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Abstract

We will show that measure-preserving transformations of Rn are recurrent if they satisfy
a certain growth condition depending on the dimension n. Moreover, it is also shown that
this condition is sharp.

1 Introduction

To illustrate the topic of this paper, consider a fluid in R3 whose motion is governed by a
C1-velocity field v = v(t, x) : R× R3 → R3 which is T -periodic in time and satisfies

divxv(t, x) = 0 for each (t, x) ∈ R× R3

and
v(t, x) = O(|x|−α) as |x| → ∞, uniformly in t.

We are interested in the recurrence properties of the solutions to the system ẋ = v(t, x). Indeed
it is sufficient to ask about the recurrence properties of the measure-preserving Poincaré map

h : x(0) 7→ x(T ) = x(0) +

∫ T

0

v(s, x(s)) ds.

In general the Poincaré recurrence theorem will not be applicable, since the underlying space
has infinite measure. However, it will be a consequence of our main result, Theorem 2.1, that
the map is recurrent for α > 2. This theorem will be presented in a general framework which
is valid for general maps h of Rn.

For the proof we are going to use the following result due to Dolgopyat [3, Lemma 4.1], see
also [4, Lemma 1.4]. It provides a useful extension of the finite-measure Poincaré recurrence
theorem.
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Lemma 1.1 Let (X,F , µ) be a measure space and suppose that the map T : X → X is one-
to-one and such that the following holds:

(a) T is measurable, in the sense that T (B), T−1(B) ∈ F for B ∈ F ,

(b) T is measure-preserving, in the sense that µ(T (B)) = µ(B) for B ∈ F , and

(c) there is a set A ∈ F such that µ(A) <∞ with the property that almost all points from X
visit A in the future.

Then for every measurable set B ⊂ X almost all points of B visit B infinitely many times in
the future.

We say that a point x ∈ X visits a set S ⊂ X if some iterate T k(x) with k ≥ 1 belongs to S.
A central issue in the proof of the main result will be to construct a suitable set A as in

(c), and to this end the growth condition is needed. Another key insight is to realize that
Lemma 1.1 has to be applied to T = h|U : U → U , where U denotes the set of initial conditions
which lead to unbounded orbits. As a corollary we will show that, if h is continuous, the set
of non-recurrent points is of first Baire category, and hence small also in a topological sense.
We expect the main theorem to have many applications, and apart from the one sketched at
the beginning of this introduction we will derive a new fixed point theorem for area preserving
homeomorphisms on the plane and furthermore a result on the existence of periodic solutions
to non-autonomous Hamiltonian systems for one degree of freedom.

2 Main result

For a map h : Rn → Rn we denote by (zk) = (hk(z0)), k ∈ N0 = {0, 1, 2, . . .}, the forward
orbit of z0 ∈ Rn under the iteration of h. The map h will be said to be recurrent, if for
every measurable set B ⊂ Rn such that λn(B) > 0 and almost every point z0 ∈ B there is
k = k(z0) ∈ N such that zk = hk(z0) ∈ B; here λn is the Lebesgue measure on Rn and the term
‘measure-preserving’ will always be understood as w.r. to λn.

Our main result is the following theorem on recurrence; in Section 3 we will outline an
example which implies that the assumptions are sharp in what concerns the exponent α in
condition (2.1).

Theorem 2.1 Let h : Rn → Rn be a one-to-one, measurable, and measure-preserving map
such that there are constants C > 0 and α > n− 1 so that

|h(z)| ≤ |z|+ C

1 + |z|α
for z ∈ Rn, (2.1)

where | · | denotes any fixed norm on Rn. Then h is recurrent.

Proof : Step 1: Let (εj)j∈N and (bj)j∈N be sequences of positive numbers satisfying

εj ≤ 1 ≤ bj,

∞∑
j=1

εjb
n−1
j <∞, and lim

j→∞
(εjb

α
j ) =∞. (2.2)
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Appropriate choices in (2.2) are, for instance,

εj =
1

j2+
3(n−1)
α−(n−1)

and bj = j
3

α−(n−1) .

Denote
A∗ =

⋃
j∈N

{z ∈ Rn : |z| ∈ [bj − εj, bj + εj]}.

First we are going to show that A∗ has finite measure and every unbounded orbit of h enters
A∗. Let ωn = 2π

Γ(n
2

)
denote the surface of the unit sphere Sn−1 ⊂ Rn. Then

λn(A∗) ≤ ωn

∞∑
j=1

∫ bj+εj

bj−εj
dr rn−1 =

ωn
n

n−1∑
k=0

(
n
k

)
(1− (−1)n−k)

∞∑
j=1

bkj ε
n−k
j ≤ 2nωn

n

∞∑
j=1

bn−1
j εj,

which is finite by (2.2). Now let (zk) = (hk(z0)) be an unbounded orbit of h and assume that
it does not enter A∗. Then we have lim supk→∞ |zk| = ∞ and ||zk| − bj| > εj for all k, j ∈ N.
Since limj→∞ bj =∞ there is j0 ∈ N such that bj ≥ 3C and moreover bj > |z1| for j ≥ j0. Fix
j ≥ j0. Owing to lim supk→∞ |zk| = ∞ and |z1| < bj we can select a first index K ≥ 2 so that
|zK | > bj. In particular, this implies that |zK−1| ≤ bj. Hence by (2.1):

εj < ||zK | − bj| = |zK | − bj ≤ |zK | − |zK−1| = |h(zK−1)| − |zK−1| ≤
C

1 + |zK−1|α
. (2.3)

If we had |zK−1| ≤ bj/2, then

bj < |zK | ≤ |zK−1|+
C

1 + |zK−1|α
≤ bj

2
+

C

1 + |zK−1|α
(2.4)

implies that 1 ≤ 1+|zK−1|α ≤ 2C/bj, which is impossible by the choice of j0. Thus |zK−1| > bj/2
and therefore (2.3) leads to

εj ≤
C

1 + |zK−1|α
≤ 2αC

bαj
, j ≥ j0,

but this contradicts limj→∞(εjb
α
j ) =∞. Step 2: Let

U = {z0 ∈ Rn : lim sup
k→∞

|zk| =∞}

denote the set of unbounded orbits. Since

U =
∞⋂
m=1

∞⋂
l=1

⋃
k≥l

h−k({z ∈ Rn : |z| ≥ m}),

we see that U is measurable. Now we are going to apply Lemma 1.1 to X = U , T = h|U : U →
U , and A = U ∩ A∗. From Step 1 it follows that λn(A) ≤ λn(A∗) <∞ and every z0 ∈ U visits
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A in the future. Hence Lemma 1.1 implies that for every measurable C ⊂ U almost every point
z0 ∈ C returns to C infinitely often under the iteration of h. Step 3: Denote by

B = Rn \ U = {z0 ∈ Rn : lim sup
k→∞

|zk| <∞}

the set of bounded orbits and define BM = {z0 ∈ B : |zk| ≤M for all k ∈ N0} for M ∈ N. Then
B =

⋃∞
M=1BM , h maps BM into itself, and BM has finite measure, since it is a measurable set

contained in the closed ball of radius M . Therefore the standard Poincaré recurrence theorem
applies, which allows us to deduce that for every measurable C ⊂ BM almost every point z0 ∈ C
returns to C infinitely often under the iteration of h. Step 4: Completion of the proof. Let
C ⊂ Rn be measurable and such that λn(C) > 0. Since

C = (C ∩ U) ∪
∞⋃

M=1

(C ∩BM),

we apply the previous two steps to find sets V ⊂ C ∩ U and ZM ⊂ C ∩ BM for every M ∈ N
of zero measure, and with the additional property that every point z0 ∈ (C ∩U) \ V returns to
C ∩U infinitely often, and every point z0 ∈ (C ∩BM) \ZM returns to C ∩BM infinitely often.
Then Z = V ∪

⋃∞
M=1 ZM has zero measure and every point z0 ∈ C \ Z returns to C, in fact

infinitely often. 2

Recall that the ω-limit set ω(z0) ⊂ Rn of a point z0 ∈ Rn is given by the accumulation points
of (zk)k∈N0 . A point z0 ∈ Rn is said to be recurrent, if z0 ∈ ω(z0). Let G = {z ∈ Rn : z ∈ ω(z)}
denote the set of recurrent points.

The set of non-recurrent points is not only small in measure, but also topologically.

Corollary 2.2 Let the assumptions of Theorem 2.1 be satisfied.

(a) Then almost all z0 ∈ Rn are recurrent.

(b) If, in addition, h is supposed to be continuous, then the set of non-recurrent points is of
first Baire category.

Proof : (a) For every N ∈ N we cover Rn by a countable family (B
(N)
j )

j∈N of balls of radius

1/N . Applying Theorem 2.1, we find sets Z
(N)
j ⊂ B

(N)
j of measure zero such that every

z0 ∈ B(N)
j \ Z(N)

j returns to B
(N)
j infinitely often. Let Z =

⋃∞
j=1

⋃∞
N=1 Z

(N)
j . Then λn(Z) = 0

and Rn \ G ⊂ Z. To establish the last relation take z0 ∈ Rn \ Z. Since
⋃∞
j=1 B

(N)
j = Rn for

every N ∈ N, there is jN ∈ N such that z0 ∈ B
(N)
jN

. But z0 6∈ Z
(N)
jN

, and this means that z0

returns to B
(N)
jN

infinitely often. Therefore we can fix kN ≥ N such that hkN (z0) ∈ B(N)
jN

, which

implies that |hkN (z0) − z0| < 1/N and kN → ∞. Thus z0 ∈ ω(z0) and hence z0 ∈ G, which
proves that Rn \ G ⊂ Z. This in turn yields λn(Rn \ G) = 0, as desired. (b) For j ∈ N define
Gj = {z ∈ Rn : |hk(z)− z| < 1/j for some k ∈ N}. Then G =

⋂∞
j=1Gj = {z ∈ Rn : z ∈ ω(z)}

is the set of recurrent points, for which one has λn(Rn \G) = 0 by (a). Hence λn(Rn \Gj) = 0
for every j ∈ N and this implies that int (Rn \ Gj) = ∅ for the interior of this set. Since h is
continuous, Gj ⊂ Rn is open, thus Rn \Gj is nowhere dense and Rn \G =

⋃∞
j=1(Rn \Gj). 2
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Remark 2.3 (a) Theorem 2.1 is useful in many respects, for example it yields a new fixed
point theorem on the plane: Suppose that h : R2 → R2 is a homeomorphism preserving area
and orientation and such that there are constants C > 0 and α > 1 so that |h(z)| ≤ |z|+ C

1+|z|α

for z ∈ R2. Then h has a fixed point.
To establish this claim, note that in particular h is continuous and one-to-one. Owing to

a result of Brouwer (see [1] and [5, Cor. 12]), it suffices to find a point z0 ∈ R2 such that
lim infk→∞ |hk(z0)| <∞, which is equivalent to ω(z0) 6= ∅. But Corollary 2.2(a) implies that in
fact ω(z) 6= ∅ for almost all z ∈ R2.

This result should be contrasted with earlier work, [2, Cor. 2.2], which says the following:
Let (M,ω) be a symplectic manifold where M is diffeomorphic to R2n. Then there is a neigh-
borhood in the C1-fine topology of Diff(M,ω) which contains idM , such that every mapping
in this neighborhood has a fixed point. Thus our fixed point theorem provides a quantitative
generalization of [2, Cor. 2.2] in the planar case. Observe that the condition |h(z)− z| ≤ C

1+|z|α

describes a certain neighborhood of idM , but in the C0-fine topology, and also note that (2.1)
is satisfied if this condition on h holds.

(b) We outline a further application of our results. Consider a non-autonomous Hamiltonian
system ż = J∇zH(t, z) of one degree of freedom, i.e. z ∈ R2, such that H is C2, T -periodic in
time and such that ∇zH(t, z) = O(|z|−α) as |z| → ∞ for some α > 1, uniformly in t. Then the
system has a T -periodic solution. To prove this, it is sufficient to apply the fixed point theorem
from (a) to the Poincaré map of the system.

3 A counterexample

We will show that the assertion of Theorem 2.1 may fail to hold, if only

|h(z)| ≤ |z|+ C

1 + |z|n−1
for z ∈ Rn (3.1)

is assumed, i.e., the condition α > n − 1 is sharp. For r ≥ 1 consider the function ϕ(r) =
(1 + 1

rn
)1/n and define

h : Rn → Rn, h(z) =

{
z : |z| ≤ 1

ϕ(|z|)z : |z| > 1
.

Then h is one-to-one. To establish this fact, take z, z̃ ∈ Rn such that h(z) = h(z̃). If |z|, |z̃| ≤ 1,
then z = z̃. If |z| ≤ 1 and |z̃| > 1, then ϕ(r) > 1 yields the contradiction 1 ≥ |z| = |h(z)| =
|h(z̃)| = ϕ(|z̃|)|z̃| > |z̃| > 1. If |z|, |z̃| > 1, then ϕ(|z|)z = ϕ(|z̃|)z̃ implies that z̃ = λz for some
λ > 0. From the definition it follows that (1 + 1

|z|n )|z|n = ϕ(|z|)n|z|n = (λn + 1
|z|n )|z|n, and

hence λ = 1 and z = z̃. Therefore h is one-to-one. Next we claim that h is measure-preserving.
Since h(z) = z for |z| ≤ 1 and h maps h : {|z| > 1} → {|z| > 1}, it suffices to prove that
h2(z) = ϕ(|z|)z for |z| > 1 is measure-preserving. The Jacobi matrix of h2 is calculated to be

Dh2(z) = ϕ(r)In +
ϕ′(r)

|z|
z ⊗ z, r = |z|,
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where In is the n×n–unit matrix and (z ⊗ z)ij = zizj. It is proved by induction that in general

det(aIn + b z ⊗ z) = an−1(a+ b|z|2). As a consequence, and by the definition of ϕ,

detDh2(z) = ϕ(r)n−1(ϕ(r) + rϕ′(r)) = 1, |z| > 1,

which shows that h2 is measure-preserving. Concerning condition (3.1), if |z| ≤ 1, then h(z) =
z. If |z| > 1, then |h(z)− z| = |ϕ(|z|)− 1| |z|. From the ODE ϕ(r)n−1(ϕ(r) + rϕ′(r)) = 1 one
has

0 ≤ −ϕ′(r) =
ϕ(r)n − 1

rϕ(r)n−1
=

1

rn+1ϕ(r)n−1
≤ 1

rn+1
,

and accordingly |ϕ(r)− 1| = −
∫∞
r
ϕ′(s) ds ≤

∫∞
r

ds
sn+1 ≤ 1

rn
. This leads to

|h(z)− z| = |ϕ(|z|)− 1| |z| ≤ 1

|z|n−1
≤ 2

1 + |z|n−1
, |z| > 1,

and completes the proof that (3.1) is verified. Next we are going to show that the set G of
recurrent points is G = {|z| ≤ 1}. Since h(z) = z for |z| ≤ 1, this is equivalent to proving
that all |z0| > 1 are non-recurrent. So let z0 ∈ Rn satisfy |z0| > 1 and denote zk = hk(z0).
From ϕ(r) > 1 it follows that |zk| > 1 for k ∈ N0. Then zk+1 = h(zk) = ϕ(|zk|)zk shows that
|zk+1|n = (1 + 1

|zk|n
)|zk|n = |zk|n + 1, and in particular limk→∞ |zk| = ∞. This proves that

G = {|z| ≤ 1}, and clearly h is a non-recurrent map.

4 Additional remarks

In this section we will briefly address some generalizations and questions that have kindly been
brought to our attention by the anonymous referee.

(a) For Theorem 2.1 to hold it in fact suffices to assume the weaker condition

|h(z)| ≤ |z|+ C

1 + |z|n−1φ(|z|)
for z ∈ Rn,

where, for instance, φ : [0,∞[→ [0,∞[ is a continuous and increasing function such that
limr→∞ φ(r) = ∞; the authors thank Prof. Dolgopyat who also suggested to extend condition
(2.1). To see this, choose bj → ∞ such that φ(bj/2) = j3 for j sufficiently large. Define
εj = 1

j2bn−1
j

. Then once again
∑∞

j=1 b
n−1
j εj < ∞. A straightforward inspection of the proof to

Theorem 2.1 now shows that (2.3) and (2.4) will be replaced by

εj <
C

1 + |zK−1|n−1φ(|zK−1|)
(4.1)

and

bj <
bj
2

+
C

1 + |zK−1|n−1φ(|zK−1|)
, (4.2)

respectively. The case where |zK−1| ≤ bj/2 is impossible as before by (4.2) and bj →∞, and if
|zK−1| > bj/2, then (4.1) implies that

εj <
C

|zK−1|n−1φ(|zK−1|)
≤ 2n−1C

bn−1
j φ(bj/2)

,
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but εjb
n−1
j φ(bj/2) = j →∞ gives a contradiction as before.

(b) The example in Section 3 can be modified so that h becomes a one-to-one measure-preserving
map satisfying (3.1) and having no recurrent points. Define

h : Rn → Rn, h(z) =

{
z∗ : z = 0

ϕ(|z|)z : z 6= 0
,

where z∗ is chosen arbitrarily such that 0 < |z∗| ≤ 1. Then |zk| → ∞ along all orbits.

(c) It is an interesting open problem whether one can construct a one-to-one measure-preserving
map h satisfying (3.1) such that h is continuous (or even a homeomorphism), but non-recurrent.
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