S CV?) (TmaX> wmax)

for t € [0, Thax[- Defining w@;(t) = exp(C3(Timax; @max))?, the criterion (1.8) in Theorem 1.1 is
verified for wo;. From this result it hence follows that T},., = 0o, which is a contradiction to what
was supposed before. As a consequence, Ty, = oo must be satisfied and the proof of Theorem 1.4
is complete. O

5 Proof of Corollary 1.5

Lemma 5.1 Define o1 by (1.10) and Zy by (1.9). Then for every a € [0,00[ and € > 0 there is
a constant C = C(0,a,e) > 0 such that

oy (t, @) < 0(1 Ty (8, 2) 5 ) (5.1)
Proof: Fix w € R? such that |w| = 1. Since 1+v-w >1—|v| > m, it follows for R € [10, oo
and € €]0, 2] that

dp 1
g3 /1 +p2 (1+v-w)

f

- / dp L, / dp L,
p|<R, 14v-w<e y/ 1+ p2 (]- +v- w) pI<R,14v-w>e \/ 1 +p2 (1 +uv- W)

21



1

dp
pi>r /1 +p2 (1+0-w)
d 1
< 25(0)/ dp /1 +p2+£(0)/ p
|p|<R, 14+v-w<e [p|I<R, 1+v-w>e

< V1itp? (140 w)
+ 2/ dp\/1+p*f
Ip|>R
For the first integral, the transformation (2.3) yields
/ dp\/1+p* = / dp /1 + p?
Ip|<R,14v-w<e Ip|<R,14wv3<e
R s
< C/ dr7’2\/1+7’2/ do s.in@l{pr reoso <y
0 0 Vie2 =T

R’ 2 1
doo
< C d 1 OS8\¢€
= /0 (1_02)3/15{1+ <e}

Rb
< Ce/ da—a < CeR*.
0 (1 - 02)3

f

Similarly, the second integral can be bounded by

/ dp 1 < C/R do o /1 ds L

pl<R 1tvwse \/1+p2 (I+v-w) = (1— 02)2 11 gs [U+os>e)

o o [ Eeouye
(1-— 02 . c

IA

Hence for a € [0, 0o,

a+1

o 1 < C(0)eR* + C(0) In (g)m o [ (4

lp|>R

fdp.
Upon choosing & = 1/R?, this leads to
o1 <C0)In(R)R* + 2R~ /3(1 —i—pz)aT+1 fdp. (5.2)
R

Furthermore, 01 < 2 o5 \/14 p? fdp is always satisfied. Next fix a constant C, = C,(a) such
that
[7(In(10 + 1)) "7« > 10, 1> C.(a).

If 7,41 < Ci(a), then

o1 < 2/ V1+p?fdp <27, <2C.(a).
R3

_1
On the other hand, if Z,,1 > C,(a), then take R = Z’7{ (In(10 +Ia+1))_2+% > 10 in (5.2) to obtain
o1 < C(0) ln(R)R2 +2R Ty
C(0,a) I7 ([mza+1 —Inln(10 + Zpsr)] (10(10 + Zpsr)) =7 + (In(10 + Zpsy)) z+a)

IN

< C(0,a) Ijﬁ (In(10 + Zpsq)) 75,
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If € > 0 is fixed, then select C' = C(a,¢) such that In(10 4+ I) < C(a,e)I® whenever I > Ci(a).
Therefore Z, 1 > C,(a) yields

2+ea

01 S C(Oa CL) C(CL, 8)2%1 IaQ—:la ’

and hence (5.1). O

Corollary 5.2 For every a € [0,00] and € > 0 there is a constant C' = C(0,a,g) > 0 such that

2
o (0)3e < C(14+ 8 4+ | a0

_ 2(2+4ea)
for q = (27

Proof: Let Ry be fixed such that f((z,p) = 0 for |x| > Ry. Then (1.1) and (2.1) implies that
f(t,z,p) =0 for |z| > Ry +t. In particular, o_;(t,z) = 0 for |z| > Ry + t. Hence squaring and
integrating (5.1) it follows that

/ o_1(t,x)?dx < C((RO +t)? +/ T (t,2) 550 da:),
R3

R3

which yields the claim. a

Proof of Corollary 1.5: Let > 1 and ¢ 6]6%1, oo[ be given, and suppose that there is a function

wr € C(]0, 00[) such that [ |Zp(t, 2)|? dx < wr(t) is verified for ¢ € [0, Tyax[. Defining

2 2
a—g_1 o=12+a 2
2a a

2(2+¢a)

51a - Lhus we can apply Corollary 5.2 to deduce

we have a > 0 and € > 0, and in addition ¢ =
that for ¢ € [0, Tinax[:

o1 (8)]122 ) < 0(1 T / |Ig(t,x)|qu> < 0(1 4 +w7(t)>.
Hence Theorem 1.4 applies. a

Acknowledgement : The author is grateful to the anonymous referee for his careful reading of
the paper which led to several improvements.
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